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Decoding natural gait cycle in Parkinson’s disease from 
cortico-subthalamic field potentials 

Kenneth H. Louie,1 Ro’ee Gilron,1 Maria S. Yaroshinsky,1 Melanie A. Morrison,2 Julia Choi,3 Coralie de 
Hemptinne,4 Simon Little,5 Philip A. Starr,1 and Doris D. Wang1 

 
Abstract  

Human bipedal walking is a complex motor behavior that requires precisely timed 
alternating activity across multiple nodes of the supraspinal network. However, understanding 
the neural dynamics that underlie walking is limited. We investigated the cortical-subthalamic 
circuit dynamics of overground walking from three patients with Parkinson’s disease without 
major gait impairments. All patients were implanted with chronic bilateral deep brain stimulation 
leads in the subthalamic nucleus (STN) and electrocorticography paddles overlying the primary 
motor (M1) and sensory (S1) cortices. Local field potentials were wirelessly streamed through 
implanted bidirectional pulse generators during overground walking and synchronized to 
external gait kinematics sensors. We found that the STN displays increased low frequency (4-12 
Hz) spectral power between ipsilateral heel strike to contralateral leg swing. Furthermore, the 
STN shows increased theta frequency (4-8 Hz) coherence with M1 through the initiation and early 
phase of contralateral leg swing. Our findings support the hypothesis that oscillations from the 
basal ganglia and cortex direct out-of-phase, between brain hemispheres in accordance with the 
gait cycle. In addition, we identified patient-specific, gait-related biomarkers in both STN and 
cortical areas at discrete frequency bands. These field potentials support classification of left and 
right gait events. These putative biomarkers of the gait cycle may eventually be used as control 
signals to drive adaptive DBS to further improve gait dysfunction in patients with Parkinson’s 
disease. 
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Introduction 
Human walking is a complex motor task that requires the flexible coordination of both 

cortical and subcortical structures within the brain. Natural upright walking consists of each leg 
alternating between the stance phase, when the foot is in contact with the ground, and the swing 
phase, when the foot is in the air; these two phases make up the “gait cycle,” comprised of a 
series of stereotyped, predictable events such as left and right heel strikes and toe offs. The left 
and right legs must maintain reciprocal, swing/stance phase coordination that is critical for stable 
bipedal gait. 

The subthalamic nucleus (STN) and primary motor cortex are likely key nodes of the 
supraspinal network that regulates human gait, given the STN’s projection to the locomotor 
regions in the brainstem (Takakusaki, 2017), and its direct connections to the motor cortex via 
the hyperdirect pathway (Nambu et al., 2002). Understanding of the cortico-subthalamic 
network activities that underlie natural walking in humans is, however, limited due to 
methodological constraints. Studies using noninvasive methods such as scalp 
electroencephalography (EEG) studies have shown that natural healthy overground walking is 
associated with rhythmic increases and decreases in the alpha (8-12 Hz), beta (13-30 Hz), and 
gamma (70-90 Hz) frequency ranges from the sensorimotor cortical regions of healthy subjects 
(Gwin et al., 2011; Seeber et al., 2015; Wagner et al., 2012). Although, EEG lacks the spatial 
resolution to discern whether these rhythms originate from the motor cortex to coordinate 
locomotion or represent sensory feedback during walking, and are prone to movement artifacts. 
Basal ganglia field potentials recorded from implanted deep brain stimulation (DBS) leads of 
patients with Parkinson’s disease (PD) have also revealed modulation of beta (13-30Hz) 
oscillations from the subthalamic nucleus (STN) while stepping in place (Fischer et al., 2018; Hell 
et al., 2018; Tan et al., 2018) and during overground walking throughout the gait cycle (Arnulfo 
et al., 2018; Canessa et al., 2020; Hell et al., 2018). However, because aberrant beta oscillatory 
synchrony in the STN is a hallmark of akinesia in PD (Hammond et al., 2007; Little and Brown, 
2014), and beta oscillations decreases with movement planning and execution in general, 
including those of the upper extremity (Eisinger et al., 2020; Kühn et al., 2004; Wingeier et al., 
2006), whether these subthalamic beta modulations represent biomarker of specific gait events 
is unclear. Finally, little is known about cortical-subthalamic interactions during the natural gait 
cycle. Cortical EEG and STN LFP in PD patients with freezing of gait appear to show low frequency 
(4-13 Hz) synchrony during effective walking, and decouple during freezing episodes (Pozzi et al., 
2019). However, the nature and role of these low frequency synchrony in effective walking is 
unknown. 

Our hypothesis is that the STN interacts with the motor cortex in a temporal-specific 
manner to coordinate reciprocal leg movements to generate effective bipedal locomotion. We 
investigated the cortical-subthalamic circuit dynamics of natural walking from three patients with 
PD without major gait disturbances implanted with chronic bilateral STN DBS leads and motor 
cortex electrocorticography (ECoG) paddles. Neural oscillatory activities were simultaneously 
and wirelessly streamed from the bilateral primary motor (M1) and sensory (S1) cortices as well 
as the STN during overground walking, and these LFPs were synchronized to external gait 
kinematic sensors. Our aims were: 1) to characterize the oscillatory signatures of natural walking 
from the STN and sensorimotor cortices, 2) to identify cortico-subthalamic circuit coherence 
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changes throughout the gait cycle, and 3) to determine accuracy of gait event decoding (i.e., heel 
strike or toe off) based on these cortical and subthalamic oscillatory signatures. 
 
