
 1 

Predicting longitudinal brain atrophy in Parkinson’s disease using a Susceptible-

Infected-Removed agent-based model 

 

Alaa Abdelgawad,1* Shady Rahayel,1,2* Ying-Qiu Zheng,3 Christina Tremblay,1 Andrew 

Vo,1 Bratislav Misic,1* Alain Dagher1* 

 

1) Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada 

2) Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de 

Montréal, Montreal, Canada 

3) Wellcome Centre for Integrative Neuroimaging, Centre for Functional Magnetic 

Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, 

Oxford, UK 

 

Short running title: Agent-based model of Parkinson’s Disease  

 

Key words: MRI, alpha-synuclein, brain networks, neurodegeneration 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.05.01.22274521doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.05.01.22274521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by 

accumulation of abnormal isoforms of alpha-synuclein. Alpha-synuclein is proposed to act 

as a prion in PD: in its misfolded pathologic state it favours the misfolding of normal alpha-

synuclein molecules, spreads trans-neuronally, and causes neuronal or synaptic damage as 

it accumulates. This theory remains controversial. We have previously developed a 

Susceptible-Infected-Removed (SIR) computational model that simulates the templating, 

propagation and toxicity of alpha-synuclein molecules in the brain. Here we test this model 

with longitudinal MRI collected over four years from the Parkinson Progression Markers 

Initiative (1068 T1 MRI scans, 790 PD, 278 matched controls). We find that brain 

deformation progresses in subcortical and cortical regions. The SIR model, using structural 

connectivity from diffusion MRI, recapitulates the spatiotemporal distribution of brain 

atrophy observed in PD. We show that connectome topology and geometry significantly 

contribute to model fit. We also show that the spatial expression of two genes implicated 

in alpha-synuclein synthesis and clearance, SNCA and GBA,  also influences the atrophy 

pattern. We conclude that the progression of atrophy in PD is consistent with the prion-like 

hypothesis and that the SIR model is a promising tool to investigate multifactorial 

neurodegenerative diseases over time.   
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INTRODUCTION 

Parkinson’s disease (PD) is characterized by the pathological intracellular aggregation of 

misfolded alpha-synuclein (aSyn) into Lewy bodies and neurites (Dickson et al., 2009; 

Spillantini et al., 1997). In the brain, these deposits often appear in a stereotypical fashion, 

emerging in the olfactory bulb and caudal brainstem and then ascending towards the 

midbrain, limbic areas, and cerebral cortex (Braak et al., 2003, 2004). This spatiotemporal 

distribution patterns of pathology has led to the hypothesis that misfolded aSyn may harbor 

prion-like properties (Brundin & Melki, 2017), allowing it to spread between cells and 

impose its misfolded conformation onto native endogenous, otherwise normal aSyn from 

the recipient cell (Peng et al., 2020). Indeed, the injection of synthetic aSyn preformed 

fibrils or brain lysates from patients with a synucleinopathy has demonstrated the local 

formation of aSyn pathology and its propagation through brain networks in wild-type and 

transgenic mice, rats, and non-human primates (Henrich et al., 2020; Luk, Kehm, Zhang, 

et al., 2012; Masuda-Suzukake et al., 2013; Rey et al., 2016, 2018; Uemura et al., 2020; 

Watts et al., 2013). 

 

In humans, the evidence for a prion-like behavior of pathological aSyn has so far been 

indirect. For instance, in patients who received fetal mesencephalic neuronal transplants, 

Lewy-related pathology could be observed inside cells that were grafted a decade earlier 

(Kordower et al., 2008; Li et al., 2008) , suggesting that pathology spread to the grafts from 

the surrounding milieu. Also, using MRI-derived volume deformation and cortical thinning 

as proxy measures of tissue atrophy, the pattern of brain changes observed in de novo PD 

patients was shown to significantly overlap with the brain’s connectivity pattern (Pandya 

et al., 2019; Yau et al., 2018; Zeighami et al., 2015). However, other studies have shown 

that the distribution of aSyn pathology is not solely explainable by brain connectivity and 

that other cell-autonomous factors play a role in shaping aSyn pathology (Gonzalez-

Rodriguez et al., 2020; Henrich et al., 2020; Surmeier et al., 2017). Thus, the mechanisms 

underlying the accumulation and propagation of pathological aSyn in PD remain unclear. 

