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Abstract 

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts symptomatic 

coronary artery disease. Identifying genetic risk factors for CAC may point to new therapeutic avenues 

for preventing clinical disease. Here, we conducted a multi-ancestry genome-wide association study in 

26,909 individuals of European ancestry and 8,867 individuals of African American ancestry. We 

identified 11 independent risk loci, of which 8 are novel for CAC.  Some novel loci harbor candidate 

causal genes supported by multiple lines of functional evidence. Together, these findings help refine the 

genetic architecture of CAC, extend our understanding of the biological pathways underlying CAC 

formation, as well as identify druggable targets for CAC.  
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Introduction 

Coronary artery disease (CAD) is the leading cause of morbidity and mortality in developed countries
1,2

. 

Atherosclerosis is the primary etiology of CAD involving chronic lesion progression and luminal 

narrowing of arteries
3
. Subclinical atherosclerosis in the absence of clinical symptoms is associated with 

an increased risk of developing clinical CAD in both women and men from different ancestry groups 

independent of traditional risk factors
4–6

. Subclinical atherosclerosis can be detected noninvasively as 

coronary artery calcification (CAC) by cardiac computed tomography.  Current clinical guidelines 

recommend assessment of CAC to clarify atherosclerotic cardiovascular disease (CVD) risk and to 

improve management decisions for those at borderline or intermediate atherosclerotic CVD risk
7
. 

Based on family data, the estimated heritability for CAC is 30-40%
8,9

. Prior genome-wide association 

studies (GWAS) have identified non-coding single nucleotide polymorphisms (SNPs) at the 9p21 

(CDKN2B-AS1) and 6p24 (PHACTR1) loci, as well as a protein-coding variant in APOB associated with a 

higher CAC quantity in individuals of European ancestry
10,11

. Another protein-coding variant in APOE was 

associated with CAC quantity in individuals of both European and African American ancestries
10

. These 

four identified genes for CAC are also associated with risk for CAD.  Here, we carried out the largest CAC 

GWAS meta-analysis to date by analyzing 1000 Genomes imputed genotype data from 35,776 

individuals of European and African ancestries through a collaboration between the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) consortium
12

 and other participating  cohorts. 

We then performed a series of downstream in silico functional genomic analyses to: 1) gain mechanistic 

and biological insights into how the identified genetic loci impact CAC quantity,  2) prioritize the most 

clinically relevant CAC loci, and 3) identify potential druggable targets for CAC. Notably, our in vitro and 

ex vivo experimental studies support our main genetic findings and provide motivation for future 

mechanistic studies.  
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Results 

Multi-ancestry CAC genome-wide meta-analysis 

We performed a meta-analysis by combining data from 35,776 individuals of European and African 

American ancestries. We identified 16 lead SNPs from 46 independent significant SNPs (r
2
 < 0.6; P < 

5x10
-8

) in 11 independent genomic risk loci. Among these 11 loci, 8 are novel for CAC. The associations in 

CDKN2B-AS1/CDKN2B (9p21.3), PHACTR1 (6p24.1), and APOE (19q13.32) replicated known findings
10,11

. 

We annotated the lead SNPs in the 11 loci and identified 2 missense lead SNPs in one novel gene and in 

APOE, and the remaining SNPs were annotated as non-coding. The specific APOB association reported 

earlier was not replicated here, most likely because the Old Order Amish were not included in this study 

and they have the highest frequency of this rare variant that is associated with CAC
13

.  

Refinement of identified CAC loci 

We performed conditional analyses to identify secondary signals
14

, but did not identify new 

independent signals at these loci. We then performed credible set analyses to refine the signals at the 

11 loci
15

. As expected, the 95% credible set reduced the number of candidate causal variants at the 

majority of loci, and even to a single candidate variant at loci PHACTR1 and APOE.  However, a 

considerable number of candidate SNPs remained at other loci.    

We identified 38 candidate genes using the web-based platform FUMA
16

 through a combination of 

positional gene mapping, expression quantitative trait loci (eQTL) and chromatin interaction mapping. 

We identified another 2 candidate genes through a genome-wide gene association analysis (MAGMA)
17

. 

We also identified 3 candidate genes by annotating the nearest protein-coding genes that were not 

mapped through either of these methods. Taken together, we identified 43 candidate CAC genes.   

