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ABSTRACT 27 

Background: Complex oncological procedures pose various surgical challenges including 28 

dissection in distinct tissue planes and preservation of vulnerable anatomical structures 29 

throughout different surgical phases. In rectal surgery, a violation of dissection planes increases 30 

the risk of local recurrence and autonomous nerve damage resulting in incontinence and sexual 31 

dysfunction. While deep learning-based identification of target structures has been described in 32 

basic laparoscopic procedures, feasibility of artificial intelligence-based guidance has not yet been 33 

investigated in complex abdominal surgery. 34 
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Methods: A dataset of 57 robot-assisted rectal resection (RARR) videos was split into a pre-35 

training dataset of 24 temporally non-annotated videos and a training dataset of 33 temporally 36 

annotated videos. Based on phase annotations and pixel-wise annotations of randomly selected 37 

image frames, convolutional neural networks were trained to distinguish surgical phases and 38 

phase-specifically segment anatomical structures and tissue planes. To evaluate model 39 

performance, F1 score, Intersection-over-Union (IoU), precision, recall, and specificity were 40 

determined.   41 

Results: We demonstrate that both temporal (average F1 score for surgical phase recognition: 42 

0.78) and spatial features of complex surgeries can be identified using machine learning-based 43 

image analysis. Based on analysis of a total of 8797 images with pixel-wise target structure 44 

segmentations, mean IoUs for segmentation of anatomical target structures range from 0.09 to 45 

0.82 and from 0.05 to 0.32 for dissection planes and dissection lines throughout different phases 46 

of RARR in our analysis. 47 

Conclusions: Image-based recognition is a promising technique for surgical guidance in complex 48 

surgical procedures. Future research should investigate clinical applicability, usability, and 49 

therapeutic impact of a respective guidance system.  50 

  51 
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INTRODUCTION 52 

Despite advances in nonsurgical management of rectal cancer, the vast majority of curative 53 

treatment approaches require oncologically radical surgical removal of the primary tumor and 54 

locoregional lymph nodes within the mesorectal envelope (total mesorectal excision, TME). This 55 

surgical step requires delicate preparation along the mesorectal fascia to ensure complete 56 

resection and minimize the risk of local tumor recurrence.1 In parallel, autonomous nerves running 57 

in close proximity to the resection area must be protected to avoid postoperative incontinence and 58 

sexual dysfunction. With highly varying numbers depending on surgeon expertise and center 59 

volume, these functional sequelae affect up to 85% of patients after oncological rectal resection 60 

and can be a direct result of suboptimal surgical preparation outside of anatomical planes, leading 61 

to nerve injury.2,3  62 

Surgical robots offer mechanical enhancements such as improved instrument dexterity, hand-eye 63 

coordination, and a three-dimensional view, however, no robust clinical benefit over conventional 64 

laparoscopic surgery could be demonstrated to date.4 Based on the hypothesis that an integration 65 

of context-dependent surgical guidance into minimally-invasive surgical systems could markedly 66 

improve surgical quality and outcome and diminish quality variation between surgeons, extensive 67 

research on the development of image recognition algorithms has been conducted in recent years 68 

using laparoscopic imaging data. Most of these endeavors, however, have focused on tasks with 69 

indirect surgical benefit, such as automated instrument detection.5,6 Thus far, translational Artificial 70 

Intelligence (AI)-based success stories in the field of surgery are lacking and clinical applications 71 

are mostly limited to orthopedic, neurosurgical, and hepatic surgical procedures.7,8 With regard to 72 

approaches with high translational potential in laparoscopic surgery, deep learning-based 73 

algorithms have recently been shown to identify relevant anatomical areas during 74 

cholecystectomy.9,10 Of note, such methods have only been established for less complex surgical 75 

procedures, for which – in part – open-access datasets exist for the purpose of algorithm 76 

development and validation.11,12 In these operations, however, the benefit of AI-based assistance 77 

is marginal.   78 

In this project, we aim to explore the potential of deep learning-based detection algorithms based 79 

on convolutional neural networks (CNNs) to provide context-dependent guidance in highly 80 

complex oncological procedures. Considering the example of robot-assisted rectal resection 81 

