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ABSTRACT (199/200 words) 

Background: Associations between attention-deficit/hyperactivity disorder (ADHD) and 

brain morphology have been reported, although with several inconsistencies. These may 

partly stem from confounding bias, which could distort associations and limit generalizability. 

We examined how associations between brain morphology and ADHD symptoms change 

with adjustments for potential confounders typically overlooked in the literature (aim 1), and 

for IQ, which is typically corrected for but plays an unclear role (aim 2). 

Methods: Participants were 10-year-old children from the Adolescent Brain Cognitive 

Development (N=7,961) and Generation R (N=2,531) studies. Cortical area and volume 

were measured with MRI and ADHD symptoms with the Child Behavior Checklist. Surface-

based cross-sectional analyses were run.  

Results: ADHD symptoms related to widespread cortical regions when solely adjusting for 

demographic factors. Additional adjustments for socioeconomic and maternal behavioral 

confounders (aim 1) generally attenuated associations, as cluster sizes halved and effect 

sizes substantially reduced. Cluster sizes were further reduced when including IQ (aim 2), 

however, we argue that adjustments could have introduced bias (e.g., by conditioning on a 

collider).  

Conclusions: Careful confounder selection and control can help identify more robust and 

specific regions of associations for ADHD symptoms, across two cohorts. We provided 

guidance to minimizing confounding bias in psychiatric neuroimaging.  

Funding: Authors are supported by an NWO-VICI grant (NWO-ZonMW: 016.VICI.170.200 

to HT) for HT, LDA, SL, and the Sophia Foundation S18-20, and Erasmus University and 

Erasmus MC Fellowship for RLM. 
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Introduction 1 

Large strides have been made in the identification of neuroanatomical correlates of 2 

psychiatric problems, with Attention-Deficit/Hyperactivity Disorder (ADHD) being a prominent 3 

example. ADHD is the most prevalent neurodevelopmental disorder in children worldwide 4 

and is characterized by atypical levels of inattention, hyperactivity, and/or impulsivity (1). 5 

Structural Magnetic Resonance Imaging (sMRI) studies have highlighted that children with 6 

ADHD show widespread morphological differences, such as in the basal ganglia (2), 7 

subcortical areas (3), and frontal, cingulate, and temporal cortices compared to children 8 

without the disorder (4,5). 9 

Consistently identifying the neuroanatomical substrate of ADHD, however, remains 10 

challenging. A recent meta-analysis did not find convergence across the literature on brain 11 

differences in children and adolescents with ADHD (6). One possible explanation for this 12 

inconsistency is the multifaceted nature of ADHD, in which children with the disorder have 13 

heterogeneous presentations on several cognitive and emotional domains, which could stem 14 

from distinct brain structural substrates. Other explanations regard study design. If 15 

suboptimal, it may lead to biased estimates and lack of generalizability, thus potentially 16 

concealing robust and replicable relations of brain morphology with ADHD. The present 17 

study focuses on confounding, a common source of bias in etiological studies.  18 

Confounding bias arises when a third variable affects both the determinant 19 

(independent variable) and outcome (dependent variable) of interest (i.e., is a common 20 

cause) (7). Confounding leads to over- or under-estimation of the true effect between 21 

determinant and outcome and can even change the direction of an association. To minimize 22 

confounding bias, appropriate confounder control is paramount, although it is challenging, 23 

especially in observational studies like most neuroimaging studies of ADHD. Previous 24 

literature and expert knowledge can guide the identification of potential confounders (8), 25 

which can then be appropriately adjusted for in regression models or using methods such as 26 

restriction, standardization, or propensity scores.  27 
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Within neuroimaging studies of ADHD, except for a few large investigations (3,9,10), 28 

studies have generally matched or adjusted for a few demographic variables (e.g., age, sex) 29 

and neuroimaging metrics or parameters. Of the 19 studies included in a systematic review 30 

of neuroimaging studies on ADHD (11), 17 adjusted or matched for age in their analyses, 14 31 

for sex, 9 for precision variables like study site, and 8 for the intelligence quotient (IQ) 32 

(Supplementary Table 1). Further potential confounders should, however, be considered. 33 

For instance, socioeconomic status (SES) is related to both higher risk for ADHD and 34 

variation in cortical brain structure (12,13). Thus, it is likely a confounder. Lack of adjustment 35 

for SES may have therefore concealed key relations between ADHD and brain structure. 36 

Adjustment choices are dependent on the availability of large samples with data on a wide 37 

variety of covariates, which has to date been limited for psychiatric neuroimaging studies. 38 