Given the strong association between CAC and CAD, we further examined which of the CAC candidate 

genes are also associated with clinical CAD using public GWAS data
18,19

. Among our novel CAC loci, only 

one was nominally associated with CAD, while the others were not associated with clinical CAD. We 

observed similar results in our PheWAS analysis, where only one gene was significant after gene-based 

multiple testing correction, suggesting the other genes are likely CAC-specific. 
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Table 1: Significant associated loci and independent variants for CAC quantity in combined-ancestry meta-analysis.  

rsID Chr Position 

(hg37) 

Position 

(hg38) 

Alleles EAF Effect SE Pmeta I
2
 PI

2
 Nearest gene Annotation 

             

Known loci for coronary artery calcification quantity 

rs10456561 6 12,887,465 12,887,233 A/G 0.036 0.375 0.069 4.76x10
-8

 14.7 0.292 PHACTR1 intronic 

rs35355695 6 12,891,103 12,890,871 G/T 0.256 -0.115 0.020 4.87x10
-9

 0 0.683 PHACTR1 intronic 

rs9349379 6 12,903,957 12,903,725 A/G 0.623 -0.218 0.020 6.11x10
-29

 0.5 0.453 PHACTR1 intronic 

rs10811650 9 22,067,593 22,067,594 A/G 0.619 -0.195 0.018 2.15x10
-27

 0 0.744 CDKN2B-AS1 ncRNA intronic 

rs72652478 9 22,102,043 22,102,044 C/G 0.957 -0.479 0.081 3.82x10
-9

 0 3.491 CDKN2B-AS1 ncRNA intronic 

rs62555371 9 22,107,238 22,107,239 A/T 0.866 0.270 0.032 5.49x10
-17

 4 0.407 CDKN2B-AS1 ncRNA intronic 

rs4977575 9 22,124,744 22,124,745 C/G 0.455 -0.264 0.018 7.49x10
-47

 5.2 0.390 CDKN2B-AS1 (dist.: -3,651 bp), 

CDKN2B (dist: 115,440 bp) 

intergenic 

rs7412 19 45,412,079 44,908,822 C/T 0.090 -0.313 0.039 4.42x10
-16

 0 0.940 APOE missense 

Top lead SNP in genomic risk loci associated with coronary artery calcification quantity at a significance level of P <5×10
−8

, for the combined-ancestry meta-

analysis (up to 35,776 individuals from 22 studies). SNP effect sizes (Effect) and two-sided P-values (PMETA) were derived from a meta-analysis using a fixed-

effects model with an inverse-variance weighted approach. rsID: the dbSNP number of the lead SNP. The chromosomal (Chr) position is given in hg37 and hg38. 

Alleles: effect and other allele. EAF: effect allele frequency. SE: standard error of the effect. I
2
: heterogeneity statistic. PI

2
: the p-value of the heterogeneity 

statistic.
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Prioritization of candidate causal genes and variants 

To prioritize candidate causal genes and variants we performed Summary-based Mendelian 

Randomization (SMR)
20

 and colocalization
21

. By integrating the European ancestry CAC meta-analysis 

summary statistics and cardiometabolic tissue cis-eQTLs from STARNET
22,23

, we identified 11 and 18 

gene-trait associations using mapped eQTLs in atherosclerotic aortic root (AOR) and internal mammary 

artery (MAM) tissues, respectively. To provide additional functional fine-mapping evidence at the 

variant-level, we performed colocalization using coloc
21

, which revealed colocalization of CAC variants 

with cis-eQTLs in 22, 25, and 7 genes, in AOR, MAM, and liver (LIV), respectively. We observed the 

strongest evidence of colocalization at known CAD loci, PHACTR1 in AOR, consistent with recent fine-

mapping studies
24

. As expected we observed substantial overlap between prioritized genes associated 

with CAC and CAD traits (PP4 >0.80 for both traits). However, we also identified a subset of genes with 

strong evidence of colocalization with CAC (PP4 >0.80) but not CAD (PP4 <0.50). Interestingly, one novel 

locus was identified as the target gene using SMR in both AOR and MAM, which may suggest distinct 

mechanisms influencing CAC risk that are independent of CAD. 

To further resolve the regulatory mechanisms of GWAS variants
25,26

, we performed epigenomic based 

fine-mapping analyses using the activity-by-contact (ABC) 
27

 and enhancer-gene linking
28

 methods. Using 

a suggestive threshold for CAC associated variants (P < 1 x 10
-5

), we identified 42 and 54 variants 

overlapping enhancer-promoter contacts for predicted target genes in human coronary artery smooth 

muscle cells (HCASMC) and coronary artery, respectively). Notably, this provided additional support for 

novel CAC variants regulating several novel loci, and confirmed a regulatory variant in the 9p21 locus 

(rs1537373) affecting CDKN2B. We confirmed these findings using our recent single-nucleus ATAC-seq 

dataset in healthy and diseased coronary arteries
29

, which identified credible CAC variants at several 

novel loci overlapping cell type-specific peak-to-gene links. These results demonstrate that several 

identified CAC GWAS signals map to relevant genes in the vascular wall providing candidate regulatory 

mechanisms for the CAC associations.  