Results 
STN shows coordinated low frequency power modulation during walking 

To investigate STN and sensorimotor spectral changes during the gait cycle, we 
extracted gait cycle epochs from the continuous wavelet transform of a patient’s LFP data, 
divided the epochs into bins representing 1% of the gait cycle, and tested whether the power at 
a specific frequency during gait cycle differs from the average walking power at the same 
frequency. We found significant ventral and dorsal STN LFP spectral power modulations during 
the gait cycle, with the two hemispheres showing coordinated, reciprocal power changes. 
Grand average of all gait cycles across all subjects demonstrated increased amplitudes of alpha-
gamma frequency (10-50 Hz) band power in the ventral STN and of low frequency (5-15 Hz) 
band power in the dorsal STN. These increases occurred during weight acceptance, the period 
from ipsilateral heel strike to contralateral toe off (Figure 1A and B, top). The left STN showed 
increased power during the double limb support period, between left heel strike to right initial 
swing (~0-10% of the gait cycle), while the right STN showed this power increase during right 
heel strike to left initial swing (~50-60% of the gait cycle). The left STN also demonstrated 
significant power decrease during right leg swing period, and beta band (13-30 Hz) decrease 
during right heel strike (Figure 1A and B, top).  

M1 and S1 also demonstrated power fluctuations throughout the gait cycle, though the 
left and right hemispheres did not show coordinated, reciprocal changes. The left M1 showed 
decreased beta band amplitude during initial right leg swing (~10-30% of gait cycle), decreased 
alpha band (8-10 Hz) power during right heel strike (~40-50% of gait cycle), and increased beta 
band amplitude during right leg mid stance (~65-80% of gait cycle) (Figure 1C top). The right M1 
showed increased theta-alpha power during left leg initial swing and decreased beta band 
around left heel strike (Figure 1C, bottom). In S1, left and right hemispheres showed significant 
decreased power during weight acceptance of the left leg and initial right leg swing (Figure 1D). 
Additionally, the right S1 showed increased theta-beta (5-23 Hz) power during initial weight 
acceptance of the right leg and initial swing of the left leg (Figure 1D, bottom). 
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Figure 1 STN and cortical local field potentials show spectral power modulations during the 
gait cycle. Grand average z-score spectrograms from the dorsal and ventral STNs, M1, and S1 
normalized to a gait cycle. (A and B) Significant power increases are seen during weight 
acceptance of the left leg in the left hemisphere (~0-10% gait cycle) and right leg in the right 
hemisphere (~50-60% gait cycle). Power increases was observed in a wide frequency band (10-
50 Hz) in the ventral STN and in low frequency band (5-15 Hz) in the dorsal STN. Significant beta 
(13-30 Hz) desynchronization was also seen during contralateral leg swing and heel strikes. (C) 
Left M1 shows alpha (8-10 Hz) and beta desynchronization during right leg heels strike and 
initial right leg swing, respectively. Right M1 shows increased theta-alpha (5-12 Hz) during initial 
left leg swing and decreased beta around left heel strike. (D) Significant decreased beta power 
is seen during left leg weight acceptance and initial right leg swing. Increases in theta-beta 
power (5-23 Hz) were seen during weight acceptance of the right leg and initial left leg swing. 
(A, B, C, D) Gait cycle percentages and frequencies where power was significantly different 
compared to the average power during the entire walking task is outlined by the dashed white 
lines. A linear mixed-effect model was used to determine significance with p-value < 0.05. 
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STN interactions with motor and sensory cortices during different phases of the 
gait cycle 

Because the STN has direct connections with sensorimotor cortices and plays important 
functions in motor control, we examined whether the STN interacts with the cortex during 
specific phases of the gait cycle. To determine the nature and degree of this interaction, we 
compared the averaged magnitude-squared coherence value between the ventral/dorsal STN 
and M1/S1 for each brain hemisphere during the gait cycle. We found increased coherence 
between STN and M1 during contralateral leg toe off and initial contralateral leg swing, similar 
to the power modulations seen in the ventral and dorsal STN (Figure 2). Dorsal STN-M1 and 
right ventral STN-M1 showed increased coherence in the theta band, while the left ventral STN-
M1 showed increased coherence in the alpha/beta band. These increases in coherence were 
coordinated between the two hemispheres and were offset by half a gait cycle. The left STN-M1 
coherence also demonstrated decreased beta coherence coinciding with right toe off (Figure 2A 
and B, top).   

For STN-S1 coherence, alternating increases in theta/alpha coherence was strongly seen 
between ventral STN to S1 coherence during the double support period, from ipsilateral heel 
strike to contralateral toe off (Supplementary Figure 1A). For dorsal STN to S1 coherence, this 
was not seen in the left STN-S1 (Supplementary Figure 1B, top).  

We explored the phase lag during periods of high theta frequency coherence between 
M1 and STN across all gait cycles for all patients and did not find a consistent phase relationship 
between the two regions (Supplementary Figure 2). This suggests that the coherence 
modulations are driven primarily by cortical-subthalamic amplitude coherence during the gait 
cycle. 
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Figure 2 Low frequency STN-M1 coherence increase during the initiation of contralateral leg 
swing. Grand average z-score coherogram from dorsal and ventral STNS to M1 normalized to a 
gait cycle. Coherence modulation was seen in both hemispheres during weight acceptance of 
the ipsilateral leg and contralateral toe off. (A) Dorsal STN-M1 coherence showed significant 
increases in the theta band (5-8 Hz) during the initiation of contralateral leg swing through mid-
swing. Additionally, the left hemisphere showed beta band coherence increases during initial 
ipsilateral weight acceptance and decreases during contralateral toe off. (B) Ventral STN-M1 
coherence showed increased coherence was seen during contralateral toe off and contralateral 
leg swing. Left hemisphere showed these changes in the theta-beta band, while right 
hemisphere changes were in the theta band. (A and B) Gait cycle percentages and frequencies 
where coherence was significantly different from the average coherence during the entire 
walking task are outlined by the dashed white lines. A linear mixed-effect model was used to 
determine significance with p-value < 0.05. 
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Patient-specific oscillatory biomarkers of gait 
Because our data showed several distinct gait-related frequency bands of modulation 