 

One way to understand these mechanisms is through computational modeling. We have 

recently developed an agent-based Susceptible-Infected-Removed (SIR) model that 
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simulates the fate of individual aSyn proteins in the brain to recreate, based on cell-

autonomous factors and brain connectivity, the atrophy pattern seen in PD (Zheng et al., 

2019). The local factors in this case are expression of the genes SNCA and GBA, which we 

take as proxies of synthesis and clearance of aSyn. Using this model, we previously 

recreated the pattern of atrophy observed at baseline in de novo PD patients from the 

Parkinson’s Progression Markers Initiative (PPMI) cohort and demonstrated that both 

structural connectivity and gene expression were central to shaping the propagation of aSyn 

in the brain (Zheng et al., 2019). We subsequently used the same model to explain the 

propagation of pathologic aSyn injected into different brain regions of wild-type mice 

(Rahayel et al., 2021).  Here we apply the model to longitudinal MRI data from PPMI.  

 

We measured the progression of atrophy in PD patients over one, two, and four years and 

applied the agent-based SIR Model to assess if SNCA and GBA gene expression and 

structural features of the connectome significantly contributed to recreating the atrophy 

patterns. We found that the agent-based SIR Model accurately recreated the atrophy 

observed longitudinally in PD and that both gene and connectivity are significant 

contributors of atrophy. 

 

METHODS 

Participants 

Longitudinal data from 709 PD patients and 279 healthy control participants were included 

from the PPMI database (www.ppmi-info.org), for a total of 1068 MRI scans and 

associated clinical measures. The PPMI is a longitudinal observational international study 

aimed at assessing progression markers of PD and includes a comprehensive set of clinical 

and MRI measures acquired in patients with de novo PD and healthy controls (Marek et 

al., 2011, 2018).  

 

To be included in the PPMI, PD patients: 1) had at least two features among resting tremor, 

bradykinesia, and rigidity or either asymmetric resting tremor or asymmetric bradykinesia, 

2) had a diagnosis of PD for less than two years, 3) had a baseline Hoehn and Yahr stage 

of I or II, 4) had a dopamine transporter binding deficit confirmed using SPECT scan, 5) 
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were not expected to require medications for PD within six months of the baseline 

assessment, 6) were at least 30 years old, and 7) did not have dementia. For healthy 

controls, a Montreal Cognitive Assessment (MoCA) score below 27 or a first-degree 

relative with a clinical diagnosis of idiopathic PD led to exclusion. The longitudinal follow-

up of PPMI now extends to approximately 5 years; for this study, only the participants with 

MRI acquisition performed at baseline and at either one, two, and/or four years were 

considered for analysis due to the limited number of scans acquired at three (3 participants) 

and five years (2 participants). 

 

Clinical Measures 

At each visit, patients underwent the Movement Disorders Society-Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2007) and a cognitive assessment that 

included the MoCA (Nasreddine et al., 2005), the Symbol-Digit Modalities Test, the 

Letter-Number Sequencing test, the Benton Judgment of Line Orientation test, the semantic 

and phonemic fluency tasks, and the total recall, delayed recall, and recognition tasks from 

the Hopkins Verbal Learning Test-Revised (Weintraub et al., 2015). Other clinical 

measures included the RBD Screening Questionnaire (Stiasny-Kolster et al., 2007), where 

a score ≥5 indicates probable REM sleep behavior disorder, the Geriatric Depression Scale 

(GDS), the State-Trait Anxiety Inventory (STAI), and the Scales for Outcomes in 

Parkinson’s Disease-Autonomic (SCOPA-AUT). 