(RARR), we created a dataset of spatio-temporal data in the form of temporally annotated surgery 82 

videos and semantically segmented video frames. Based on this data, we trained different CNNs 83 

to automatically detect surgical phases and identify a variety of visually delineable anatomical 84 

structures and dissection planes to enable context-aware surgical guidance.   85 
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Our findings suggest that surgical phase differentiation and recognition of selected anatomical 86 

structures including the mesocolon, the mesorectum, Gerota’s fascia, or the abdominal wall, can 87 

satisfactorily be implemented in complex minimally-invasive surgical procedures. We thereby 88 

establish essential components of a clinically applicable AI-based system for context-aware 89 

guidance in complex minimally-invasive oncological surgery. On a general level, this work 90 

highlights challenges in the implementation of clinically relevant surgical guidance functions, in 91 

particular limited data availability, and encourages inter-institutional collaboration and improved 92 

data accessibility to facilitate data science-based approaches in a diverse range of surgical 93 

procedures with varying complexity.  94 

    95 
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METHODS 96 

Patient population and dataset 97 

Between February 2019 and January 2021, video data from a total of 57 robot-assisted anterior 98 

rectal resections, intersphincteric resections, or abdominoperineal resections with either partial 99 

(PME) or TME performed at the University Hospital Carl Gustav Carus Dresden, Germany were 100 

collected. All included patients had a clinical indication for the surgical procedure, recommended 101 

by an interdisciplinary tumor board. All procedures were performed using the da Vinci® Xi system 102 

(Intuitive Surgical, Sunnyvale, CA, USA). Surgeries were recorded using the CAST system 103 

(Orpheus Medical GmBH, Frankfurt a.M., Germany). Each record was saved at a resolution of 104 

1920 x 1080 pixels in MPEG-4 format.  105 

This study was performed in accord with the ethical standards of the Helsinki declaration and its 106 

later amendments. The local Institutional Review Board (ethics committee at the Technical 107 

University Dresden) reviewed and approved this study (approval number: BO-EK-137042018). 108 

Written informed consent was obtained from all participants. The trial was registered on 109 

clinicaltrials.gov (trial registration ID: NCT05268432).  110 

 111 

Annotations 112 

The total dataset of 57 RARR recordings was randomly split into a pre-training dataset (24 113 

temporally non-annotated videos) and an annotated training dataset (33 videos). Annotations 114 

were performed by two members of the research team (MC, FMR) after thorough education and 115 

several rounds of training annotations with two experts in robot-assisted rectal surgery (JW, MD), 116 

and reviewed by a surgeon in training with considerable experience in robot-assisted rectal 117 

surgery (FRK). According to a previously created annotation protocol (Supplementary Material 1), 118 

the surgical process was temporally annotated using b<>com *Surgery Workflow Toolbox* 119 

[Annotate] version 2.2.0 (b<>com, Cesson-Sévigné, France) with regard to the sequence of 120 

surgical phases (Figure 1). The definition and order of the five phases – preparation and 121 

intraabdominal orientation, medial mobilization of descending colon, lateral mobilization of 122 

descending colon, mesorectal excision, and extraabdominal preparation – was based on 123 

institutional standards and international recommendations for RARR.13,14 Of note, splenic flexure 124 

and descending colon mobilization was carried out from medial to lateral as described previously 125 

by Ahmed et al.13.  126 

For training and validation of phase-specific semantic segmentation algorithms, equidistant 127 

frames from at least ten selected video recordings were annotated per phase with regard to 128 
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visibility of anatomical structures and dissection planes (Figure 1, Supplementary Table 1) using 129 

the open-source software 3D Slicer with the SlicerRT program extension.15 The videos for each 130 

phase were selected based on criteria of target structure visibility and exposition (Supplementary 131 

Table 1).  132 

 133 

Model development and evaluation: Phase detection 134 

For surgical phase recognition a long short-term memory network (LSTM)16 that learns the 135 

temporal relationships combined with a residual neural network (ResNet)17 as feature extractor 136 

was trained based on the 33 annotated RARR videos to detect the five surgical phases 137 

(preparation, medial mobilization of descending colon, lateral mobilization of descending colon, 138 

(total) mesorectal excision, and extraabdominal preparation) (Figure 2 A).  139 

The pre-training of the feature extractor was performed in two different configurations: (a) the 140 

ResNet was pre-trained on the ImageNet database18 only and (b) the pre-trained feature extractor 141 

was fine-tuned on 24 temporally non-annotated RARR videos using self-supervised training. 142 