during the gait cycle, we used a data-driven approach to determine individual-specific 
frequency bands that are putative biomarkers for heel strike and toe off events. We created 
frequency bands of varying lengths ranging from 0-50 Hz, extracted power spectral density 
values at left and right heel strike and toe off events, and performed an ANOVA test for each 
band (Supplementary Figure 3). We found that each patient had unique frequency bands where 
power values significantly differentiated gait events (heel strike and toe off for each foot) 
(Figure 3). Significant gait-event-modulated frequency bands (F3,varying = 3.65-7.24; Table I) were 
found within all canonical frequency bands, with a majority in the theta and beta bands (Figure 
3A, shaded areas). Frequency ranges of the gait-event-modulated bands varied depending on 
the patient and recording area but were typically a sub-range of the canonical bands; these 
frequency ranges are denoted in Figure 3A as the width of the shaded area. By comparing the 
instantaneous power spectral density during each of the four gait events, we found power 
differences between gait events that are temporally distinct in relation to the gait cycle (Figure 
3A, inset plots). The left heel strike (green line) and right toe off (pink) events are temporally 
close to each other (within 10% of the gait cycle), similar to the right heel strike (orange) and 
left toe off (blue) gait events. Therefore, the gait events occurring in temporal proximity have a 
more similar power spectra profile compared to those of more temporally distinct gait events 
(i.e., left vs right heel strike) (Figure 3A). 

To evaluate how the amplitude of these individual gait-modulated frequencies change 
over time, we calculated the short time Fourier transform for each gait cycle and averaged the 
power for the gait-modulated frequency band ±1 second around each gait event. All averaged 
band power oscillated for the duration of the gait cycle (average gait cycle length ~1 second) 
(Figure 3B). Power averages for the left heel strike (green) and right toe off (pink) events are 
antiphase to the right heel strike (orange) and left toe off (blue) events within each contact. In 
all subjects, the left and right hemispheres showed out-of-phase, reciprocal power modulations 
across different contacts. For instance, all subject’s left hemisphere cortical or basal ganglia 
LFPs showed higher power during left heel strike/right toe off and two subject’s right 
hemisphere contacts showed higher power during right heel strike/left toe off events.  

To investigate whether each gait event’s instantaneous powers are distinct from each 
other, a multiple comparison test was performed between all possible pairs of gait events. 
Significant power differences were found between left and right heel strikes in subjects 1 and 2 
in both hemispheres (Figure 3C, green vs orange). Other significant differences occurred 
between toe off events (Figure 3C, pink vs blue), and, occasionally, between heel strike and the 
contralateral toe off event. Gait events temporally close to each other did not differ in power. 
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Figure 3 Unique frequency bands within each subject can differentiate gait events. (A) 
Average heel strike and toe off PSDs from the STN and M1. Each subject had unique frequency 
bands where power during heel strikes (left heel strike = green, right heel strike = orange) and 
toe off (left toe off = blue, right toe off = pink) gait events were significantly different (p < 0.05). 
The unique frequency bands were mainly found within the canonical frequency ranges (color of 
shaded area), but rarely spanned the entire range (width of shaded area). Inset plots show 
power differences between gait events temporally distinct from each other in relation to the 
gait cycle. (B) Average power and standard error ± 1 second around the gait event. Reciprocal 
out-of-phase power modulation is seen between temporally distinct gait events in all subjects. 
Furthermore, all left hemisphere data show higher power during left heel strike/right toe off 
and most of the right hemisphere data show higher power during right heel strike/left toe off. 
(C) Boxplot of gait event power within the frequency bands from B. Individual gait event powers 
are shown as transparent colored dots with outliers shown on the dotted line. Multiple 
comparison tests were performed against each pair of gait event within the same hemisphere. 
Level of significance is indicated as follows: * = p<0.05 and ** = p<0.005. 
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TABLE I
ANOVA SUMMARY

Subject 1 Subject 2 Subject 3

DFbg 3 3 3
DFwg 195 383 688

mean Significant F-Stat 3.65 7.24 4.28

DFbg = Degree of Freedom Between Groups
DFwg = Degree of Freedom Within Groups
F-Stat = F-Statistic Value
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Decoding gait events based on cortical and subcortical LFPs 
Given that our findings show that power differences exist between gait events, we 

investigated if we could decode gait events using these personalized “gait biomarkers.” Because 
our data has shown modulation during initial leg swing and toe off gait events characterizes 
switching from stance to swing phase, we built the classifiers to decode left and right toe off. 
We could classify toe off events with ≥68% accuracy in all subjects from at least one of the 
contacts, and that 61% of the trained models achieved significant above-chance accuracy 
(Figure 4). No one specific classification model outperformed the others consistently across 
subjects. Instead, the model that achieved the highest accuracy was subject specific. 
Additionally, some subjects gait event decoding accuracy was greater in models trained from 
the cortices contacts versus the STN. For subject 1, KNN had the highest accuracy (77-81%) for 
both brain hemispheres. For subject 2, the highest accuracy achieved by both brain 
hemispheres was 70%, but the model with this accuracy differed (left – XGBoost Tree; right – 
logistic regression). For subject 3, all models had similar accuracies across both brain 
hemisphere data. Overall, median model accuracies were greater than chance, i.e., 50%, and 
ranged from 56.4% to 61.8% (Table II). Further analysis of the models showed median 
discriminatory ability with area under the curve (AUC) values ranging from 0.583-0.663, while 
the best models achieved high discriminatory values (AUC > 0.84).  