Identification of target pathways, cell types, and plaque phenotypes 

Using gene-set pathway enrichment analysis for the candidate CAC genes, we identified significant 

evidence for several relevant pathways.  

We investigated the overall expression profiles for the candidate CAC genes in bulk GTEx tissues. Many 

of the candidate genes demonstrated expression in artery tissues and clustered together, suggesting 

similar cellular profiles. We also explored the cellular distribution in single-cell gene expression data 

from atherosclerotic coronary artery
30–32

 and carotid plaques
33

.  

To gain insight in the pathobiology of the 16 lead CAC SNPs, we assessed their associations with plaque 

morphology. We examined 7 plaque morphological characteristics measured in carotid advanced 

plaques
34

. APOE was associated with increased intraplaque fat content and vessel density, and 

decreased collagen content which are known features of increased plaque vulnerability. Individual 
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variant analyses at the remaining loci were most significant for plaque calcification (PHACTR1), smooth 

muscle cell (CDKN2B-AS1) and intraplaque neovessel density (PHACTR1).  

Heritability, genetic correlations, and Mendelian randomization   

We applied linkage disequilibrium score regression (LDSC)
35

 to estimate the heritability of CAC in those 

of European ancestry and observed that the genome-wide set of variants account for 16% (s.e.= 2.5%) of 

the variance in CAC.  This estimate represents almost half of the percent heritability estimated from 

phenotypic correlations among relatives. 

We estimated the genetic correlation between CAC and other measures of subclinical atherosclerosis, 

clinical CVD, family history of CVD, and CVD risk factors in those of European ancestry. There were 

significant genetic correlations between CAC and carotid plaque and abdominal aortic calcification as 

well as several clinical outcomes including CAD and myocardial infarction.  CAC had significant genetic 

correlations with high cholesterol, using cholesterol lowering medication, hypertension, body mass 

index (BMI), waist circumference, and whole-body fat mass.  

 

Figure 1: Genetic correlations for CAC and Mendelian randomization for cardiovascular disease risk factors. Left: 

Genetic correlation of CAC quantity with cardiovascular disease risk factors, subclinical and clinical cardiovascular 

disease. Right: Mendelian randomization results for CAC quantity and cardiovascular disease risk factors.  

We then performed Mendelian Randomization (MR) analyses to assess potential causality of CVD risk 

factors with CAC. Low-density lipoprotein (LDL) cholesterol, triglycerides, systolic and diastolic blood 

pressure, BMI, and risk for type 2 diabetes were causally associated with an increase in CAC quantity, 

while an increase in high-density lipoprotein (HDL) cholesterol was causally associated with a decrease 
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in CAC quantity. Moreover, CAC quantity was associated with clinical CAD. In the sensitivity analyses, all 

associations showed effect estimates in similar directions thereby providing evidence for a robust 

association. Further, MR Egger regression analyses revealed no evidence for horizontal pleiotropy. 

Druggability analysis 

To investigate the potential clinical utility of CAC candidate genes at the 11 independent risk loci, we 

performed an integrative druggability analysis. Three loci were identified as targets of clinically 

actionable compounds, which have potential for repurposing approved drugs and informing clinical 

trials for CAC. Notably, several of the CAC-specific genes represent targets of the druggable genome, 

which should be considered for preclinical studies of CAC. By querying the drug-gene interaction 

database (DGIdb) and DrugBank database, we revealed approved compounds under investigation 

targeting other novel loci. These findings offer preclinical, repurposing and lifestyle modification 

opportunities via these targets for both subclinical atherosclerosis and clinical CAD involving vascular 

calcification
36

.  Notably these target genes were also supported by multiple lines of statistical and 

functional fine-mapping evidence and were validated by our in vitro and ex vivo validation studies.  
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Discussion 

We identified 16 independent genome-wide significant variant associations for CAC quantity at 11 

distinct genomic loci by leveraging genome-wide data on 35,776 participants, including 8 loci not 

previously reported to be associated with CAC. Through integrating functional data with GWAS results as 

well as gene-based analysis, we identified 43 candidate genes for CAC quantity. Some of the identified 

genes are implicated in relevant pathways.  Notably, several of our CAC genes represent identified 

druggable targets revealing opportunities for either drug repurposing or development strategies. 