 
MRI 

MRI acquisition 

T1-weighted MRI brain images were acquired at different sites across the United States, 

Canada, and Europe, with the following parameters: repetition time (TR) = 2,300 ms; echo 

time (TE) = 2.98 ms; field of view (FOV) = 256 mm; flip angle = 9; and voxel size = 1 

mm3. The acquisition protocols are available on the PPMI website (http://www.ppmi-

info.org/study-design/research-documents-and-sops/). 

 

Deformation-based morphometry 
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Deformation-based morphometry (DBM) was performed on the baseline and longitudinal 

T1-weighted scans of PD patients and controls to derive whole-brain individual maps 

representing the deformation needed for a voxel to be normalized to the template space 

(using the MNI152-2009c template). DBM was done using the default parameters available 

in the CAT12 toolbox in SPM12 (www.neuro.uni-jena.de/cat). This resulted in a set of 

processed image files for each participant that included a voxel-wise whole-brain map of 

Jacobian determinants, which was used as the measure of local brain tissue atrophy after 

the application of a 2 mm full width at half maximum isotropic smoothing kernel. Images 

were visually inspected at each step and excluded if abnormal or if the automated quality 

rating was below 80%. 

 

Brain parcellation 

The normalized smoothed Jacobian determinants maps were next parcellated using a 

previously used atlas made of 42 cortical and subcortical brain regions from the left 

hemisphere for which regional SNCA and GBA expression as well as structural connectome 

features were available (Zheng et al., 2019). This atlas included 34 cortical regions derived 

from the Desikan-Killiany atlas (Desikan et al., 2006) and 7 subcortical regions, namely 

the putamen, caudate, pallidum, thalamus, hippocampus, amygdala, and accumbens, 

available as part of the FreeSurfer processing stream (http://surfer.nmr.mgh.harvard.edu). 

Due to its importance in PD, the substantia nigra was additionally included based on the 

segmentation available from a 7T MRI basal ganglia atlas 

(https://www.nitrc.org/projects/atag) (Keuken et al., 2014). Using FLIRT 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT), the 42-region atlas was then linearly 

registered to the individual deformation maps and a set of 42 regional deformation values 

were extracted for each map using the MarsBaR region of interest toolbox for SPM 

(https://marsbar.sourceforge.net). Note that the atlas only included regions from the left 

hemisphere due to the SNCA and GBA gene expression for the right hemisphere being 

available for only 2 of the 6 post-mortem brains included in the Allen Human Brain Atlas 

(AHBA) (Hawrylycz et al., 2012). Moreover, we only applied the model to a single (left) 

hemisphere due to possible errors associated with the detection of interhemispheric white-

matter connections using deterministic streamline tractography (see below). 
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Regional atrophy standardization 

A W-score approach was then used to account for the normal effects of age and sex on 

brain morphometry (La Joie et al., 2012; Tremblay et al., 2021). The regional deformation 

values from each PD patient’s image were converted into age- and sex-corrected W-scores 

based on the values observed in the 157 controls available at baseline. There was no 

significant difference in age and sex between the controls (age: 60.1± 11.9; 66% male) at 

baseline and the PD group (BL age: 60.9± 10; 63% male – Y1 age: 60.9 ± 9.3; 63% male 

– Y2 age: 60.9 ± 9.3; 63% male – Y4 age: 64.4 ± 9.9; 69% male) at each time point. Only 

the values from controls seen at baseline were used for standardization due to the limited 

number of controls who underwent follow-up MRI. The standardization formula was: 

 

𝑊𝑠𝑐𝑜𝑟𝑒 =
𝑃𝐷!"#	%"&'( − 𝑃𝐷)!(*+,-(*	."/(*	01	23

𝑆𝐷!(/+*'"&/	+1	23	
 

 

where the predicted value for a PD patient based on control data was given by (β1*age + 