Since STN-M1 coherence showed gait cycle-related changes, we also explored whether 
coherence between ventral and dorsal STN to S1/M1 could classify toe off events. Model 
training and significant testing mirror the process above with the exception that the data used 
to train the model were the coherence at left and right toe offs. Across all subjects and 
coherence pairs, we were able to decode left and right toe offs with ≥59% accuracy 
(Supplementary Figure 4). Between the STN and M1, the model with the highest accuracy was 
achieved by subject 1’s KNN model at 73%, which also achieved the highest AUC value of 0.71, 
indicating a medium discriminatory ability (Supplementary Figure 4, column 1 and 2). On 
average, models trained on coherence between dorsal STN and M1 had a higher accuracy 
(56.5% – dorsal versus 51.5% – ventral) and AUC values (0.58 – dorsal versus 0.52 – ventral) 
than models trained on coherence between ventral STN and M1. Between the STN and S1, the 
model that obtained the highest accuracy was subject 1’s XGBoost Tree model at 81% 
(Supplementary Figure 4, column 3 and 4). This model achieved an AUC value of 0.80, indicating 
good discriminatory ability. Overall, models built using coherence data between STN and S1 had 
higher accuracy, with a greater percentage of models able to significantly decode toe offs 
above-change (33% - STN/M1 versus 58% STN/S1). 
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Figure 4 Gait event decoding using oscillatory features achieves greater than chance accuracy. 
Four ensemble classifiers were trained on left and right toe off events for each contact and 
hemisphere across all subjects. All subjects had at least one contact where at least one model’s 
classification accuracy was ≥68%.  Maximum accuracy for all classification model types were 
between 70.6-88.2%. Maximum discriminatory ability was calculated using the area under the 
receiver operator characteristic curve and ranged between 0.847-0.889. Columns show 
recording area and rows indicate recording hemisphere and subject. Ensemble models were K-
nearest neighbors (red), linear discriminant analysis (green), logistic regression (blue), and 
XGBoost Tree (purple). See also Table II.  
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TABLE II
CLASSIFICATION SUMMARY

Classification Median Maximum Median Maximum
Model Accuracy Accuracy AUC AUC

KNN 0.564 0.808 0.606 0.882
Logistic Regression 0.583 0.765 0.583 0.847

LDA 0.577 0.706 0.587 0.847
XGBoost Tree 0.618 0.882 0.663 0.889

KNN = K-Nearest Neighbor, LDA = Linear Discriminant Analysis
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Discussion 
We used chronic invasive recordings in PD patients to advance our understanding of 

dynamic subthalamic and sensorimotor oscillatory changes that underlie natural overground 
walking. First, we demonstrate the novel finding that STN displays increased low frequency (4-
12 Hz) activity during the double support period prior to contralateral leg swing. Furthermore, 
STN shows increased theta frequency coherence with the primary motor during initiation of 
contralateral leg swing, implicating a potential mechanism for the supraspinal network to scale 
and fine tune leg muscle activation during stepping. Our findings support the hypothesis that 
oscillations from the basal ganglia and cortex direct out-of-phase, alternating power 
fluctuations between the two hemispheres in accordance with the gait cycle, which may 
indicate a mechanism to coordinate and maintain continuous bipedal locomotion in humans. In 
addition, we identified patient-specific, gait-related biomarkers in both subcortical and cortical 
areas at discrete frequency bands. Exploratory ensemble classification models showed above-
chance accuracy in classifying left and right gait events using oscillatory power features. These 
putative biomarkers of the gait cycle may eventually be used as control signals to drive adaptive 
DBS to further improve gait dysfunction in patients with PD. 

 
Alternating multi-frequency modulations from bilateral STNs during gait 

Several groups have described beta power modulations within the STN during the gait 
cycle between the left and right hemispheres during seated stepping (Fischer et al., 2018) and 
overground walking (Arnulfo et al., 2018; Canessa et al., 2020; Hell et al., 2018) in PD patients. 
Because elevated beta synchrony within the STN is associated with the akinetic state in PD, it is 
logical that beta desynchronization is required for movement, including gait. Beta activity has 
also been reported to have different power modulations between upper and lower extremity 
movement (Tinkhauser et al., 2019). We found that these gait-event related alternating power 
modulations between the left and right STNs are not limited to the high beta frequency range 
but also involve other low frequency bands.   

What are the roles of subthalamic lower frequency (theta and alpha) modulation during 
gait? Previous studies on upper extremity movement tasks have shown event-related 
theta/alpha frequency synchronization within the STN at the onset and throughout the 
duration of movement, where sustained voluntary muscle contraction are required (Kato et al., 
2016; Tan et al., 2013). In some cases, the amplitude of these theta/alpha oscillation correlate 
with the force generated during hand movement (Anzak et al., 2012). STN theta activity has 
been shown to have a role in the cognitive control of movement, such as during sensorimotor 
conflict (Aron et al., 2016; Zavala et al., 2017) and response inhibition (Alegre et al., 2013). We 
posit that these low frequency oscillations emerge from the STN during periods of gait that 
require greater cortical engagement. Based on increases in STN theta/alpha power we found 
during the transition from double support (both feet on the ground) to single support 
(ipsilateral leg on the ground) period, we postulate that these low frequency modulations 
engage multiple motor cortical areas to generate the appropriate scale and force required 
during contralateral leg swing to maintain stable single limb support and bipedal locomotion.  