As the hallmark of atherosclerosis, coronary artery calcification is strongly associated with future 

coronary events. Consistent with the shared etiology between CAC and CAD, several of our novel CAC 

genes were previously reported in association with CAD. Our colocalization analyses also indicated 

substantial overlap between prioritized genes in CAC and CAD. There is debate as to whether coronary 

calcification is a consequence (‘scar tissue’) of the atherosclerotic process or is causally related to 

CAD
37,38

. Our MR analyses provided evidence for a causal association between CAC quantity with CAD 

events. However, several of our CAC genes have so far not been reported to be associated with CAD. In 

line, these CAC-specific genes showed strong evidence for colocalization with CAC but not with CAD. The 

relationship of CAC to plaque instability is complex and incompletely understood
39

. While higher CAC 

quantity correlates with overall atherosclerotic plaque burden and luminal stenosis, CAC is not a marker 

of plaque vulnerability. It is suggested that stable, slowly progressive large plaques, leading to a positive 

remodeling of the vessel, do not readily correlate with onset of symptoms and clinical CAD events. In 

contrast, unstable plaques, at high risk of producing symptomatic rupture, carry highly inflamed fibrous 

caps and are not necessarily more stenotic
40

.  

CAC reflects the vessel’s memory of lifetime exposure to risk factors. While observational studies 

suggest a role for hypertension, higher BMI, and type 2 diabetes mellitus in development and 

progression of CAC, evidence regarding the association of unfavorable lipid profile with coronary 

calcification, in particular progression of CAC remains unclear
41,42

. Moreover, important questions 

remain about causality of these risk factors. We found evidence of significant genetic correlations 

between high cholesterol, using cholesterol lowering medication, hypertension, BMI, waist 

circumference, and whole body fat mass with CAC quantity. Our MR analyses further provided evidence 

for causal association between modifiable cardiovascular risk factors, including LDL and HDL cholesterol, 

triglycerides, type 2 diabetes mellitus, and BMI with CAC quantity. These findings emphasize the value of 

optimal risk factor control for reduction of atherosclerosis burden and further extend our knowledge of 

the pathways underlying coronary calcification and may inform new therapeutic strategies.  

Limitations and strengths. We included only individuals of European and African-American ancestry in 

our meta-analyses. Discovery of additional novel CAC loci will require participants from other ancestral 

populations. With the ever-increasing size of CAD GWASs, it is also anticipated that some of our CAC-

specific loci will be associated with CAD over time. Also, we used the 1000 Genomes reference 

imputation panel which might limit the ability to uncover less common variants. Future multi-ancestry 

meta-analyses will benefit from using larger, more diverse reference imputation panels such as 
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TOPMed
43

. Our eQTL-based fine-mapping methods assume that non-coding variants primarily act 

through the regulation of gene expression, however it is known that many variants also function 

through splicing, translation, and other modes of molecular regulation
44

. Future integration with multi-

omics QTLs in healthy and diseased tissues and stimulated cell types (e.g. osteogenic conditions) may 

resolve additional mechanisms for these associations
45,46

.  

There are many strengths to our study which employed a series of complementary statistical, functional 

fine-mapping, and in vitro and ex vivo experimental studies. First we employed an array of post-GWAS 

fine-mapping methods using both publicly available datasets and those from disease-specific cohorts. 

While many earlier studies have relied on transcriptome datasets from deceased donors to perform 

fine-mapping (e.g. those in GTEx), these may not reflect the genes altered in specific cell types in 

subclinical atherosclerosis. To mitigate this, we utilized the STARNET cohort of eQTLs, which were 

derived from living subjects during coronary artery bypass graft surgical procedures. We also annotated 

genes by leveraging unique coronary and carotid artery atherosclerosis tissue biobanks, which provided 

more relevant context to the affected plaque phenotypes and cell types. Finally, we employed 

druggability analyses and in vitro and ex vivo functional validation assays to help inform translational 

strategies and identify cell-specific mechanisms for these candidate targets.  

In conclusion, we discovered 8 novel loci associated with CAC. Extensive post-GWAS fine-mapping and 

annotation provided evidence for cell- and disease-specific expression of the CAC-specific genes in 

coronary and carotid arterial plaque tissue. Importantly, many of these genes encode for proteins that 

were identified as predicted targets of approved drugs or investigational compounds. Future studies 

should elucidate the molecular mechanisms of these genes in the cells of the arterial wall, preclinical 

testing of candidate genes, and focus on creating a saturated map of common and rare variants for CAC 

through the inclusion of diverse ancestries.  
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Methods 

Ethics statement 

All human research was approved by the relevant institutional review boards for each study and 

conducted according to the Declaration of Helsinki. All participants provided written informed consent. 

The details per cohort are given in Supplemental Material Table 1.  