β2*sex + β3). In other words, this yielded regional deformation values that represent the 

difference between a PD patient’s deformation value and the deformation value that is 

expected for their age and sex. W-scores are essentially Z-scores corrected for age and sex 

(La Joie et al., 2012). The individual W-scores were averaged between patients for a given 

region, resulting in a set of 42 regional W-scores for baseline and each of the three follow-

up time points. The average W-score seen at each follow-up time point was then subtracted 

from baseline to yield a W-score difference over time (i.e., atrophy progression over one, 

two, and four years). A negative W-score difference represents atrophy progression in PD, 

whereas a positive W-score indicates volume expansion. The three sets of 42 atrophy 

difference values, one for the difference between baseline and every follow-up time point, 

were the observed patterns of atrophy progression to which we compared the pattern of 

simulated atrophy generated in silico by the agent-based SIR Model. 

 

Agent-based SIR Model 

Overview of the model 
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The agent-based SIR Model simulates the brain spread of aSyn based on regional SNCA 

and GBA gene expression and inter-regional connectivity (Zheng et al., 2019). In this 

model, the synthesis and degradation of aSyn agents are modulated by the local expression 

of SNCA and GBA, respectively. Every agent in a brain region can belong to one of three 

compartments: “Susceptible” when representing the normal protein, “Infected” when 

representing the misfolded protein, and “Removed” when the protein gets degraded or 

spreads to another region. Note that in this model all infected agents are also deemed to be 

infectious. Every Susceptible agent can turn into an Infected agent when it encounters an 

Infected agent in a region. Both Susceptible and Infected agents have a probability of either 

being degraded inside a region or to spread to a connected area. The probability of 

spreading to another region is based on the strength of the connectivity (i.e., streamline 

density, see below) between the source and the target regions. 

 

The model is run by first initiating pathology inside a seed region, here the substantia nigra, 

and simulating the spread over a total of 10,000 iterations. At each iteration, a simulated 

atrophy value is generated for every region. Atrophy is assumed to result from the 

combined effects of local accumulation of infected agents and deafferentation. To 

investigate how well the parameters of the spreading model replicated the progression of 

atrophy in PD, the spread was simulated with the same 42-region atlas used for the MRI-

derived observed patterns of atrophy. This allowed us to compare the pattern of regional 

values of simulated atrophy to the patterns of atrophy progression observed between 

baseline and one, two, and four years. In other words, following the initiation of pathology 

at the substantia nigra, the model used information about structural connectivity and 

regional gene expression to modulate the behavior of aSyn agents in order to simulate local 

accumulation of aSyn pathology and atrophy. The model was implemented as five different 

modules, namely the production of normal aSyn, the clearance of normal and misfolded 

aSyn, the misfolding of normal aSyn, the propagation of normal and misfolded aSyn, and 

the accrual of atrophy (see below for details about each module). 

 

Production of normal aSyn 
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In the model, the synthesis of aSyn inside every region was modulated based on the 

regional gene expression of SNCA, which was extracted using the software toolbox abagen 

(Markello et al., 2021), available at https://abagen.readthedocs.io/,  for the 42 regions based 

on the six post-mortem brains of the AHBA (Hawrylycz et al., 2012). The values were 

averaged across samples to yield an expression vector of synthesis that was inserted back 

into the model (Zheng et al., 2019). The synthesis rate in region i is given by the probability 

of new agent synthesis per unit time, αi:  

 

αi = Φ0,1(SNCAexpressioni) 

 

where Φ0,1(·) is the normal cumulative distribution function. The increment of normal 

agents in region i is given by αiSiΔt, where Δt is the total time and Si is the region size. 

The time increment used for the main analyses was set at Δt = 0.1, but peak correlation fits 

were robust with values from 0.1 to 0.9 (see Supplementary Figure 1).  