While some suggest that low-frequency modulations during gait may be secondary to 
movement-related artifacts (Hell et al., 2018), we believe that these low-frequency oscillations 
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reflect physiological signals for several reasons. First, spectral activities that change during the 
gait cycle are focal in frequency range and are not broadband in nature (Figure 1). Second, the 
spectral power changes in left and right STNs are offset by half a gait cycle, unlike in the 
previous study where both STNs showed concurrent spectral power increases during the gait 
cycle regardless of laterality; the authors of this study discussed that their results may be 
movement related artifact (Hell et al., 2018). Finally, the dorsal and ventral STN, as well as M1 
and S1 contacts show different time-frequency changes from each other during the gait cycle. 
Because the electrodes containing these four bipolar electrode pairs are connected to the same 
RC+S device, movement artifacts would affect all recording sites from the same brain 
hemisphere in a similar fashion.  
 One key question is whether these gait-related oscillatory modulations reflect 
physiological or pathological gait patterns. While our patients did not have overt gait 
abnormalities such as shuffling gait or freezing of gait, they performed the walking task on 
dopaminergic medication, which can affect oscillatory activity (Foffani et al., 2006; Ray et al., 
2008). In a study involving patients with segmental dystonia without gait disorders, power 
modulations in the theta, alpha, and beta frequency around heel strike and toe off was 
reported from the GPi (Singh et al., 2011). Furthermore, the same study reported theta-alpha 
frequency band power modulation during early stance and swing phase of the contralateral leg, 
similar to our data. The conclusion from our results is that effective continuous gait is not 
associated with changes in a single frequency band in the basal ganglia. While we cannot rule 
out the presence of compensatory signals, we speculate that our results are an indicator of 
physiological gait, rather than pathological. The dynamic changes of oscillations across different 
frequency bands may provide a mechanism to coordinate and recruit different cortical and 
subcortical areas in response to changes in posture, balance, and forward momentum during 
walking. 
 
Cortical-subthalamic interactions during gait 

As the cortex is more accessible by noninvasive methods, multiple EEG studies have 
been performed in healthy subjects and PD. In healthy subjects, the sensorimotor cortex has 
shown increased theta, alpha, and beta band power during the double limb support period and 
decreased alpha-beta power during leg swing which are offset by half a gait cycle between the 
two hemispheres (Bulea et al., 2015; Gwin et al., 2011). In PD, there may be exaggerated 
synchronization in the theta, alpha, beta, and gamma bands during walking compared to age-
matched healthy-controls (Miron-Shahar et al., 2019), with increased theta over the vertex (Cz 
electrode) associated with freezing of gait (Shine et al., 2014). In a study involving simultaneous 
recording of STN LFPs and scalp EEG during walking in PD patients with freezing of gait, the 
authors found cortical-STN synchrony in 4-13 Hz during effective gait (Pozzi et al., 2019). It 
should be noted that patients in that study were navigating through a course and the greater 
synchrony may reflect a higher cognitive demand during walking due to the task.  

The spatiotemporal specificity of field potentials captures by the permanently implanted 
cortical electrodes indicate distinct interactions between the STN and different cortical areas 
during gait. We demonstrated increased ventral STN-S1 coherence in the low frequency ranges 
(theta-alpha) during the double-support period between ipsilateral heel strike and contralateral 
toe off. We also found increased dorsal STN-M1 theta frequency coherence during contralateral 
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toe off and early contralateral leg swing. These alternations in coherence are offset by half a 
gait cycle between the left and right hemispheres. To our knowledge, this is the first report of 
distinct patterns of STN-S1 and STN-M1 synchrony during human gait. We speculate that 
increased STN-S1 coherence during ipsilateral heel strike to contralateral toe off may represent 
sensory integration during the double support period as one prepares for leg swing. Increases 
in STN-M1 theta coherence then follows, during initiation of contralateral leg swing, which may 
allow the motor cortex to regulate the force of leg muscle activation required to drive forward 
stepping during gait. While these M1-STN interactions may represent normal recruitment of leg 
muscles during weight acceptance and transfer phase of the gait cycle, they may also represent 
compensatory mechanisms by which greater cortical activity is required to drive and maintain 
locomotion in PD. 
 
Gait event decoding and potential clinical significance 

A key finding from our study was that for each patient, a unique range of frequencies 
were significantly differentially modulated corresponding to the various gait events. While 
these frequency bands often overlap canonical bands, they are usually narrower and span many 
different canonical frequencies. The variations among patients may be due to slight differences 
in electrode placement. While our results show greater than chance median accuracy and 
acceptable to excellent discriminatory ability, the models may be under-optimized for each 
subject. Attempts to optimize the models for each subject were restricted to performing 10-
fold cross validation on hyperparameters of the random forest feature selection model, KNN, 
and XGBoost Tree model. Possible hyperparameter values to try, however, were restricted to a 
static set of values across all subjects. By constraining the set of possible hyperparameter 
values, possible values that would result in better accuracy and discriminatory ability for 
different subjects may have been missed. Additionally, the ratio of features (1770 total) 
compared to observations during feature selection can over-fit the model, leading to poor 
feature selection. Nonetheless, our study demonstrates the feasibility of distinguishing gait 
events based on cortical or STN LFP power. 

One of the reasons to identify gait-specific biomarkers is to use them as control signals 
for closed-loop, also known as adaptive, deep brain stimulation (aDBS). While current 
continuous DBS (cDBS) can improve many motor symptoms of PD, it is often ineffective to 
alleviate gait disturbances given that it does not account for the rapid dynamic changes that 
occur with the gait cycle (Wang and Choi, 2020). The Summit RC+S system implanted in our 
subjects allow for aDBS in real time and utilizes LDA to detect different brain states using 
Fourier transform power within a frequency band (Ansó et al., 2022; Sellers et al., 2021). The 
aDBS feature of the Summit RC+S device has been successfully tested in single cervical dystonia 
patient (Johnson et al., 2021), and in PD patients (Gilron et al., 2021a, 2021b). Furthermore, the 
aDBS implemented differed between PD and the cervical dystonia patient, with slow changes in 
stimulation amplitude in PD patients (seconds to minutes) and rapid changes in the cervical 
dystonia patient (100s of milliseconds). Therefore, given that rapid stimulation changes have 
been successfully implemented and the results from our LDA gait event decoding, it is feasible 
to implement real time aDBS to rapidly change stimulation parameters to improve gait function 
in PD patients. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2022. ; https://doi.org/10.1101/2022.05.02.22274438doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.02.22274438
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Limitations 
Our sample size is small due to invasive nature of these studies with investigational 

devices. Patients performed all tasks while on medication, which may affect beta power 
modulation. However, all STN LFPs during seated rest while on medication did show a spectral 
peak in the beta range. Due to variations in patient anatomy and electrode placement, M1 
electrodes may capture field potentials from different regions of the precentral gyrus for each 
brain hemisphere. Each patient also had variabilities in their gait cycle (time spent in stance 
versus swing phase), therefore making comparison across patients challenging. 