Study populations and CAC assessment 

The GWAS for CAC quantity included 16 different cohorts. These cohorts contributed 26,909 participants 

of European ancestry and 8,867 participants of African American ancestry. All cohorts followed 

standardized protocols for the ascertainment of CAC quantity and statistical analyses. CAC was 

evaluated using computed tomography. We used data from the baseline examination or the first 

examination in which CAC was assessed.  

Genotyping, imputation, and study-level quality control 

Association analyses were performed using standardized protocols. Within each study, linear regression 

was used to model CAC quantity with an additive genetic model (SNP dosage) adjusted for age, sex, and 

up to 10 principal components. Extensive quality control (QC) was applied to the data. Each study 

conducted genome-wide imputation using a Phase 1 integrated (March 2012 release) reference panel 

from the 1000G Consortium using IMPUTE or MaCH/minimac and used Human Reference Genome Build 

37. There was little evidence for population stratification in any studies. Sample QC was performed with 

exclusions based on call rates, extreme heterozygosity, sex discordance, cryptic relatedness, and 

outlying ancestry. SNP QC excluded variants based on call rates across samples and extreme deviation 

from Hardy–Weinberg equilibrium. Non-autosomal SNPs were excluded from imputation and 

association analysis. We used the EasyQC R package (v23.8) to perform QC for each study before the 

meta-analysis and excluded markers absent in the 1000G reference panel: no- A/C/G/T/D/I markers; 

duplicate markers with low call rate; monomorphic SNPs and those with missing values in alleles, allele 

frequency, and/or beta estimates; SNPs with large effect estimates or standard error (SE) ≥10; and SNPs 

with allele frequency difference >0.3 compared to 1000G reference panel.  

Meta-analysis 

Since the joint analysis is more efficient than a two-stage discovery-replication analysis we chose to 

perform a meta-analysis on all available samples rather than use a two-stage discovery-replication 

strategy
47

. A meta-analysis of GWAS was performed using fixed-effects meta-analysis METAL, using SNP 

P-values weighted by sample size.  Summary statistics from each study were combined using an inverse 

variance weighted meta-analysis. Additional filters were applied during meta-analyses including 

imputation quality (MACH r
2
 < 0.3 and IMPUTE info <0.4), a minor allele frequency (MAF) <0.01, and 
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SNPs that were not present in at least four studies or in both ancestry groups. Moreover, the variants 

with heterogeneity I
2
 ≥70% in the meta-analysis were excluded, leaving 8,586,047 variants. The genome-

wide significance threshold was considered at P < 5.0 × 10
−8

.  

Genomic risk loci definition 

We used FUMA version v1.3.6a (see URLs) to obtain the genomic risk loci and functional information for 

the relevant SNPs in these loci. FUMA combines several external data sources to provide comprehensive 

annotation information. First, independent significant SNPs, at P < 5 × 10
−8

 and at r
2
 < 0.6 were 

identified. We further defined the lead SNPs as a subset of the independent significant SNPs that were in 

approximate LD with each other at r
2
 < 0.1. Physical regions in LD with these lead SNPs that were > 250 

kilobases (kb) apart from each other were identified as independent genomic risk loci. We defined the 

genomic risk loci by identifying all SNPs in LD (r
2
 ≥ 0.6) with one of the independent significant SNPs; the 

region containing all these candidate SNPs was considered to be a single independent genomic risk 

locus. In naming the nearest genes for the independent loci, we mapped the nearest gene (protein 

coding or non-coding) to the lead SNPs based on physical location to the transcription start sites (TSS). 

We also assigned the nearest protein-coding genes at these loci using canonical TSS from GENCODE 

(v30) in ANNOVAR functional annotator version 2019-10-24
48

.  

Functional annotation and gene mapping 

We first annotated the function of variants using the Ensembl Variant Effect Predictor (v92)
49

.  We used 

FUMA (v1.3.6a, http://fuma.ctglab.nl/)
16

 for functional annotation of the GWAS results based on 1000G 

phase 3 (version 5 based on the EUR populations) and Ensembl 92 (only protein coding genes were 

considered, n = 19,177). Variants were filtered while performing annotation based on positional gene 

mapping (maximum distance 10kb), eQTL-based gene mapping, and 3D chromatin interaction mapping 

using a minimum CADD score ≥ 12.37 (considered to be suggestively deleterious), a maximum 

RegulomeDB score of 7, a maximum 15-core chromatin state of 7 using all available tissues. For eQTL 

mapping aorta, coronary and tibial artery derived data (GTEx v8) were used and a FDR < 0.05 was 

applied. For the 3D chromatin interaction analysis a FDR < 10
-6

 threshold was applied using all the 

available data from Roadmap. We defined the promoter region in a window of 250 Kb upstream and 

500 Kb downstream of the transcription start site (TSS) to overlap genes with significantly interacting 

regions, and only variants overlapping enhancers and genes whose promoters overlap epigenomic 

regions were used. Variants were mapped against the GWAS Catalog version e104_r2021-09-15
50

 and 

ANNOVAR version 2017-07-1
48

 as implemented in FUMA. 