Yet, this is rapidly changing with the advent of population neuroscience, which entails large-39 

scale studies with neurobiological data. This lends new opportunities for further confounder 40 

adjustments to be considered in neuroimaging studies of ADHD. Conversely, previous 41 

studies have adjusted for IQ, which may not be a confounder in the association between 42 

ADHD symptoms and the brain, and may thus have led to further bias in the results (14).  43 

In this study, we examined the association between brain structure and ADHD 44 

symptoms and how the selection and control for potential confounders may affect results 45 

(aim 1). Moreover, we discussed the unclear role of IQ in brain structure – ADHD 46 

associations and the potential consequences of adjusting for it (aim 2). We leveraged two 47 

large, population-based cohorts: the Adolescent Brain Cognitive Development (ABCD) and 48 

the Generation R Studies. In line with most neuroimaging studies, we adopted a cross-49 

sectional design. 50 

51 
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Results 52 

Associations between ADHD symptoms and brain morphology are widespread 53 

We analyzed data from 10-year-old children from the ABCD (N = 7,961, multi-site) 54 

and Generation R (N = 2,531, single-site) Studies (Supplementary Table 2). ADHD 55 

symptoms were measured with the Child Behavioral Checklist (CBCL). T1-weighted images 56 

were obtained with 3T scanners (15,16). Cortical surface area and volume were considered, 57 

while thickness was not tested due to previously reported null findings in the Generation R 58 

Study (4). We ran vertex-wise linear regression models for ADHD with cortical surface area 59 

and volume. We adjusted for demographic and study characteristics which have been 60 

generally considered by previous literature (Supplementary Table 1): age, sex, ethnicity, 61 

and study site (ABCD only). We refer to this model as model 1, as further adjustments for 62 

confounders are outlined in subsequent steps.  63 

We found that higher ADHD symptoms were associated with less bilateral surface 64 

area and cortical volume in both cohorts. As shown in Figure 1, associations were 65 

widespread for both surface area (ABCD = 1,109.8 cm2; GenR = 444.7 cm2) and volume 66 

(ABCD = 666.0 cm2; GenR = 96.1 cm2). Across both cohorts, we consistently identified 67 

clusters for surface area in the lateral occipital, postcentral, rostral middle and superior 68 

frontal, and superior parietal cortices. For volume, we observed overlap across cohorts in the 69 

cuneus, precuneus, fusiform, inferior parietal, inferior, middle, and superior temporal, 70 

isthmus of the cingulate, lateral occipital, pericalcarine, pre- and post-central, and 71 

supramarginal cortices.  72 

73 
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Figure 1. Significant clusters in the association of ADHD symptoms with cortical surface 74 

area (top) and volume (bottom) based on the ABCD and Generation R Studies, for model 1.  75 

 76 

Note. Rows represent the results for the ABCD or Generation R Studies, and the columns represent the left and right 77 

hemispheres. Regions in red represent significant clusters from model 1 (adjusted for sex, age, race/ethnicity).   78 
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Confounder selection: Socioeconomic and maternal behavioral factors 79 

Next, we considered factors that have been previously linked to ADHD and brain 80 

structure in the literature, and are thus potential confounders. To illustrate this background 81 

knowledge and the assumptions about relations between variables, we used Directed 82 

Acyclic Graphs (DAGs), a type of causal diagram (8). These guide the identification (and 83 

dismissal) of covariates that may act as confounders (Supplementary Box 1). Of note, 84 

while assumptions may not hold, this theoretical approach is preferred to methods selecting 85 

confounders based on model statistics (17). The DAGs are depicted in Figure 2 and 86 

Supplementary Figure 1, and the rationales for variable inclusion are explained below and 87 

in the Methods section.  88 

Based on the literature, lower SES is associated with a higher risk for ADHD (12) and 89 

with variation in cortical brain structure (13). Thus, confounding by socioeconomic factors in 90 

the relation between ADHD and brain morphology is likely. We therefore additionally 91 

adjusted for a second set of confounders (model 2) related to SES: household income, 92 

maternal education, and maternal age at childbirth.  93 

Moreover, several factors concerning maternal behavior, pre- and postnatally, have 94 

been associated with both ADHD and brain morphology. For instance, prenatal exposure to 95 

substances is known to increase the risk of developing ADHD symptoms and has been 96 

associated with variation in cerebral volume and surface area (18,19). Postnatal maternal 97 

psychopathology has been linked to higher child ADHD symptoms (20) and smaller brain 98 

volume in children (21). Thus, in model 3 we additionally adjusted for prenatal exposure to 99 

substance use (tobacco and cannabis), and postnatal maternal psychopathology. 100 
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Figure 2. Directed Acyclic Graphs for brain structure and ADHD symptoms (simplified).  101 