Subsequently, the two different models were trained and evaluated using a 4-fold cross validation 143 

scheme. For this purpose, the training folds were again divided into a training and validation (four 144 

randomly chosen surgeries) set to select the final model based on the network accuracy and to 145 

improve the generalizability of the network. Afterwards, the final model was assessed on the test 146 

folds and the performance was measured by the F1 score and the accuracy. 147 

 148 

Model development and evaluation: Semantic segmentation 149 

For each surgery phase, a separate convolutional neural network was trained for the phase-150 

specific segmentation of anatomical structures and tissue planes (Figure 2 B). For this purpose, 151 

the Detectron219 framework was used in combination with a ResNet and a feature pyramid 152 

network as backbone, which was pre-trained on the ImageNet dataset18. The model was trained 153 

and evaluated within a leave-one-out cross validation scheme. To improve the generalization and 154 

the stability of the segmentation network the training fold was split randomly into a training and a 155 

validation fold at a ratio of 80:20. Subsequently, the trained model was assessed on the validation 156 

fold every 5000 training iterations using the average Intersection-over-Union (IoU) to select the 157 

final model. Finally, the average segmentation performance was assessed using F1 score, IoU, 158 

precision, recall, and specificity on the test folds.20 These parameters are commonly used 159 

technical measures of prediction exactness, ranging from 0 (least exact prediction) to 1 (entirely 160 

correct prediction without any misprediction).  161 
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Statistics and Reproducibility 162 

In total, recorded surgery videos from 57 surgeries were considered in this analysis. For surgical 163 

phase recognition, these data were randomly split into a non-annotated pre-training dataset (24 164 

videos) and a temporally annotated training and test dataset (33 videos). For training of the 165 

segmentation algorithms for each individual phase, at least ten video recordings were selected 166 

per phase with regard to visibility of anatomical structures and dissection planes and annotated 167 

as described above.  168 

Training of phase detection and segmentation networks were carried out as follows: The 169 

ResNet50 described by He et al.17 was selected as image feature extractor, having demonstrated 170 

a high performance on the Cholec80 dataset21. For the specific detection task, the last layer was 171 

replaced by a layer representing the five surgical phases. Afterwards, the network was trained 172 

frame-wise with the label information of the current phase. To enhance the robustness of the 173 

model, data augmentation consisting of image rotation, image flipping and image noise was used.  174 

Furthermore, the network was trained for 30 epochs, where each epoch consists of 3000 random 175 

chosen batches with a size of 64. As optimizer, Adam with an initial learning rate of 0.0001 was 176 

used and the weighted cross entropy loss was applied to handle the class-imbalanced problem. 177 

The self-supervised learning approach described by Funke et al.22 was adapted, so that a 178 

ResNet50 was trained based on temporally coherent video frame embedding using the 1st and 179 

2nd order contrastive loss.23,24  180 

The segmentation network was trained for 200 epochs and a batch size of 2. The data 181 

augmentation consisting of image resizing and random flipping of the image was used to enhance 182 

the training process. For the optimization of the network the gradient descent optimization 183 

algorithm was used with a learning rate of 0.0002.   184 
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RESULTS 185 

Dataset 186 

A total of 57 RARR with an average duration of 414 ± 112 minutes performed by nine experts in 187 

robot-assisted oncological surgery were recorded and analyzed within this study. The majority of 188 

patients (n = 43, 75.4%) were male and the predominant indication for the surgical procedure was 189 

colorectal cancer (n = 54, 94.7%). Twenty-five patients (43.9%) had undergone neoadjuvant 190 

irradiation to the surgical field. Overall, the sample represents a wide variety of rectal cancer 191 

manifestations, including a considerable number of patients (n = 27, 47.4%) with locally advanced 192 

tumors (Table 1).  193 

Thirty-three videos were temporally annotated with regard to the sequence of five standardized 194 

surgical phases (Figure 1). For semantic segmentation, individual models were trained for each 195 

surgical phase to phase-specifically identify distinct target structures. Based on the visibility of 196 

these target structures (Supplementary Table 1), at least ten videos were selected from the 197 

available video dataset for training of the algorithm for the respective surgical phase. In total, 8797 198 

annotated frames were used for training of the semantic segmentation algorithms (Figure 3, 199 