 

Gene-based test/gene-set analysis  

Gene-based test and gene-set analysis are methods that enable us to summarize SNP associations at the 

gene level and associate the set of genes to biological pathways. We used MAGMA v1.08
17

 through 

FUMA to perform gene-based analyses using the summary statistics of the combined meta-analysis in a 
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window of 50kb around 19,177 protein coding genes (mapped to GRCh37/hg19 based on Ensembl 92). 

We used default settings to calculate empirical p-values derived from 1,000 permutations and set a 

nominal p-value conservatively at 0.05/19,177 = 2.61x10
-6

. MAGMA leverages the per-variant test 

statistics by applying a multiple regression model to derive an empirical p-value for association of 

individual genes considering the linkage disequilibrium structure that exists among variants and 

potential multi-marker effects
17

. 

Gene and variant level fine-mapping 

In order to further prioritize genes at CAC loci, we used two colocalization methods, summary level 

mendelian randomization (SMR)
20

 and coloc
21

. We integrated the CAC GWAS data with gene expression 

data from the STARNET cohort of 7 cardiometabolic tissues: atherosclerotic aortic root (AOR), whole 

blood (Blood), liver (LIV), mammary artery (MAM), subcutaneous fat (SF), visceral fat (VF), and skeletal 

muscle (SKLM), derived from ~600 individuals of European ancestry
22

, with a focus on AOR, MAM and 

LIV tissues. We first performed an SMR analysis to test whether top CAC GWAS variants influence the 

phenotype through perturbation of gene expression in these atherosclerosis relevant tissues. We 

considered only genes with at least 1 cis-eQTL P < 5x10
-5

 for colocalization. To account for a model of 

linkage, where two distinct signals drive the association with gene expression and CAC, we used the 

1000G European LD reference panel and the post-hoc post-hoc heterogeneity in dependent instruments 

(HEIDI) test 1 to exclude loci with evidence of linkage or heterogeneity in the genetic instruments. We 

performed the SMR/HEIDI test on 5233 and 5293 eGenes (peQTL < 5E
-5

) in AOR and MAM tissues, 

respectively, to identify genes that passed a q-value
51

 threshold <0.10 (AOR: PSMR <3E
-4

, MAM: PSMR 

<4E
-4

) and HEIDI test (PHEIDI >0.01). 

We also performed a colocalization analysis using the R based package, coloc
21

. This Bayesian statistical 

approach calculates the posterior probability that the CAC GWAS and eQTL data from different STARNET 

tissues share a common signal under the one causal variant assumption. Following a filtering step to 

include only eQTLs with p-value <0.05, we tested for colocalization between overlapping variants in the 

CAC GWAS and STARNET expression data. We considered PP4 >0.80 as strong evidence of colocalization. 

We considered strongly colocalized loci for CAC as those having PP4 >0.8 for CAC but PP4 <0.5 for CAD, 

and strongly shared colocalized loci as those having PP4 >0.8 for both traits.  

Pathway enrichment analysis 

Gene-based association analyses were performed using MAGMA
17

 using both EA and AA CAC summary 

statistics (both unfiltered and subset to P<1E
-05

). Gene-based p-values were computed based on the 

total sample size, and a gene annotation window of 2 or 5kb upstream and 1kb downstream of 

candidate genes. GTEx v8 blood vessel tissues (coronary, aorta, and tibial artery) were used for the 

MAGMA gene expression analysis. We also imported CAC strongly colocalized and CAC/CAD shared 

colocalized gene sets into enrichR (2020 update) to determine enriched pathways using a combination 

of databases including BioPlanet, BioCarta, KEGG, WikiPathways, Reactome, and PANTHER
52

. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.02.22273844doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.02.22273844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

Activity-by contact and enhancer linking 

We used the combined EA and AA CAC variants filtered to suggestive associations (P<1E
-05

) to intersect 

with genome-wide enhancer-gene predictions calculated in the activity-by-contact models
27

. We used 

both the ENCODE coronary artery tissue and human coronary artery smooth muscle cell based 

annotations from H3K27ac histone modification ChIP-seq and chromatin accessibility datasets, and we 

considered significant enhancer-gene predictions with ABC scores >0.02, as previously described
53

. For 

enhancer-gene linking annotations we again used the above CAC summary associations at P<1.0 x 10
-5

 

and intersected these variants with human aortic enhancer states (6,7, and 12) calculated from the 

Epigenomics Roadmap consortium
28

.  

snATAC-seq analysis 

Atherosclerotic coronary artery segments were obtained from explanted hearts from 41 patients 

undergoing heart transplantation or donor hearts procured for research purposes at Stanford University. 