 102 

Note. DAGs illustrating potential confounders in the association between brain structure and ADHD symptoms for three 103 

sequential models. Model 1 included demographic and study characteristics: Sex, age, ethnicity, study site (ABCD only) (in 104 

blue). Model 2 additionally included socioeconomic status factors: Family income, maternal education, and maternal age at 105 

childbirth (in red). Model 3 additionally incorporated postnatal maternal psychopathology and maternal substance use during 106 

pregnancy (in green).  107 
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Adjusting for additional confounders led to reductions in the clusters of association 108 

Adjustments for SES (model 2) led to reductions in the spatial extent of the clusters 109 

for surface area and volume in both cohorts (Figure 3). For surface area, cluster sizes for 110 

ADHD symptoms reduced from 1,109.8 cm2 in model 1 to 885.4 cm2 in model 2 (= - 20%) in 111 

the ABCD Study, and from 444.7 cm2 to 226.0 cm2 (= - 49%) in the Generation R Study. In 112 

the analyses of volume, clusters for ADHD symptoms were reduced from 666.0 cm2 in model 113 

1 to 384.6 cm2 in model 2 (= - 42%) in the ABCD Study, and from 96.1 cm2 to 31.6 cm2 (= - 114 

67%) in the Generation R Study. Adjustments for maternal substance use and 115 

psychopathology (model 3) showed further cluster changes for surface area and volume in 116 

both cohorts (Figure 3). For surface area, clusters covered 682.6 cm2 in the ABCD study (= - 117 

23%, compared to model 2) and 214.1 cm2 (= - 5%) in the Generation R Study. Cortical 118 

volume clusters related to ADHD symptoms comprised 262.5 cm2 (= - 32%, compared to 119 

model 2) in the ABCD Study, and 33.8 cm2 (= + 7%) in the Generation R Study. 120 

 After adjusting for the confounders added in model 3, across both cohorts, we 121 

consistently identified clusters for surface area in the cuneus, precuneus, fusiform, inferior 122 

parietal, isthmus of the cingulate, pericalcarine, pre- and post-central, rostral middle and 123 

superior frontal, superior temporal and supramarginal cortices. Clusters consistently 124 

identified across cohorts for volume were in the inferior parietal, isthmus of the cingulate, 125 

later occipital, pre- and post-central, precuneus, and supramarginal cortices.  126 
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Figure 3. Significant clusters in the association of ADHD symptoms with cortical surface 127 

area (top) and volume (bottom) based on the ABCD and Generation R Studies, for models 1 128 

to 3. 129 

 130 

Note. Rows represent the results for the ABCD or Generation R Studies, and the columns represent the left and right 131 

hemispheres. The colors denote the different models. Regions in red represent significant clusters from model 1 (sex, age, 132 

race/ethnicity), orange from model 2 (model 1 + family income, maternal education, and maternal age at childbirth), and yellow 133 

from model 3 (model 2 + maternal smoking, substance use during pregnancy, psychopathology).  134 
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Similar results were observed for ADHD diagnosis 135 

To explore whether the results observed for associations between brain morphology and 136 

ADHD symptoms applied to children with an ADHD diagnosis, we repeated the primary 137 

analysis using the ADHD diagnostic data from the Kiddie Schedule for Affective Disorders 138 

and Schizophrenia (KSADS) in the ABCD Study. In line with our primary results, ADHD 139 

diagnosis was associated with less bilateral surface area and volume. Compared to clusters 140 

for ADHD symptoms, those associated with ADHD diagnosis were smaller, but overlapping 141 

(Supplementary Figure 2). We observed similar patterns of reduction in the spatial extent 142 

of the clusters after adjusting for each set of confounders (Supplementary Figure 3). For 143 

surface area, cluster sizes for ADHD symptoms covered 275.5 cm2 in model 1 and reduced 144 

to 233.0 cm2 in model 2 (= - 15%), and 94.9 cm2 in model 3 (= - 59%, compared to model 2). 145 

For volume, cluster sizes for ADHD symptoms comprised 98.9 cm2 in model 1 and reduced 146 

to 70.7 cm2 in model 2 (= - 29%), and 26.2 cm2 in model 3 (= - 63%, compared to model 2). 147 

 148 

Beta coefficients generally decreased after confounder adjustments, but may also 149 

increase  150 

Surface-based studies generally focus on the spatial extent of cortical clusters 151 

associated with the phenotype, but, in this study, we also explored how confounding 152 

adjustments affected the vertex-wise regression coefficients for ADHD symptoms.  153 

At a vertex-wise level, adjusting for socioeconomic and maternal factors (model 3) 154 

led to reductions in the beta coefficients, across the brain, for both cohorts (Supplementary 155 