Another limitation of our study is that our results may be related to arm swing rather 
than leg movement. In a separate study involving a high-density subdural strip electrodes 
overlaying the hand knob area, we observed that the motor cortex is attuned to different limb 
movements in different frequency ranges (i.e., greater beta modulation during arm swing vs. 
greater theta modulation during leg movement; C. Starkweather, personal communications, 
04/2022). Additionally, there is increasing evidence pointing to the existence of intermixed 
neural tuning of the whole body, including leg and foot movement, in the “hand knob” area of 
the precentral gyrus in humans (Willett et al., 2020; Zeharia et al., 2012). Future studies with 
additional cortical electrode coverage over the leg and arms can yield important information 
about STN’s interaction with other cortical regions (prefrontal, premotor, supplemental motor 
area) during gait. 
 
Conclusion 
This study provides new insights on the role of subthalamic and sensorimotor oscillations play 
in human gait. Increased low frequency synchrony during the transition from double support to 
single leg support may provide a mechanism for the STN to integrate sensory information and 
engage the motor cortex to scale the appropriate motor response during stepping. Our data 
also support the notion that the STN and sensorimotor cortices contain patient-specific, gait-
related frequency modulations that can be used to distinguish between left and right gait 
events. This knowledge has the potential to be integrated into adaptive neuromodulatory 
therapies to improve gait functions in patients with PD. 
 
Materials and Methods 
 
Subject and electrode placement 

Three male subjects previously diagnosed with idiopathic PD with clinical indications for 
DBS surgery were enrolled at the University of California - San Francisco. Inclusion criteria 
included baseline off-medication Movement Disorder Society – Unified Parkinson’s Disease 
Rating Scale Part III (MDS-UPDRSIII) scores between 30 and 80, greater than 30% improvement 
in MDS-UPDRSIII on-medication, and absence of significant cognitive impairment (>20 Montreal 
Cognitive Assessment). Additional recruitment information, inclusion, and exclusion criteria are 
described in our prior work (Gilron et al., 2021a). All patients provided written informed consent 
to an IRB approved protocol (IRB 310759). 

The mean age of the subjects was 53.7 ± 10.2 years and the mean disease duration was 
6.7 ± 2.1 years (Table III). Subjects did not exhibit major gait impairments, as their MDS-UPDRS 
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III postural instability and gait disturbance sub score on medication were between 1 (slight) to 2 
(mild) (Table III). Gait kinematic measurements (heel strike and toe off) were captured using 
wearable sensors and were synchronized with the LFP data using continuous accelerometry data 
from both the DBS and external sensors, as well as stimulation pulses in the beginning and end 
of recordings.  

All subjects underwent bilateral placement of cylindrical quadripolar DBS leads into the 
STN (Medtronic model 3389, Medtronic, PLC), quadripolar cortical paddle into the subdural space 
over the motor cortices (Medtronic model 0913025, Medtronic, PLC) and investigational sensing 
implantable pulse generators (IPG) over the pectoralis muscles (Medtronic Summit RC+S model 
B35300R, Medtronic, PLC) as previously described (Figure 5) (Gilron et al., 2021a). The cortical 
electrodes in our study are placed over the “hand knob” area of the precentral gyrus (Figure 5A). 
Each RC+S device was connected to an STN DBS electrode and a cortical paddle from the same 
brain hemisphere. 

To anatomically localize STN DBS and cortical paddle contacts, postoperative CT images 
with electrode artifacts, were fused with preoperative T1-weighted MRI images. STN DBS lead 
reconstruction was performed semi-automatically in standard MNI space using the DISTAL atlas 
and TRAC/CORE algorithm available within Lead-DBS, an open-source MATLAB toolbox 
facilitating DBS imaging analyses (Ewert et al., 2018; Horn and Kühn, 2015). To reconstruct 
cortical paddle contacts we used the Intracranial EEG Anatomical Processing and Electrode 
Reconstruction Pipeline published in GitHub (to access code please visit: https://edden-
gerber.github.io/ecog_recon/). Prior to fusing preoperative and postoperative images, T1 images 
were parcellated and converted into a standardized cortical surface mesh using FreeSurfer (Dale 
et al., 1999) and AFNI’s SUMA (Saad et al., 2004). Cortical contacts were then manually identified 
on the CT images in BioImage Suite (Papademetris et al.) and the electrode coordinates were 
projected onto the standardized mesh using a gradient descent algorithm in MATLAB. 
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Figure 5 DBS and cortical lead localization. (A) 3D reconstructions of all DBS lead locations in the 
STN (orange). Individual subject’s leads are shown in by different colors. (B) 3D reconstructions 
of cortical electrode paddle location. The two most anterior contacts overlie the primary motor 
cortex (M1), while the two most posterior contacts overlie the somatosensory cortex (S1). 
 