 

Clearance of normal and misfolded aSyn 

Likewise, the degradation of aSyn inside every region was modulated based on the regional 

gene expression of GBA, which was also extracted from the AHBA. The clearance rate of 

both normal and misfolded agents in region i per unit time occurred with the probability 

distrbution βi: 

 

βi = Φ0,1(GBAexpressioni) 
 

where Φ0,1(·) is the normal cumulative distribution function. The probability of an agent 

still being active after total time Δt is given by 𝑙𝑖𝑚45→7(1 − 𝛽𝛿𝜏)∆-/45 = 𝑒:;∆-. In other 

words, as the degradation rate increases, the probability of an agent to remain active in the 

region decreases. Accordingly, the proportion of cleared agents within timestep Δt is 1 – 

𝑒:;∆-. 

 

Misfolding of normal aSyn (infection transmission) 
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Infected agents have the ability to promote misfolding of susceptible agents and turn them 

into infected agents. The probability of a susceptible agent that survived clearance of not 

being infected is  (1 − 𝛾+7)<!, where Mi is the population of infected agents in region i and 

𝛾+7 is the baseline likelihood that a single misfolded agent turns a susceptible agent into an 

infected agent. The baseline likelihood 𝛾+7 is given by 1/Si, where Si is the region size. 

Accordingly, the probability per unit of time that a susceptible agent surviving clearance 

in region i turns into an infected agent due to the action of at least one of the Mi infected 

agents present in region i is given by γi = 1 – 𝑒<!	&1(>	:	?!
"). As for the previous module, the 

probability that a susceptible agent remains susceptible after total time Δt is given 

by	𝑙𝑖𝑚45→7(1 − 𝛾+7𝛿𝜏)<!∆-/45 = 𝑒:?!
"<!∆-, whereas the probability that a susceptible agent 

becomes infected after total time Δt is given by 1 − 𝑒:?!
"<!∆-. As a result, the increment of 

the population of normal proteins Ni  in region i is: 

 

∆𝑁! =	𝛼!𝑆!∆𝑡 – (1 – 𝑒"#!∆%)𝑁! 
 

After each timestep, the populations of susceptible (Ni) and infected agents (Mi) are 

respectively updated as follows: 

 

∆𝑁! =	𝛼!𝑆!∆𝑡 − +1 − 𝑒"#!∆%-𝑁! − (𝑒"#!∆%)(1 −	𝑒"&!
"'!∆%)𝑁! 

 

∆𝑀! = +𝑒"#!∆%-01 −	𝑒"&!
"'!∆%1𝑁! − (1 − 𝑒"#!∆%)𝑀! 

 

Propagation of normal and misfolded aSyn 

Every susceptible and infected agent has a probability to spread to other brain regions. To 

implement this, the structural connectivity matrix created previously for the 42-region atlas 

was used (see Zheng et al., 2019). Briefly, this was created using 1,027 preprocessed 

diffusion-weighted and T1-weighted MRI images from the Human Connectome Project 

(2017 Q4; 1,200-subject release). The diffusion data were reconstructed in the individual 

T1-weighted image space using generalized q-sampling imaging. Voxel-wise quantitative 
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anisotropy and the spin distribution function were measured to assess the density of water 

diffused in different directions. Deterministic streamline tractography was then performed 

for each region using DSI Studio (www.nitrc.org/projects/dsistudio), resulting in 100,000 

streamlines per region with the following parameters: angular cut-off of 55, step size of 0.5 

mm, minimum length of 20 mm, and maximum length of 400 mm. For the purpose of the 

agent-based model, the connectivity strength between each seed-target region pair was 

defined as the density of streamlines (i.e. streamline count) between the two regions 

normalized by the target region size and the mean length of streamlines. 