Supplementary Table 2). 200 

 201 

Model performance: Surgical phase recognition 202 

The sequence of the five surgical phases (Figure 1) was recognized using a ResNet50 203 

architecture for recognition of visual features with or without a long-short-term memory (LSTM) 204 

network for extraction of temporal features (Figure 2 A). Using the ResNet50 alone, surgical 205 

phases were predicted at an average accuracy of 0.74 ± 0.02 and an F1 score of 0.68 ± 0.01 both 206 

with and without pre-training with non-annotated RARR videos. Paired with an LSTM, the accuracy 207 

for surgical phase prediction was 0.82 ± 0.01. As for the ResNet50 alone, self-supervised pre-208 

training of the network did not result in any improvement of the prediction (accuracy: 0.83 ± 0.02) 209 

by the combined ResNet50 and the LSTM (Table 2).  210 

 211 

Model performance: Segmentation of anatomical structures and dissection planes 212 

Anatomical structures and dissection planes were localized using a multi-layer convolutional 213 

neural network (Figure 2 B). Table 3 displays mean F1 score, IoU, precision, recall, and specificity 214 

for individual segments predicted by the trained phase-specific algorithms.  215 
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Overall, the most reliable detections were achieved for Gerota’s fascia (F1 score: 0.78 ± 0.05) and 216 

the mesocolon (F1 score: 0.71 ± 0.07) during medial mobilization of the descending colon and for 217 

the abdominal wall (F1 score: 0.82 ± 0.06) and fatty tissue (F1 score: 0.68 ± 0.11) during lateral 218 

mobilization of the descending colon. The dissection plane (“angel’s hair”) in the Mesorectal 219 

Excision phase could be predicted with an F1 score of 0.32 ± 0.09, whereas prediction of the exact 220 

dissection line was largely unsuccessful at an F1 score of 0.05 ± 0.02 both during medial 221 

mobilization of the descending colon and during Mesorectal Excision (Table 3). Figure 3 illustrates 222 

examples of semantic segmentations by the developed CNNs, which were trained for each phase 223 

of the procedure.  224 

The target structures varied considerably with regard to the proportion of images without any 225 

prediction, resulting in a value of “0” for the analyzed metrics (Figure 4). For instance, Gerota’s 226 

fascia and the mesocolon were correctly identified in most of the respective images, while 227 

dissection lines, vessel structures, and seminal vesicles were segmented in very few images 228 

displaying the structures. Other structures, such as the colon, the mesorectum, the small intestine, 229 

plastic clips, and the dissection plane during mesorectal excision, showed two significant fractions 230 

of images: one fraction without any prediction and one fraction with good to excellent performance 231 

metrics.   232 
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DISCUSSION 233 

Correct recognition of visual cues is a key challenge in minimally-invasive surgery, as the majority 234 

of currently available laparoscopic and robotic instruments and devices do not provide any haptic 235 

feedback or additional imaging to visualize hidden structures. Consequently, the concept of 236 

enhancing surgeons’ visual perception through computational techniques has attracted increasing 237 

scientific interest in the surgical community, mirrored by a growing body of research in the field of 238 

surgical data science.25 The overwhelming majority of these studies, however, has investigated 239 

potential assistance tasks with limited clinical benefit, such as automated instrument 240 

classification.5,6 Projects investigating the recognition of surgically meaningful structures in 241 

abdominal surgery are rare and mostly limited to laparoscopic cholecystectomy9,10, a far less 242 

complex surgical procedure performed in large numbers all over the world. The availability of a 243 

range of open-access datasets of cholecystectomy recordings6,11,26 make this procedure an 244 

attractive example for proof-of-principle studies. Considering the example of RARR, we aimed to 245 

explore the possibility of an integration of image-based recognition for surgical guidance in 246 

complex oncological surgical procedures, for which no open-access video datasets are available.  247 

In summary, our findings suggest that even on the basis of limited annotated data, essential CNN-248 

based temporal and spatial recognition tasks can be implemented in complex robot-assisted 249 

oncological procedures, providing the basis for context-dependent surgical guidance. State-of-250 

the-art approaches using a ResNet50 paired with an LSTM satisfactorily differentiated five surgical 251 

phases at an average accuracy of 0.83 and F1 score of 0.78. Our results on image-based 252 

identification of anatomical structures and dissection planes are promising for selected target 253 

structures. Overall, however, they indicate that further methodological improvements and 254 

intensified interdisciplinary efforts are necessary for entirely convincing implementation of specific 255 

image recognition functions, in particular for tasks that require considerable specialized 256 

knowledge for annotation.  257 

In general, the presented observations are in line with previous studies on visual analysis of 258 

laparoscopic images.27 With regard to operative phase recognition, similar accuracies around 0.8 259 

have been reported for other laparoscopic procedures including cholecystectomy and 260 