Figure 4). Of note, some beta coefficients also showed increases.  156 

 As confounding bias may lead to under- or over-estimation, it is not surprising to observe 157 

both decreases and increases in the average beta coefficients after adjustments.  158 

At an anatomical region level, where estimates of vertices within a given Desikan-159 

Killiany region were averaged, beta coefficients for surface area tended to decrease from 160 

model 1 to 2 by approximately 15% (Figure 4, Supplementary Figure 5). Further 161 

adjustments from model 2 to 3 led to decreases in the average beta coefficients of certain 162 
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regions and increases in others. Similar patterns were found for volume across both studies 163 

(Supplementary Figure 6, 7). The average beta coefficients per region correlated 164 

moderately to strongly between the ABCD and Generation R Studies for both surface area 165 

(rM1 = 0.83, rM2 = 0.79, rM3 = 0.77) and volume (rM1 = 0.57, rM2 = 0.56, rM3 = 0.61) 166 

(Supplementary Figure 8). 167 
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Figure 4. Region-based average regression coefficients for surface area in the ABCD and 168 

Generation R Studies. 169 

 170 

Note. The colors denote the different models, and the circles denote the average of all the betas within that region. The regions 171 

are based on the Desikan-Killiany atlas. Results for the ABCD and Generation R Studies are respectively shown on the top and 172 

bottom.  173 

 174 
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IQ may be a confounder, mediator, or collider in neuroanatomical studies of ADHD 175 

We considered one additional scenario which included IQ, a factor that is often 176 

adjusted for in previous studies (Supplementary Table 1). However, based on prior 177 

literature, it holds an ambiguous role in structural anatomy - ADHD relations. Previous 178 

studies found that children with ADHD scored lower on IQ than children without ADHD (22). 179 

Differential brain structure with levels of IQ has also been shown (23). However, the 180 

directions of causation between these variables remain unclear (24). IQ may therefore be a 181 

confounder, collider, and/or mediator in the relation between brain structure and ADHD, as 182 

depicted in the DAGs in Figure 5 and Supplementary Box 2.  183 

First, it could be argued that IQ is partly innate and precedes brain development and 184 

ADHD, making it a confounder (Figure 5A). Second, IQ may lie in the pathway between 185 

brain structure and ADHD and therefore act as a mediator (Figure 5B). It is conceivable that 186 

cognitive differences, as a consequence of subtle neurodevelopmental differences (25), 187 

could underlie ADHD. Adjusting for a mediator would lead to bias when estimating the total 188 

association between brain structure and ADHD (26). Third, brain structure may impact 189 

intelligence scores (25), and ADHD symptoms may affect IQ test performance (27) (Figure 190 

5C). A variable that is independently caused by the outcome and the determinant is also 191 

known as a collider, and adjusting for it leads to (collider) bias. Here, we explored the impact 192 

of adjusting for IQ when examining the relation between brain morphology and ADHD 193 

(model 4). 194 
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Figure 5. Directed acyclic graphs for IQ, brain structure, and ADHD symptoms 195 

 196 

Note. A) DAG for IQ as a confounder. In this case, adjustments are needed as the backdoor path from brain structure to ADHD 197 

symptoms through IQ is open. By adjusting (box around IQ), the path gets closed. B) DAG for IQ as a mediator. Adjustments 198 

are not needed to estimate the total effect of brain structure on ADHD symptoms. C) DAG for IQ as a collider. The backdoor 199 

path through IQ is already closed. Adjustments would open the path and lead to collider bias.   200 
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Adjustments for IQ led to further cluster reductions  201 

After additionally adjusting for IQ, the spatial extent of the clusters associated with 202 

ADHD symptoms reduced further in both cohorts (Figure 6). For surface area, compared to 203 

model 3, clusters reduced from 682.6 cm2 to 525.7 cm2 (= - 23%) for the ABCD Study, and 204 

from 214.1 cm2 to 93.1 cm2 for the Generation R Study (= - 57%). For volume, compared to 205 

model 3, clusters reduced from 262.5 cm2 to 164.1 cm2 (= - 37%) in the ABCD Study and 206 

from 33.8 cm2 to 17.9 cm2 (= - 47%) in the Generation R Study.  207 

For both cohorts, clusters of association for surface area in model 4 were located in 208 

the fusiform, inferior parietal, insula, lateral occipital, middle temporal, pericalcarine, pre- and 209 

post-central, precuneus, rostral middle, and superior frontal, superior parietal and temporal, 210 

and supramarginal cortices. For volume, the remaining clusters consistently identified across 211 

cohorts were the isthmus of the cingulate, lateral occipital, pre- and post-central, lingual, 212 

precuneus, superior parietal, and supramarginal cortices. 213 
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Figure 6.  Significant clusters in the association of ADHD symptoms with cortical surface 214 

area (top) and volume (bottom) based on the ABCD and Generation R Studies, after 215 

additional adjustment for IQ. 216 

 217 

Note. Rows represent the results for the ABCD or Generation R Studies, and the columns represent the left and right 218 

hemispheres. The colors denote the different models, with red vertices being significant only in model 3, orange ones in both 219 

model 3 and after adjustment for IQ, and yellow ones only after adjusting for IQ. 220 
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221 