 

To account for the mobility pattern of an agent between regions, we used a distance matrix 

and a structural connectivity matrix. The distance matrix was constructed by calculating 

the Euclidean distance of corresponding streamlines between every pair of regions. For the 

structural connectivity matrix, a connection profile based on the density of streamlines was 

created for each region with self-connection set to 0; then concatenated to form a 42x42 

structural connectivity matrix for each subject. Finally, a group-consensus approach was 

adopted by averaging 35 % of the most commonly occurring edges across all subjects to 

generate one group-level structural connectivity matrix. To test for robustness, the analyses 

were also performed using different matrix densities (Supplementary Table 1). 

 

Using the matrix of structural connectivity, every agent can either remain in region i or 

enter the edges (fiber tracts) with probabilities: 

 

𝑃!(A+01!→!(A+01! =	𝜌+ 	

𝑃!(A+01!→(*A(!# = (1 − 𝜌+)
𝑤+B
∑ 𝑤+BB

	

 

where 𝑤+B is the undirected connection weight between region i and region j and 𝜌+ is the 

probability of an agent to remain in region i. This probability was set to 0.5 for every region. 

The choice of 𝜌+ led to negligible differences when simulating atrophy (Supplementary 

Figure 1). Likewise, both susceptible and infected agents can exist in an edge (i,j) or exit 

the edge per unit time with probabilities: 
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𝑃()*(!,$→,(*!-.$ =	
𝑣
𝑙!,0
	

𝑃()*(!,$→()*(!,$ = 1 −	
𝑣
𝑙!,0
	

 

where 𝑙+B is the length (Euclidean distance) of the edge between regions i and j and v  is the 

propagation speed. The increments in quantity of normal and misfolded agents 𝑁+ and 𝑀+ 

in region i after a total time ∆𝑡 are as follows: 

 

∆𝑁! =	5
1
𝑙0,!
𝑁0,!∆𝑡 − (1 − 𝜌!)𝑁!∆𝑡

0
 

∆𝑀! =	5
1
𝑙0,!
𝑀0,!∆𝑡 − (1 − 𝜌!)𝑀!∆𝑡

0
 

 

where 𝑁+,B and 𝑀+,B represent the populations of normal and infected agents in the edge 

between regions i and j respectively. 𝑁+,B and 𝑀+,B are updated as follows: 

∆𝑁+,B = (1 − 𝜌+)
𝑤+B

∑ 𝑤+,BB
𝑁+∆𝑡 −

1
𝑙+,B
𝑁+,B∆𝑡 

∆𝑀+,B = (1 − 𝜌+)
𝑤+,B
∑ 𝑤+,BB

𝑀+∆𝑡 −
1
𝑙+,B
𝑀+,B∆𝑡 

 

 

Accrual of atrophy 

Tissue loss was modeled as the result of two processes: the direct toxicity from the 

accumulation of infected agents in region i and the deafferentation due to neuronal death 

in regions connected with region i. The incremental atrophy at time t over Δt in region i is 

given by: 

 

∆𝐿+ = 𝑘>@1 − 𝑒:!!(-)∆-A + 𝑘DC
𝑤+,B
∑ 𝑤+,BBB

@1 − 𝑒:!#(-:>)∆-A	
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where 𝑟+(𝑡) represents the proportion of misfolded agents in region i at time t, 𝑘> is the 

weight (impact) of aSyn accumulation on tissue loss, and 𝑘D is the weight (impact) of 

deafferentation from neighboring regions on tissue loss. Both k1 and k2 were set to 0.5 such 

that accumulation of infected agents and deafferentation had equal effect on the growth of 

the atrophy simulated by the model.  

 

Statistical analyses 

Demographics and clinical variables 

The demographics and clinical variables were compared between PD patients and controls 

at baseline and between PD patients at each follow-up time point versus baseline. Student’s 

two-sample t-tests and Mann-Whitney U tests were respectively used for normally and 

non-normally distributed continuous variables. Chi-square tests were used for comparing 

groups on categorical variables. 