sigmoidectomy.28 Previous studies investigating the identification of anatomical structures have 261 

mostly focused on the classification of the presence of certain organs12 or rough localization of the 262 

detected organs using bounding boxes29. We performed semantic segmentation of the exact 263 

boundaries of previously annotated structures and observed substantial variation of recognition 264 

quality, ranging from a mean IoU of < 0.1 for dissection lines and seminal vesicles to 0.82 for the 265 

abdominal wall during the lateral mobilization of the descending colon. It is conceivable that 266 
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unsuccessful recognition of some structures was a consequence of the limited amount of training 267 

data. For instance, seminal vesicles during mesorectal excision (mean IoU: 0.09) could, overall, 268 

not be segmented successfully, and input data was limited at 336 annotated images 269 

(Supplementary Table 2). In turn, four out of the five structures with the largest number of 270 

annotated images – the mesocolon (mean IoU: 0.71), Gerota’s fascia (mean IoU: 0.78), the 271 

mesorectum (mean IoU: 0.48), and the dissection plane during mesorectal excision (mean IoU: 272 

0.32) – could be recognized in a significant proportion of images (Figure 4). Notably, several 273 

structures (including the colon, the small intestine, the mesorectum, and the dissection plane 274 

during mesorectal excision) were identified either at very high accuracy or not identified in the 275 

image at all, resulting in two large subsets of images at either end of the scale. Considering a 276 

video stream as a sequence of images, the successful recognition of a structure in a significant 277 

proportion of images may imply that even at this stage, the recognition algorithms may be clinically 278 

useful. The reported subjective clinical utility of a bounding box-based detection system 279 

recognizing the common bile duct and the cystic duct at average precisions of 0.32 and 0.07, 280 

respectively, supports this hypothesis29 and encourages discussion about the clinical value of 281 

classical metrics quantifying segment overlap. Notably, explainability and real-world applicability 282 

of the classical metrics describing segment overlap have recently been explored in the context of 283 

autonomous driving, with similar findings on the limitations of these metrics.30   284 

Of note, the exact location of the dissection line could neither be successfully identified during 285 

medial mobilization of the descending colon nor during mesorectal excision. Two explanations are 286 

conceivable: First, thin and small structures displayed a trend towards being more challenging to 287 

predict. Another example for this observation is the largely unsuccessful segmentation of metal 288 

clips during vascular dissection. Second, the dissection lines show very diverse visual 289 

appearance. Especially during mesorectal excision, the appearance of embryonal tissue planes 290 

and the closely related dissection line at the mesorectal fascia can vary with regard to neoadjuvant 291 

(radio-)therapy and individual factors such as body composition, making identification particularly 292 

challenging.31 Of note, this study included a variety of patients with rectal cancer, and no special 293 

patient factors were considered during selection of the video subsets for semantic segmentation 294 

for each individual phase (Table 1). An integration of more and diverse video data from multiple 295 

centers would likely improve recognition of the dissection lines and explore the limits of the applied 296 

state-of-the-art neural networks. In general, diversification of input data would be massively 297 

facilitated through publication of anonymized video data documenting complex surgical 298 

procedures.   299 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2022. ; https://doi.org/10.1101/2022.05.02.22274561doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.02.22274561


 12 

For improved applicability, ongoing and future work will focus on two technical improvements: On 300 

the algorithmical level, recognition uncertainty will be implemented in display of the target structure 301 

segmentations, for instance through Bayesian computation methods.32 Such methods facilitate a 302 

heatmap-like display of the image-based segmentations, which would visually approximate the 303 

ambiguity inherent to the distinction of adjacent and, in part, similar appearing anatomical 304 

structures. The integration of uncertainty estimation could also contribute to an increased 305 

acceptance of the system among clinicians. On the level of clinical implementation, the system 306 

needs to meet real-time requirements for clinical usability. This comprises the exact determination 307 

and subsequent minimization of the computation-associated delay to the range of tenths of a 308 

second. During the computation process for the presented study, the entire time required for image 309 

loading, computation of all outcome metrics and saving of the image ranged around four seconds. 310 

Moreover, a graphical user interface that allows for interaction of the surgeon with the guidance 311 

system (i.e. selecting target structures for display) will need to be integrated.  312 