 

  

Subject 1 Subject 2 Subject 3

A

B

TABLE III
SUBJECT DEMOGRAPHICS

ID Age Range/Sex Disease DBS UPDRS III Total UPDRS III Total UPDRS III PIGD*

Duration Target Off-medication On-medication On-medication

Subject 1 40-48/M 06 STN 41 14 2
Subject 2 54-60/M 09 STN 34 09 1ab

Subject 3 58-63/M 05 STN 35 12 1a

STN = Subthalamic Nucleus
* Sum of items: 3.9, 3.10, 3.11, 3.12, and 3.13
a UPDRS III item 3.12 was not performed
b Severe right leg dystonia developed at higher peak dose
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Gait kinematic measurements during natural walking 
Two wireless sensor systems were used for gait phase detection and neural recording 

synchronization: Delsys Trigno® system (Delsys Inc. Natick, MA) and Xsens MVN Analyze (Xsens 
Technologies, The Netherlands). The Delsys sensors were from the Trigno and Avanti lines and 
included: two Avanti force sensitive resistor (FSR) adapters, two Avanti goniometer adapters, and 
two Trigno surface electromyography (EMG) sensors with a built-in accelerometer. The Avanti 
adapters were placed bilaterally on the shank of the leg, and the Trigno EMG sensors were placed 
over the skin on top of both IPG, and used for synchronization (see below). Attached to each FSR 
adapter were four pressure-sensitive footswitches (Delsys DC:F01), placed under the calcaneus, 
hallux, 1st metatarsal (1MT), and 5th metatarsal (5MT) on the sole of their shoes. A twin-axis 
digital goniometer (SG110/A) was placed next to the lateral malleolus and attached to a 
goniometer adapter. The Xsens system is comprised of 14 inertial measurement unit sensors 
placed over the entire body and limbs for wireless motion tracking. Subject 1 had both Delsys 
and Xsens systems attached, but FSR and goniometer data was not available. Subject 2 only used 
the Delsys system for collection of FSR and goniometer data. Subject 3 had both systems attached 
to determine gait events. 

Once all sensors were placed, subjects walked overground in a straight path of at least 15 
feet before turning around at their preferred walking speed for 2 minutes. Gait events illustrated 
in Figure 6B (left and right toe off and heel strike events) were determined using a custom 
MATLAB script. Heel strike (beginning of stance, end of swing) was defined as the time when the 
calcaneus or 5MT foot pressure crosses over a predefined threshold in the positive direction 
(Figure 6B dotted line). Toe off (end of stance, beginning of swing) was defined as the time when 
the hallux and 1MT foot pressure crosses over the threshold in the negative direction. A threshold 
of 5% of the maximum force detected was used. For subject 1, heel strike and toe off events were 
determined differently using ankle kinematic data from the Xsens system. Toe off was defined as 
the time of peak ankle plantarflexion velocity, while heel strikes was defined as the time of ankle 
velocity impulse. For all subjects, heel strike and toe off events were visually inspected to FSR or 
Xsens ankle accelerometry data, and erroneous events were manually corrected. Turns were 
excluded from analysis. 40 gait cycles were included for analysis from subject 1, 67 for subject 2, 
and 106 for subject 3. All subjects were on their typical dose of Parkinsonian medication during 
the task. 
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Figure 6 Synchronized gait kinematic data with raw local field potential recordings during 
natural walking. (A) Illustration of gait events and phases during a single gait cycle, aligned to 
left heel strike (0% gait cycle). (B) Heel strike (squares) and toe off (circles) gait events were 
detected from the left (black) and right (gray) force sensitive resistor data. Heel strikes were 
detected when the heel force (solid line) exceeded a threshold (dotted line), and toe offs were 
detected when toe force (dashed line) fell below the threshold. (C) Example local field potential 
recordings from both STN and M1 synchronized to a gait cycle.  
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Neural recordings, data synchronization, and data processing 
Local field potentials (LFPs) were streamed from two sets of STN and cortical electrodes 

pairs from each brain hemisphere. The two STN electrode pairs were recorded in the following 
configuration: +2-0 and +3-1, where contact 0 is in the ventral STN, contact 3 just above the dorsal 
border, and contacts 1 and 2 in the motor territory based on microelectrode recording identifying 
movement-related cells. +2-0 will be referred to as ventral STN and +3-1 as dorsal STN (Figure 
5A). The two cortical electrode recording configuration were +9-8 (primary somatosensory 
cortex; S1) and +11-10 (primary motor cortex; M1), based on reversal of somatosensory evoked 
potential (Swann et al., 2018) and imaging reconstruction. LFPs were sampled at 500 Hz. 
Hardware pre-amplifier high-pass and low-pass filters were set to 0.85 Hz and 450 Hz, 
respectively, with an additional hardware low-pass filter at 1700 Hz after amplification. 
Accelerometry data from the Summit RC+S system was also collected and sampled at 64 Hz from 
all subjects. The Summit RC+S system recording capabilities have been previously described 
(Gilron et al., 2021a).  
 LFPs and accelerometry data were transmitted wirelessly from the RC+S device to a data 
collection computer in JavaScript Object Notation (JSON) format and saved for offline analysis. 
Once the recordings finished, the JSON data were analyzed to extract relevant timing and LFP 
data using open-source code (https://github.com/openmind-consortium/Analysis-rcs-data) built 
specifically to interface with the Summit RC+S JSON data.  
 The extracted neural and accelerometry data from the RC+S device were thereafter 
synchronized with all external sensor data via two methods: 1) alignment based on acceleration, 
by aligning acceleration peaks captured by the RC+S, Delsys Trigno sensor, and the Xsens 
accelerometer sensors, and 2) alignment of the brief stimulation pulses at the beginning of the 
task (10 seconds of brief burst of 5 Hz monopolar stimulation with the IPG case as the anode and 
contact 1 on the DBS lead as the cathode delivered at 2 mA) captured by LFP and surface EMG 
data. 
 
Spectral Analysis 

Four signal processing methods were applied to each neural recording using built-in 
MATLAB functions: continuous wavelet transform (CWT), wavelet coherence, short-time Fourier 
transform (STFT), and power spectral density (PSD). We used wavelet transformation because it 
has greater low-frequency resolution, which is of interests given that our data showed low 
frequency power modulations during gait. We also used the Fourier transform because this is the 
spectral decomposition method used by the Summit RC+S system (Sellers et al., 2021). 