Discussion 222 

By leveraging two large population-based studies and adopting a literature- and 223 

DAG-informed approach to address confounding, we showed that (i) associations between 224 

brain structure and ADHD symptoms, which were initially widespread, reduced when 225 

adjusting for socioeconomic and maternal behavioral confounders, and that (ii) careful 226 

considerations are needed when including IQ due to its unclear relation with ADHD and 227 

brain morphology.  228 

 229 

Adjustments for confounders highlighted key regions of association, observed across 230 

two large cohorts  231 

Widespread associations between surface area and volume with ADHD symptoms 232 

were initially identified, with higher symptoms relating to smaller brain structures, in line with 233 

previous research (4,28). After adjustments for potential confounders typically overlooked by 234 

previous literature (socioeconomic and maternal behavioral factors), approximately half of 235 

the associations remained, and considerable effect size changes were observed in both the 236 

ABCD and Generation R Studies. We observed similar patterns of cluster reductions for the 237 

relation of ADHD diagnosis with surface area and volume in the ABCD Study. 238 

Regions that remained associated after adjustments and which were consistently 239 

identified across cohorts were the precuneus, isthmus of the cingulate, supramarginal, pre- 240 

and post-central, and inferior parietal cortices for both area and volume. Most of these 241 

regions (e.g., supramarginal) have been previously implicated in ADHD in clinical samples 242 

(29–31). However, many different brain areas have been detected in association with the 243 

disorder (11), which may have hampered prior meta-analytic efforts to identify consistent 244 

neuroanatomical correlates for ADHD.  245 

Here, we discerned associated areas likely subject to confounding bias from areas 246 

robust to socioeconomic and maternal behavioral factors, and replicable across two large 247 

cohorts. Comparisons with prior findings should be made with caution due to differences in 248 
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study design, samples (clinical vs. population-based), and analytical methods. Importantly, 249 

we highlighted the opportunity for future studies to include covariates that go beyond age 250 

and sex, can help refine associations, and can be readily collected. Future studies may want 251 

to consider other confounding factors, depending on their research question, design, and 252 

assumed causal relations. 253 

 254 

Adjustments for IQ are often unnecessary when examining the relation between brain 255 

structure and ADHD 256 

Avoiding bias from adjusting for variables that are not confounders is as important as 257 

identifying sources of confounding. Adjusting for mediators or colliders of the ADHD-brain 258 

structure relation would induce bias. Here, when adjusting for IQ, which plays an unclear role 259 

in brain structure – ADHD associations, cluster sizes reduced considerably in both the ABCD 260 

and Generation R Studies. This could indicate that IQ is a confounder, in which case 261 

adjustments would be necessary, or that IQ is a mediator or collider, in which case 262 

adjustments must be avoided.  263 

First, based on previous literature and this study, the association between ADHD and 264 

IQ is relatively weak (14) (rABCD = -0.11, rGENR = -0.14), but this does not necessarily make it a 265 

weak confounder as the strength of confounding is due to a variable’s relation with the 266 

exposure and outcome. Second, if brain structure and ADHD symptoms both cause 267 

cognitive changes, adjusting for IQ could induce collider bias, although this is also 268 

dependent on when IQ is measured relative to the exposure and outcome (8). Third, if brain 269 

structure determines cognitive functioning, which in turn affects ADHD symptoms (mediation 270 

by IQ), adjustments would also induce bias (26).  271 

Given these scenarios, we recommend moving away from routinely adjusting for IQ 272 

in ADHD neuroimaging studies, and we highlight the need to carefully consider the causal 273 

model for a specific research question to determine whether IQ may confound associations. 274 

 275 

 276 
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Generalization to psychiatric neuroimaging studies  277 