The limitations of this study are mostly related to limited data availability, which is generally one 313 

of the major bottlenecks for successful translation of AI-based methods in surgery. One of the key 314 

reasons for this is the high annotation effort required for an integration of clinically meaningful 315 

knowledge into a dataset.25 The monocentric study design is another major limitation of this study, 316 

considerably restricting generalizability and transferability of the implemented functions. Future 317 

research will therefore aim at an integration of multicentric video data. In this context, 318 

standardization of (video) data recording and adaptability of the annotation process to differences 319 

in surgical techniques and approaches pose important challenges to consider during study design. 320 

Of note, the Society of American Gastrointestinal and Endoscopic Surgeons recently published 321 

recommendations for surgical video annotation to increase the amount of publicly available 322 

datasets and enable the creation of benchmark AI algorithms with a clinical impact.33 The existing 323 

limitations notwithstanding, the presented dataset and study represent an important addition to 324 

the growing body of research on context-aware guidance in abdominal surgery, as it significantly 325 

expands the horizon of data science-assisted surgery to procedures of higher complexity and 326 

technical difficulty.  327 

In conclusion, this study has established the principal components of a clinically applicable AI-328 

based system for context-aware guidance in RARR. To our knowledge, this is the first approach 329 

to an implementation of machine learning-based guidance into a complex robot-assisted 330 

oncological procedure. A subsequent pilot study will merge the established functionalities into a 331 

basic guidance system and evaluate its clinical applicability, usability, and therapeutic impact on 332 

oncological and functional outcomes of RARR. Importantly, the basic concept of this system is 333 
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transferable to other complex minimally invasive surgical procedures with several critical phases 334 

such as minimally-invasive pancreatectomy or esophagectomy. With regard to the identified 335 

challenges in implementation of clinically relevant guidance functions, in particular limited data 336 

availability, our findings moreover encourage inter-institutional collaboration and improved data 337 

accessibility to stimulate research on a more diverse range of surgical procedures. The creation 338 

of more potent and impactful networks could ultimately result in a true clinical benefit for patients 339 

and healthcare professionals.    340 
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TABLES 424 

Table 1 425 

Tab. 1 Patient characteristics. For age, BMI and surgery duration, mean ± SD are displayed. All 426 

other data are presented as total numbers and percentages of the (sub-)cohort. Abbreviations: 427 

Abdominoperineal resection (APR), Anterior Resection (AR), Body Mass Index (BMI), Colorectal 428 

cancer (CRC), Low anterior resection (LAR), Intersphincteric resection (ISR), Partial mesorectal 429 

excision (PME), Total mesorectal excision (TME).  430 

  431 
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 432 

 
Total  

(n = 57) 

Temporal 
annotation 

(n = 33) 

Vascular 
Dissection 

(n = 10) 

Medial 
Mobilization 

(n = 11) 

Lateral 
Mobilization 

(n = 10) 

Mesorectal 
Excision 
(n = 10) 

       
Age [years] 62.4 ± 11.2 62.2 ± 10.2 62.1 ± 5.2 65.6 ± 7.7 63.9 ± 5.0 62.8 ± 8.1 
BMI [kg/m²] 26.5 ± 3.3 26.7 ± 2.9 26.1 ± 2.1 26.7 ± 2.9 26.6 ± 2.8 26.9 ± 2.0 
Surgery duration 
[min] 

414 ± 112 415 ± 117 444 ± 148 410 ± 98 466 ± 141 377 ± 130 

       

       
Sex       
Female 14 (24.6) 5 (15.2) 1 (10.0) 2 (18.2) 1 (10.0) 1 (10.0) 
Male 43 (75.4) 28 (84.8) 9 (90.0) 9 (81.8) 9 (90.0) 9 (90.0) 
       

       
Indication       
CRC 54 (94.7) 31 (93.9) 10 (100.0) 11 (100.0) 10 (100.0) 10 (100.0) 
Other 3 (5.3) 2 (6.1) 0 0 0 0 
       
Distance from anocutaneous line 
<6 cm 19 (33.3) 14 (42.4) 3 (30.0) 3 (27.3) 3 (30.0) 5 (50.0) 
6 - <12 cm 26 (45.6) 14 (42.4) 4 (40.0) 5 (45.5) 5 (50.0) 3 (30.0) 
≥12 cm 12 (21.1) 5 (15.2) 3 (30.0) 3 (27.3) 2 (20.0) 2 (20.0) 
       
Tumor stenosis 
Yes 23 (40.4) 11 (33.3) 4 (40.0) 5 (45.5) 3 (30.0) 4 (40.0) 
No 34 (59.6) 22 (66.7) 6 (60.0) 6 (54.5) 7 (70.0) 6 (60.0) 
       