All samples were collected under Institutional Review Board (IRB) approval and written informed 

consent. Frozen tissues were transferred to the University of Virginia through a material transfer 

agreement and IRB approved protocols and stored at -80 C until day-of-processing. For snATACseq 

analysis of human coronary artery samples, nuclei were isolated from frozen tissues, purified over an 

Opti-Prep sucrose gradient as described
29

 and subjected to 10X Genomics based library preparation and 

sequencing on a NovaSeq 6000 (paired end, 2 x 50 bp) to achieve ~50,000 unique fragments per cell. 

Initial pre-processing was performed using the 10X Genomics pipeline (Cell Ranger ATAC v1.2.0). All 

ATAC-seq reads were mapped to the human genome reference hg38 build using the default parameters. 

Approximately 28,000 cells were included in the clustering analysis after filtering for high-quality cells 

with transcription start site (TSS) enrichment >7.0 and >10,000 fragments using the ArchR package 

(v.1.0.1) package
54

. ArchR was also used for downstream analyses including dimensionality reduction, 

clustering, calculation of imputed gene scores, and Peak2gene links as described
29

. snATAC tracks were 

visualized on the UCSC browser and compared with existing bulk coronary artery ATAC-seq tracks.   

GTEx analysis 

Candidate CAC genes were queried in the Genotype Tissue Expression (GTEx) database (version 8) via 

the online portal (https://gtexportal.org/home/). This release includes 54 unique human tissues from 

948 donors. Bulk RNA-seq processing and analysis details are available on the portal website. Queries of 

normalized mean gene expression levels per tissue were limited to the most relevant tissues and 

clustered using the Multi-Gene Query Tool.  

Carotid plaque analyses 

Atherosclerotic plaques were obtained from patients undergoing a carotid endarterectomy (CEA) 

procedure and included in the Athero-Express Biobank Study (AE, www.atheroexpress.nl, approved and 

registered under number TME/C-01.18), an ongoing biobank study in Utrecht, The Netherlands
55

. The 
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study design of the AE was described before
55

, but in brief: during surgery blood and plaques are 

obtained, stored at -80°C and plaque material is routinely used for standardized (immuno)histochemical 

analysis
55,56

.  

We quantitatively scored the number of macrophages (CD68) and smooth muscle cells (SMCs, α-actin), 

as percentage of the microscope field area by computerized analysis. Intraplaque vessel density (CD34) 

was assessed as the average number per 3 hotspots. Intraplaque hemorrhage (IPH) was scored as 

no/yes using a hematoxylin and eosin staining (HE). Intraplaque fat was defined as less or more than 

40% fat per total plaque area using HE. The amount of calcification (using HE) and collagen (picrosirius 

red) were binary scored as no/minor vs. moderate/heavy staining. Assessment of overall plaque 

vulnerability was performed as previously described by Verhoeven et al.
57

. All histological observations 

were performed by the same dedicated technician and interobserver analyses have been reported 

previously
58

. 

For the genetic analyses of these histological plaque morphological characteristics, we isolated DNA 

following standardized protocols as described before
34

. In short, the AE study was genotyped in three 

separate, but consecutive experiments and carried out according to OECD standards: Athero-Express 

Genomics Study 1 (AEGS1) including 891 patients, the Athero-Express Genomics Study 2 (AEGS2) 

including 954 patients, and the Athero-Express Genomics Study 3 (AEGS3) including 658 patients. We 

adhered to community standard quality control and assurance (QCA) procedures of the genotype data 

as described before
34,59

. After QCA these comprise 890 samples and 407,712 SNPs in AEGS1, 869 

samples and 534,508 SNPs in AEGS2, and 649,954 samples and 534,508 SNPs in AEGS3 remained. 

Missing genotypes were imputed with 1000G phase 3, version 5 and HRC release 1.1 as a reference 

using the Michigan Imputation Server
60

. These results were further integrated using QCTOOL v2, where 

HRC imputed variants are given precedence over 1000G phase 3 imputed variants.  

For the association of the 11 independent loci with the plaque vulnerability and plaque morphological 

characteristics we queried 1000G phase 3 using FUMA and included 853 variants ±250kb with LD r
2
 

surrounding the top loci. Next we performed regression analyses adjusted for age, sex and principal 

components, thus: phenotype ~ age + sex + chip-used + PC1 + PC2 + year-of-surgery. Continuous 

variables were inverse-rank normal transformed.  