Our considerations on confounding likely generalize to the psychiatric neuroimaging 278 

field, as several confounders considered here (e.g., SES) also relate to brain function and 279 

other psychiatric disorders (32–34). Similarly, other psychiatric disorders are also 280 

characterized by complex relations with IQ (35).  281 

Confounding control is paramount to studies examining determinants of a phenotype, 282 

like ADHD. However, even in these studies, one may be tempted to conduct correlational 283 

research with limited confounding adjustments, and then speculate about biological causal 284 

mechanisms (36,37). Rather, we suggest leveraging prior literature and expert knowledge to 285 

identify and adjust for key confounders. This can help eliminate the influence of alternative 286 

mechanisms (to the ones hypothesized) on the relation of interest (8). Charting the assumed 287 

(causal) structures to identify confounders can be done through the use of tools such as 288 

DAGs (8). Naturally, the plausibility of such assumptions should be evaluated. To facilitate 289 

the minimization of confounding bias in psychiatric neuroimaging, we propose a workflow in 290 

Figure 7.   291 
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Figure 7. Suggestions for minimizing confounding bias: A workflow.  292 

293 
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Limitations of the present study and suggestions for future research 294 

Despite leveraging two large samples with similar characteristics and assessments, 295 

this study presents several limitations. First, there is always potential for residual 296 

confounding through unmeasured confounders and misclassification of measured 297 

confounders. For example, given that genetic factors influence both ADHD and brain 298 

morphology and that there is a genetic correlation between ADHD risk and intracranial 299 

volume (38–40), certain genetic risk variants may be unmeasured confounders. However, 300 

we aimed to illustrate plausible confounding bias scenarios for ADHD and brain structure, 301 

and not to provide an exhaustive list of potential confounders, which may vary depending on 302 

the study population and research question. Future studies should also consider bias 303 

analyses to assess the impact that residual confounding may have on the study results (41). 304 

Bias analyses can help understand the minimum association strength an unmeasured 305 

confounder needs to have with the determinant and outcome to fully explain away the 306 

findings (42). Developments may be needed, however, for their adaptation to the 307 

neuroimaging field.  308 

Second, due to our cross-sectional design, deliberately chosen to correspond to most 309 

neuroimaging studies, we must assume all confounders precede our determinant and 310 

outcome. This is a plausible assumption for the Generation R Study as, being a prospective 311 

birth cohort, we could ensure that the confounders here considered temporally preceded 312 

both ADHD and neuroanatomical assessments. However, this was not possible for the 313 

ABCD Study, which started sampling at child ages 9-10 years. Future research on the 314 

temporal relations between potential confounders, ADHD, and brain structure will aid the 315 

minimization of confounding bias when investigating the structural substrates of ADHD.  316 

Third, neuroimaging parameters, such as head motion, were not considered here 317 

because they are discussed elsewhere (43), and generally fall under measurement error 318 

(information bias) rather than confounding bias. For instance, even when children with 319 

ADHD move more in the scanner compared to controls, determining lower image quality, 320 

head motion during scanning cannot cause changes in ADHD symptom levels. Future 321 
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research aiming to increase precision in their estimates may, however, benefit from 322 

adjustments for this and other neuroimaging parameters.  323 

Lastly, while we leveraged both symptom-level and diagnostic data for ADHD, this 324 

was done within population-based studies. Our results cannot, therefore, be generalized to a 325 

clinical population. Future research could examine the extent to which associations between 326 

brain structure and ADHD change after adjustments for likely confounders in clinical 327 

samples.  328 

In conclusion, leveraging an empirical example from two large studies on 329 

neuroanatomy and ADHD symptoms, we highlighted the opportunity for future studies to 330 

consider further key confounders. These can be identified based on prior literature and 331 

causal diagrams as well as be readily collected, offering a feasible venue for future research. 332 

Adjusting for these potential confounders helped identify more refined cortical associations 333 

with ADHD symptoms, robust to the influence of demographic and socioeconomic factors, 334 

pregnancy exposures, and maternal psychopathology. We also evaluated the potential role 335 

of IQ, which could be a mediator, collider, and/or confounder. While adjusting for IQ led to 336 

reductions in associations, these would, however, likely not be attributable to reduced 337 

confounding bias. We discussed the generalizability of these considerations on confounding 338 

bias to psychiatric neuroimaging, and suggest a workflow that can be followed to minimize 339 

confounding bias in future studies.340 
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Methods and Materials 341 

Participants 342 

We analyzed data from two independent population-based cohorts: The ABCD study 343 

and the Generation R Study. The ABCD study is conducted across 21 study sites in the US 344 

and recruited since 2015 children aged 9 to 10 at baseline (44). The Generation R Study is 345 

based in Rotterdam, the Netherlands, with data collection spanning from fetal life until early 346 

adulthood, and started in 2002 (16). Details of the sampling rationale, recruitment, methods, 347 

and procedures have been described elsewhere (16,44). Research protocols for the ABCD 348 

study were approved by the institutional review board of the University of California, San 349 