       
Neoadjuvant irradiation 
Yes 25 (43.9) 16 (48.5) 4 (40.0) 4 (36.4) 4 (40.0) 4 (40.0) 
No 32 (56.1) 17 (51.5) 6 (60.0) 7 (63.6) 6 (60.0) 6 (60.0) 
       
Previous intraabdominal surgery 
Yes 20 (35.1) 10 (30.3) 1 (10.0) 0 1 (10.0) 3 (30.0) 
No 37 (64.9) 23 (69.7) 9 (90.0) 11 (100.0) 9 (90.0) 7 (70.0) 
       

       
Surgical resection technique 
LAR, TME 33 (57.9) 18 (54.5) 4 (40.0) 7 (63.6) 6 (60.0) 4 (40.0) 
ISR, TME 9 (15.8) 5 (15.2) 1 (10.0) 0 1 (10.0) 2 (20.0) 
APR, TME 6 (10.5) 4 (12.1) 1 (10.0) 0 0 2 (20.0) 
AR, PME 9 (15.8) 6 (18.2) 4 (40.0) 4 (36.4) 3 (30.0) 2 (20.0) 
       

       
T status (for rectal cancers, n = 54) 
pT0 4 (7.4) 2 (6.5) 0 1 (9.1) 0 2 (20.0) 
pTis 1 (1.9) 0 0 0 0 0 
pT1 8 (14.8) 4 (12.9) 3 (30.0) 2 (18.2) 3 (30.0) 3 (30.0) 
pT2 14 (25.9) 9 (29.0) 2 (20.0) 1 (9.1) 2 (20.0) 3 (30.0) 
pT3a 15 (27.8) 10 (32.3) 3 (30.0) 6 (54.5) 3 (30.0) 1 (10.0) 
pT3b 12 (22.2) 6 (19.4) 2 (20.0) 1 (9.1) 2 (20.0) 1 (10.0) 
       
N status (for rectal cancers, n = 54) 
pN0 32 (59.3) 14 (45.2) 4 (40.0) 4 (36.4) 4 (40.0) 5 (50.0) 
pN1 14 (25.9) 10 (32.3) 5 (50.0) 3 (27.3) 5 (50.0) 3 (30.0) 
pN2a 5 (9.3) 4 (12.9) 1 (10.0) 2 (18.2) 0 1 (10.0) 
pN2b 3 (5.6) 3 (9.7) 0 2 (18.2) 1 (10.0) 1 (10.0) 

 433 
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Table 2 435 

Tab. 2 Summary of performance metrics for recognition of surgical phases using a 436 

ResNet50 alone and in combination with an LSTM network. For each metric, mean and 437 

standard deviation are displayed. 438 

 439 

Model 
No pre-training Self-supervised pre-training 

F1 Accuracy F1 Accuracy 

     
ResNet50 0.68 ± 0.01 0.74 ± 0.02 0.68 ± 0.01 0.74 ± 0.02 
ResNet50 + LSTM 0.79 ± 0.02 0.82 ± 0.01 0.78 ± 0.01 0.83 ± 0.02 

 440 
 441 
 442 

Table 3 443 

Tab. 3 Summary of performance metrics for phase-specific semantic segmentation of 444 

(anatomical) structures and dissection planes. For each metric, mean and standard deviation 445 

are displayed. Abbreviations: Intersection over union (IoU), Lateral mobilization (LM), Medial 446 

mobilization (MM), Mesorectal excision (ME), Vascular dissection (VD).  447 

 448 

Phase Target structure F1 IoU Precision Recall Specificity 

       

VD 

Inferior mesenteric artery 0.18 ± 0.11 0.16 ± 0.09 0.20 ± 0.12 0.20 ± 0.12 0.23 ± 0.14 
Inferior mesenteric vein 0.27 ± 0.19 0.25 ± 0.17 0.29 ± 0.19 0.29 ± 0.19 0.32 ± 0.21 
Plastic clip 0.59 ± 0.22 0.55 ± 0.21 0.60 ± 0.22 0.61 ± 0.22 0.64 ± 0.24 
Metal clip 0.20 ± 0.10 0.17 ± 0.08 0.23 ± 0.10 0.23 ± 0.10 0.26 ± 0.14 

       

       