 

Longitudinal progression of atrophy 

To examine the progression of brain atrophy in PD patients, we performed linear mixed-

effect modeling to investigate if the effect of time was significant over the regional 

deformation values at each time point, namely at baseline and after one, two, and four years 

of follow-up. This resulted in a set of 42 separate models, one for each brain region. The 

random intercept was assigned at the patient level, while the fixed effect was the interaction 

of time with the age-and-sex corrected w-score DBM maps. The Benjamini-Hochberg 

procedure was used to control the false discovery rate (Benjamini et al., 2001) and a 

regional deformation change was considered significant when the p value was below 0.05.  

 

Fit between observed and modeled pathology 

The SIR model was run for a total of 10,000 iterations after injecting pathology into the 

substantia nigra. The propagation speed, v, which models the protein spreading rate, was 

set to 1. To check for robustness, variation in propagation speed values ranging from 0.1 

to 10 resulted in negligible difference on the model fit (Supplementary Figure 1).  Model 

fit between simulated and observed atrophy was measured using Spearman’s rank 
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coefficient correlations. First, we investigated if the atrophy simulated in every region was 

significantly associated with the deformation value observed at baseline. At every time 

point (i.e., after one, two, and four years of follow-up), the regional simulated data was 

correlated with the regional observed atrophy difference, which is calculated by subtracting 

baseline W-score DBM value from that of follow-up time point. The peak fit between 

simulated and atrophy difference patterns observed between baseline and each time point 

corresponded to the highest correlation coefficient between the two metrics. To confirm 

that significance testing was not affected by spatial autocorrelation of brain atrophy, we 

used the toolbox BrainSMASH (Burt et al., 2020) to generate 1000 surrogate brain maps 

preserving spatial autocorrelation (for each comparison), as null distributions for 

assessment of statistical significance (Markello & Misic, 2021). 

 

Null models 

To investigate the impact of gene expression and connectivity on the spread of pathologic 

aSyn, we generated null models in which gene expression or connectivity were 

randomized. We then computed peak fits between the observed and simulated atrophy for 

each null model, and compared the spatial patterns thus obtained to the true peak fits 

between true and simulated atrophy. For the connectome null models, the impact of 

topology and/or geometry was investigated using both rewired and repositioned null 

models. In rewired null networks, using the Maslov-Sneppen algorithm in the Brain 

Connectivity Toolbox (sites.google.com/site/bctnet), pairs of connectivity strength 

between brain regions were randomly shuffled in the structural connectivity matrix while 

preserving the network’s original degree sequence and density; the rewiring per edge 

parameter was set to 100. In repositioned null networks, the spatial position of regions was 

randomly shuffled while preserving the network’s original degree sequence and connection 

profile. For gene expression null models, the values of either SNCA or GBA regional 

expression were randomly reassigned to each region. In every case, the shuffled 

connectivity or gene expression data were inserted back into the model and used to simulate 

the spread of agents. For each of the four types of null models (i.e., rewired, repositioned, 

SNCA, and GBA null models), the randomization was repeated 500 times to generate 

distributions of null peak fits. The original peak fit between the observed and simulated 
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atrophy patterns was then compared using one-sample t-tests to the average peak fit 

distributions of the null models. 

 

RESULTS 

Participants  

A total of 1,068 T1-weighted scans: 790 PD and 278 healthy controls were obtained from 

the PPMI cohort. Of these, 199 scans were rejected: 193 failed quality control, and 6 scans 

were acquired outside the follow-up time points investigated in this study (i.e., 3 and 5 

years after baseline). This yielded a total of 869 scans from 238 HC and 631 PD. The PD 

scan numbers are 318 at baseline, 120 at one year, 108 at two years and 85 at four years. 