Diego, and the institutional review boards of the 21 data collection sites, while the design of 350 

the Generation R study was approved by the Medical Ethics Committee of the Erasmus MC. 351 

For both studies, written informed consent and assent from the primary caregiver or child 352 

were obtained.   353 

In this cross-sectional study, we leveraged data from the baseline assessment of the 354 

ABCD study (release 2.0.1) and the 10-year assessment of the Generation R study. Both 355 

waves included behavioral and neuroimaging measures. We included children with data on 356 

ADHD symptoms and T1-weighted MRI images. Participants were excluded if (i) they had 357 

dental braces, (ii) incidental findings, (iii) their brain scans failed processing or quality 358 

assurance procedures, or (iv) they were twins or triplets. Of note, excluding children with 359 

dental braces is unlikely to determine selection bias by SES in either the ABCD or the 360 

Generation R study as the former cohort covered the costs of dental braces removal for all 361 

children who enrolled, while dental care is insured for all children in the Netherlands. Within 362 

the Generation R study, a small set of participants were additionally excluded because they 363 

had a different scan sequence. Finally, for each non-twin sibling set, one was randomly 364 

included to minimize shared method variance bias. Flowcharts for participant inclusion and 365 
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exclusion are available in Supplementary Figure 9. The final samples consisted of 7,961 366 

and 2,531 children from the ABCD and Generation R studies, respectively. 367 

 368 

Measures 369 

ADHD symptoms 370 

Children's ADHD symptoms, reported by the primary caregiver, were measured with 371 

the CBCL (school-age version) (45), an inventory widely used for parent reports of children's 372 

emotional and behavioral problems. The attention problem syndrome scale (20 items) 373 

measures inattention, hyperactivity, and impulsivity and has been previously shown to have 374 

clinical utility and to discriminate between ADHD cases and controls (46). Attention problems 375 

were analyzed on a discrete scale (range 0-19). For the ABCD study, we repeated the 376 

analysis using present ADHD diagnosis from a parent-reported and computerized version of 377 

the KSADS-5. This is a dimensional and categorical assessment used to diagnose current 378 

and past psychiatric disorders according to the Diagnostic and Statistical Manual of Mental 379 

Disorders (Fifth Edition) (47,48). 380 

 381 

Image acquisition 382 

T1-weighted data were obtained on multiple 3T scanners in the ABCD study 383 

(Siemens Prisma, General Electric (GE) 750 and Philips) and one scanner in the Generation 384 

R study (GE MR750w). Standard adult-sized coils were used for the ABCD study and an 385 

eight-channel receive-only head coil for the Generation R study. To acquire T1-weighted 386 

structural images, the ABCD study used an inversion prepared RF-spoiled gradient echo 387 

scan with prospective motion correction while the Generation R study used an inversion 388 

recovery fast spoiled gradient recalled sequence (GE option = BRAVO, TR = 8.77 ms, TE = 389 

3.4 ms, TI = 600 ms, flip angle = 10°, matrix size = 220 × 220, field of view = 220 mm × 220 390 

mm, slice thickness = 1 mm, number of slices = 230, ARC acceleration factor = 2). More 391 

details can be found elsewhere (15,49,50). Of note, in the ABCD study, a technical mistake 392 
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occurred at one collection site, causing the hemisphere data to be flipped. This was fixed 393 

before processing.  394 

 395 

Image processing 396 

FreeSurfer (version 6.0.0) was used for image processing, which involved (i) removal 397 

of non-brain tissue, (ii) correction of voxel intensities for B1 field inhomogeneities, (iii) tissue 398 

segmentation, and (iv) cortical surface-based reconstruction. Cortical surface maps were 399 

smoothed with a full width of a half-maximum Gaussian kernel of 10 mm. Within the ABCD 400 

Study, quality assessment was based on the quality control and recommended inclusion 401 

criteria for structural data from the ABCD team (49). Within the Generation R Study, quality 402 

assurance was manually performed by visually inspecting all images by trained raters, as 403 

previously described in the literature (51). Poor quality reconstructions were excluded.  404 

 405 

Covariate assessment 406 

 The ABCD study. All data were collected at baseline (child age 9 to 10-years). Age 407 

and sex were recorded at intake. Child race/ethnicity was reported by the primary caregiver 408 

and was categorized as White, Black, Hispanic, Asian, Other by the ABCD team. Household 409 

combined net income (<$50,000, >=$50,000 & < $100,000, >=$100,000) and highest 410 

maternal education (<high school, high school diploma/GED, some college, bachelor 411 

degree, postgraduate degree) were self-reported by the primary caregiver in the Parent 412 