MM 

Gerota’s fascia 0.78 ± 0.05 0.74 ± 0.03 0.80 ± 0.05 0.81 ± 0.05 0.83 ± 0.06 
Mesocolon 0.71 ± 0.07 0.65 ± 0.05 0.73 ± 0.07 0.74 ± 0.07 0.77 ± 0.09 
Dissection line (MM) 0.05 ± 0.02 0.04 ± 0.01 0.06 ± 0.02 0.06 ± 0.03 0.10 ± 0.08 
Exploration area 0.16 ± 0.07 0.14 ± 0.05 0.18 ± 0.07 0.19 ± 0.08 0.23 ± 0.12 

       

       

LM 

Abdominal wall 0.82 ± 0.06 0.78 ± 0.04 0.84 ± 0.06 0.85 ± 0.05 0.87 ± 0.06 
Adhesion 0.09 ± 0.07 0.08 ± 0.06 0.11 ± 0.09 0.11 ± 0.08 0.13 ± 0.11 
Colon 0.49 ± 0.10 0.46 ± 0.09 0.51 ± 0.11 0.51 ± 0.11 0.54 ± 0.12 
Fat 0.68 ± 0.11 0.64 ± 0.10 0.71 ± 0.12 0.71 ± 0.12 0.73 ± 0.12 
Small intestine 0.35 ± 0.25 0.33 ± 0.24 0.36 ± 0.25 0.36 ± 0.25 0.37 ± 0.26 

       

       

ME 

Mesorectum 0.48 ± 0.10 0.45 ±0.08 0.50 ± 0.10 0.50 ± 0.10 0.53 ± 0.12 
Dissection plane (ME) 0.32 ± 0.09 0.28 ±0.08 0.34 ± 0.10 0.35 ± 0.10 0.39 ± 0.12 
Dissection line (ME) 0.05 ± 0.02 0.04 ±0.02 0.08 ± 0.03 0.06 ± 0.03 0.12 ± 0.12 
Seminal vesicles 0.09 ± 0.10 0.08 ±0.09 0.10 ± 0.10 0.10 ± 0.10 0.11 ± 0.12 

       

 449 
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FIGURE CAPTIONS 451 

Figure 1 452 

Fig. 1 Annotated surgical phases and phase-specifically segmented target structures. 453 

 454 

 455 

Figure 2 456 

Fig. 2 Schematic illustration of the networks used for phase identification (A) and semantic 457 

segmentation (B). (A) A neural network consisting of a ResNet50 backbone with or without an 458 

LSTM was used for temporal prediction of surgical phases. Non-annotated videos were used for 459 

self-supervised pre-training of the algorithms. The model was validated using 4-fold cross 460 
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validation. (B) For spatial segmentation, a neural network based on a ResNet and a feature 461 

pyramid network as backbone was used. The network was pre-trained on the ImageNet dataset 462 

and validated using leave-one-out cross validation.   463 

 464 

Figure 3 465 

Fig. 3 Phase-specific annotation and model outputs for recognition of anatomical 466 

structures and dissection planes. Vascular Dissection (VD): Inferior mesenteric artery (red), 467 

plastic clip (green), and metal clip (orange) are displayed. Medial mobilization (MM): Mesocolon 468 
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(light green), Gerota’s fascia (light pink), dissection line (yellow), and exploration area (pink) are 469 

displayed. Lateral mobilization (LM): Abdominal wall (red), colon (light pink), fat (yellow), and 470 

adhesions (blue) are displayed. Mesorectal excision (ME): Mesorectum (light brown), dissection 471 

plane (green), and dissection line (red) are displayed. 472 

 473 
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Figure 4 474 

Fig. 4 Violin plot illustrations of the performance metrics for model outputs for phase-475 

specific segmentation of anatomical structures and dissection planes. The median and 476 

quartiles are illustrated as solid and dashed lines, respectively. Abbreviations: Intersection over 477 

union (IoU), Lateral mobilization (LM), Medial mobilization (MM), Mesorectal excision (ME), 478 

Vascular dissection (VD).  479 

 480 

  481 
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ABBREVIATIONS 482 

AI Artificial Intelligence 483 

AUC Area under the curve 484 

CNN Convolutional neural network 485 

F1 F1 score 486 

IoU Intersection over union 487 

LM Lateral mobilization (phase) 488 

ME Mesorectal excision (phase) 489 

MM Medial mobilization (phase) 490 

PME Partial mesorectal excision 491 

SD Standard deviation 492 

TME Total mesorectal excision 493 

VD Vascular dissection (phase) 494 
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