More details on the single-cell RNA sequencing methods of the Athero-Express Biobank Study  are given 

in the Supplementary Material, in short we collected carotid plaques from 35 individuals, isolated and 

processed RNA as described before
61

, while employed the CEL-seq2 method
62

. 

Heritability estimation of CAC 

We used LD-score regression
35

 to  estimate the proportion of variance in CAC that could be explained by 

the aggregated effect of the SNPs in those of European ancestry. The method assumes that an 

estimated SNP effect includes effects of all SNPs in LD with that SNP. On average, a SNP that tags many 

other SNPs will have a higher probability of tagging a causal variant than a SNP that tags few other SNPs. 
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Thus, SNPs with a higher LD-score have, on average, stronger effect sizes than SNPs with lower LD-

scores. By regressing the effect size obtained from the GWAS against the LD-score for each SNP, the 

slope of the regression line will provide an estimate of heritability based on the analyzed SNPs. We 

included 1,167,424 SNPs with available betas. After merging with the European reference panel, 

1,164,129 SNPs remained. SNP heritability was estimated using European LD scores from the 1000 

Genomes Project Phase 3 data for the HapMap3 SNPs, downloaded from 

https://data.broadinstitute.org/alkesgroup/. 

Genetic correlations 

We used cross-trait LD-score regression to estimate the genetic covariation between traits using GWAS 

summary statistics
63

. The genetic covariance is estimated using the slope from the regression of the 

product of z-scores from two GWAS studies on the LD-score. The estimate obtained from this method 

represents the genetic correlation between the two traits based on all polygenic effects captured by 

SNPs. Standard LD-scores were used as provided by Bulik-Sullivan et al. based on the 1000 Genomes 

reference set
64

, restricted to European ancestry populations.  

Mendelian randomization analyses 

Two-sample Mendelian randomization (MR) using summary-level data was applied to investigate 

potential causality between CVD risk factors and a higher CAC quantity
65

, and a higher CAC quantity with 

CAD. We selected SNPs associated with each CVD risk factor at the genome-wide level of significance (P 

< 5x10
-8

) as our exposure. SNPs were identified from publically available genome-wide association 

studies and only studies with European ancestry were considered. We excluded SNPs that had LD with 

other variants, were absent from the LD reference panel or were palindromic with intermediate allele 

frequencies. A total of 75 independent genetic instruments for LDL cholesterol, 86 for HDL cholesterol
66

, 

54 for triglycerides
66

, 428 for low systolic blood pressure
67

, 428 for diastolic blood pressure
67

, 490 for 

body mass index
68

 and 118 for type II diabetes were included. As an outcome, the summary statistics of 

our CAC GWAS were used. For the association of CAC with CAD, we selected the lead 16 independent 

SNPs associated with CAC quantity in the current GWAS as the exposure and summary statistics of CAD 

as our outcome
19

. Inverse variance-weighted (IVW) analyses were used in which combined effects of the 

individual genetic instruments on the outcome, here being CAC quantity, result in a weighted mean 

estimate of a genetically determined increase in exposure on the outcome
69

. Moreover, we performed 

weighted median estimator (WME) and MR Egger regression analyses as sensitivity analyses to rule out 

potential bias caused by directional pleiotropy
70

. The analyses and data visualizations were performed 

using MRCIEU/TwoSampleMR
71

 and ggplot2.  

PheWas 

For our PheWAS analysis we queried selected CAC genes based on their multiple lines of functional 

evidence and specific association with CAC.  The selected genes were queried in the GWAS ATLAS 
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resource (https://atlas.ctglab.nl)
72

 and the TOPMed PheWeb (https://pheweb.org/UKB-

TOPMed/pheno/411.4).   

Druggability analysis 

We used the DGIDB database to import CAC strongly colocalized or CAC/CAD shared colocalized gene 

sets to determine the potentially druggability of the candidate gene targets. We imported these gene 

sets into the Protein Data Bank (PDB) to query the pocket druggability scores using the PockDrug 

prediction models. We queried protein targets for available active ligands in ChEMBL. We queried gene 

targets in the druggable genome using the most recent druggable genome list established from the NIH 

Illuminating the Druggable Genome Project (https://github.com/druggablegenome/IDGTargets) also 

available through the Pharos web platform. We also queried FDA-approved drugs, late-stage clinical 

trials and disease indications in the DrugBank and ClinicalTrials.gov databases and provided results for 

CVD-relevant indications.  
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