The CWT was calculated using the function “cwt,” and wavelet coherence was calculated 
using the “wcoherence” function. The “spectrogram” function was used to calculate the STFT and 
PSD (1 second window length, 90% overlap, and transform length of 512 data points). These 
settings resulted in a STFT and PSD frequency resolution of 0.9766 Hz and a time resolution of 
100 ms.  

The CWT and wavelet coherence were used to calculate the grand average gait cycle 
spectrogram and magnitude-square coherogram from all recorded areas and all gait cycles across 
subjects. Spectrogram data for each LFP channel during individual gait cycles (when two same 
side heel strikes were within 2 seconds of each other) were extracted and divided into 100 gait 
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cycle time bins. Power and magnitude-squared values were averaged across all gait cycles and 
for each subject and bin. Average values are z-score normalized (mean/standard deviation) to 
the average value during the entire walking period for each frequency and in each subject. 
Normalized values were averaged across subjects for each frequency and bin. 

STFT was used to identify frequency bands where power differed between gait events. 
Power values at each gait event (left and right toe off and heel strike) were extracted from each 
brain hemisphere and contact pair. Then, all possible frequency bands were created between 0-
50 Hz; a total of 1770 frequency bands were created. For each one of these frequency bands, the 
instantaneous power for each gait events were extracted. A one-way ANOVA test was used to 
compare the four different gait events within a frequency band for each recording location; the 
gait event was used as the grouping variable. Finally, a multiple comparison test was performed 
to determine which pairs of gait events had a significant difference within each frequency band. 
P-values were adjusted using Tukey’s Honest Significant Difference method.  

Frequency bands with p-values < 0.05 were designated as gait-event-modulated 
frequency bands. To demonstrate power modulation within these gait-event-modulated 
frequency bands throughout the gait cycle, we extract the power around ±1 second of each gait 
event was extracted, and the mean and standard error were calculated. 
 
Gait event classification 

Four classification model were built for each subject, brain hemisphere, and recording 
area to predict gait events from neural data and the coherence between the STN and M1. To 
enhance the stability and accuracy of the predictor models, ensemble learning with multiple 
machine learning algorithms was used (Polikar, 2006; Wolpert, 1992). The four ensembles 
consisted of a Random Forest (RF) model for feature selection model and one of the following 
classification models: K-nearest neighbors (KNN), logistic regression, linear discriminant analysis 
(LDA), and XGBoost Decision Trees (XGBoost). RF was used for feature selection as it has been 
shown to achieve better performance than other feature selection methods (Chen et al., 2020), 
and is robust to collinearity (Genuer et al., 2010). The four classification models were chosen to 
explore a range of different types of models and their assumption. All models were built in R with 
the “Tidymodel” framework (Kuhn and Wickham, 2020). 

Features in the RF model were either instantaneous power or magnitude-squared 
coherence during toe off events in all possible frequency bands between 2.5-50 Hz, as we did not 
see significant power modulation above 50 Hz with the gait cycle and to remove low frequency 
bands that may be influence by the natural gait cycle frequency (i.e., ~1-2 second per gait cycle). 
Power values were taken from the STFT, while magnitude-squared coherence values were taken 
from the output of the “wcoherence” MATLAB function. These frequency bands were extracted 
from all neural contacts which resulted in 4900 power features and 990 coherence features. All 
features were normalized to a mean of 0 and a standard deviation of 1. Prior to feature selection, 
hyperparameters, including the number of decision trees and number of features a tree considers 
during node splitting, of the RF model were optimized using 10-fold cross-validation with each 
data set stratified by toe off classes such that approximately equal numbers of left and right toe 
offs were in each data set. Once optimized, the RF feature selection model was trained on all 
normalized features. The “ranger” (Wright and Ziegler, 2017) package in RStudio 
(www.rstudio.com) was used for this analysis.  
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 The top ten features with the largest variable importance value based on “permutation 
importance” (Altmann et al., 2010) were used to generate new data sets for each subject and 
brain hemisphere. Next, the new data sets were stratified and split with 75% of the data used for 
training and 25% of the data used for testing the classification models. The training data was 
further split into 10 folds for cross-validation hyperparameter optimization for the KNN and 
XGBoost models. Specifically, the number of neighbors to consider for classification was 
optimized for KNN. For XGBoost, two hyperparameters were optimized, the number of features 
that are randomly selected for each split in a decision tree and the minimum number of data 
points a node in a decision tree must have before increasing the tree depth. Following 
optimization and training, the accuracy (proportion of correct prediction) and receiver operator 
characteristic area under the curve (AUC) were calculated for each model using the test data set. 
 
Statistical Analysis 

We examined differences between the power or magnitude-squared coherence at 
different frequencies during the gait cycle to the averaged values across the entire gait cycle at 
the same frequency. Data were included in a linear repeated-measure mixed model because this 
modeling approach has been shown to handle unbalanced number of observations (e.g., 
different number of gait cycles for each subject). A single fixed effect was use in the model, 
“source,” which represented whether the value was from a certain gait cycle percentage versus 
average across the entire gait cycle. Individual subjects were added to the model as a random to 
account for individual baseline neural power differences. Significance was tested using F-tests 
with Satterthwaite’s degrees of freedom method.  

Statistical analysis of toe off decoding models were performed only on models that 
achieved greater than chance accuracy, i.e., ≥ 50%, given two classes. Significance was tested 
by permuting the toe off class labels and calculating the class accuracy on the permuted data. 
This procedure was performed 1000 times, and the number of permuted data sets where 
decoding classification accuracy reached or was greater than the non-permuted data set were 
counted. Models were determined to be significant if the counted number was < 5% of total 
number of permutations, i.e., < 50 permuted data sets (Herrojo Ruiz et al., 2014). 

 
Data availability 

Data and analysis code are available upon reasonable request. Inquires can be sent to 
the corresponding author.  
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