Demographics Survey. Maternal age at childbirth was measured in the Developmental 413 

History Questionnaire. Tobacco and cannabis use during pregnancy were retrospectively 414 

reported by the mother (yes, no, I do not know) in the Developmental History Questionnaire. 415 

Caregiver psychopathology was obtained from the Total Problems Adult Self Report 416 

Syndrome Scale. The Wechsler Intelligence Scale for Children-6 Matrix Reasoning total 417 

scaled score was used as a proxy for IQ.  418 

The Generation R study. Age and sex were measured based on medical records 419 

obtained at birth. Child ethnicity (western, non-western) was assessed based on the parents’ 420 
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birth country, in line with the Statistics Netherlands bureau. Maternal age at childbirth was 421 

prospectively measured. Family income and highest maternal education were obtained 422 

through prospective self-reports by the mother and/or father at child age 5 years. Maternal 423 

education was coded into low (no/primary education), intermediate (secondary school, 424 

vocational training), and high (Bachelor’s degree/University). Household net monthly income 425 

was classified as low (< 2000 euros), middle (2,000-3,200 euros), and high (> 3,200 euros). 426 

Maternal postnatal psychopathology, measured at child age six months, was prospectively 427 

reported by the mother based on the Brief Symptom Inventory questionnaire global severity 428 

index. Mothers prospectively reported smoking (never used, used) and cannabis use during 429 

pregnancy (no use vs. use during pregnancy). Non-verbal child IQ was measured at child 430 

age five years, based on the Snijders-Oomen Niet-Verbale Intelligentie Test (52), a validated 431 

Dutch non-verbal intelligence test.  432 

 433 

Covariate selection 434 

Similar covariates were grouped into confounding sets to minimize the number of 435 

tested models while including relevant confounders. Factors included in model 1 related to 436 

demographic and study characteristics (age, sex, ethnicity, and study site). Age and sex 437 

were selected as these have been previously adjusted for in previous neuroimaging studies 438 

of ADHD (Supplementary Table 1).  Ethnicity was used as a proxy for differential health risk 439 

exposure among people of different ethnic groups. The study site was incorporated to 440 

account for location and scanner differences in the ABCD study.  441 

Further potential confounders were selected based on previous literature and with 442 

the aid of DAGs, as described in the Results section. In model 2, variables indicating 443 

socioeconomic factors were included (maternal education, household income, maternal age 444 

at childbirth). Household income and maternal education are generally considered to 445 

measure childhood SES in health research (53). Maternal age at childbirth can additionally 446 

inform on the SES of the child by capturing part of the variance unexplained by income and 447 

education (e.g., younger mothers facing higher occupational challenges, highly educated 448 
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mothers delaying childbirth (54)). In model 3, maternal factors from the prenatal and 449 

postnatal period were grouped (tobacco and cannabis use during pregnancy and maternal 450 

psychopathology) to measure early life exposures which may impact a child’s brain and 451 

psychiatric development.  452 

 453 

Statistical Analyses 454 

The R statistical software (version 3.4.3) was used for all analyses. Missing data on 455 

covariates were imputed with chained equations using the mice R package (55). Linear 456 

vertex-wise analyses were performed with the QDECR R package (56), with surface 457 

area/volume and ADHD symptoms as variables of interest. Thickness was not examined due 458 

to previously reported null findings in the Generation R study (4), and because it adds little 459 

information on top of surface area and volume. Correction for multiple testing was applied by 460 

using cluster-wise corrections based on Monte Carlo simulations with a cluster forming 461 

threshold of 0.001, which yields false-positive rates similar to full permutation testing (57). A 462 

Bonferroni correction was applied to adjust for analyzing both hemispheres separately (i.e., p 463 

< 0.025 cluster-wise).  464 

Our analyses for aim 1 involved three vertex-wise linear regression models, which 465 

progressively expanded to adjust for additional confounding factors. The first model focused 466 

on demographic covariates, the second on socioeconomic ones, and the third on maternal 467 

behavioral variables related to psychopathology and pregnancy exposures. These models 468 

were run for ADHD symptoms (in both the ABCD and Generation R studies) and ADHD 469 

diagnosis (in the ABCD study only, as sensitivity analysis). One additional model, building 470 

upon model 3, was run to address aim 2, to illustrate the consequences of adjusting for IQ. 471 

Given that IQ and ADHD were weakly correlated (rABCD = -0.11,  rGENR  =  -0.14), 472 

multicollinearity was not expected. 473 
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STROBE Flowchart 

Flowcharts of participant inclusion and exclusion for ABCD (panel A) and Generation R 

(panel B). 
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