Only patients with a scan acquired at baseline and at least one follow-up time point were 

kept for further analysis, leaving samples of 113 patients between baseline and one year, 

104 patients between baseline and two years, and 79 patients between baseline and four 

years. Only the complete sample of 157 healthy controls at baseline were included here 

due to the small number of follow-up scans. 

 

There were no significant age, sex, and education differences at baseline between patients 

and controls (Table 1). PD patients had significantly higher scores on the MDS-UPDRS-I, 

MDS-UPDRS-II, MDS-UPDRS-III, GDS, and SCOPA-AUT, a higher percentage of 

probable RBD, and lower scores on the MoCA, Symbol-Digit Modalities Test, and the 

total recall, delayed recall, and recognition tasks from the Hopkins Verbal Learning Test-

Revised. In PD patients, scores gradually worsened at each follow-up time point on the 

MDS-UPDRS-I, MDS-UPDRS-II, MDS-UPDRS-III, and the SCOPA-AUT.  

 

Brain atrophy progresses over 4 years in PD 

Using linear mixed-effect models, 23 of the 42 left hemisphere brain regions showed 

significant progression of deformation in PD over four years, while controlling for age and 

sex (Figure 1 and Supplementary Table 2). Specifically, between baseline and year one, 

atrophy increased in 14 regions, including the striatum, the temporal areas (i.e., middle and 

inferior temporal cortices, entorhinal cortex, parahippocampal gyrus, banks of the superior 
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temporal sulcus, lingual and fusiform gyri), the isthmus of the cingulate cortex, the 

precuneus and inferior parietal cortex, the lateral occipital cortex, and the lateral 

orbitofrontal cortex. After two years of follow-up, the rostral anterior cingulate cortex, 

supramarginal cortex, temporal pole, and insula also start showing significant deformation. 

After four years of follow-up, atrophy was now additionally present in the posterior 

cingulate cortex, superior parietal cortex, superior temporal cortex, nucleus accumbens, 

and amygdala. Unlike the other regions, the insula demonstrated tissue expansion (Figure 

1) both at baseline and increasing with time.  This tissue expansion may represent an 

increase in CSF volume in the perisylvian area. These results confirm previous analyses of 

this dataset using slightly different methodology (Tremblay et al., 2021). 

 

The agent-based SIR Model recreates atrophy progression 

Next, we used the agent-based SIR Model to simulate the spread of aSyn in the 42 regions 

and compared the pattern of atrophy simulated by the model to the patterns of atrophy 

progression observed in PD patients between baseline and one year, two years, and four 

years of follow-up. We found that the atrophy pattern simulated by the model significantly 

recreated the atrophy progression patterns observed longitudinally in PD (Figure 2). 

Specifically, the peak correlation between the simulated and observed patterns of atrophy 

at baseline was r=0.58 (p<0.0001) and occurred early during the spread of agents (i.e., 

timestep 500) (Figure 2A). The peak correlation between the simulated atrophy pattern and 

the progression of atrophy in PD was r=0.34 (p=0.03) at one year (Y1) and r=0.33 (p=0.03) 

at two years (Y2, Figure 2B); in contrast to the atrophy seen at baseline, the peak correlation 

fit was reached at much later timesteps (i.e., between timesteps 7000 and 9000), once the 

system has reached its equilibrium state. Similar results were obtained from significance 

testing using null models to account for spatial autocorrelation (Baseline: r = 0.62, p = 

0.001, Y1: r = 0.33, p = 0.03, Y2: r = 0.29, p = 0.056). The simulated atrophy generated by 

the model did not recreate the pattern of atrophy progression seen between baseline and 

four years (r=0.2 p=0.1, Figure 2C).  

To further confirm these results, we repeated the same analyses using structural 

connectivity matrices containing 30%, and 40% of the most occurring edges instead of the 
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35% density used for the main findings. Results were similar (Supplementary Table 1). 

Taken together, this demonstrates that the agent-based SIR Model recreates the progression 

of brain atrophy taking place over two years in PD. 

 

Brain connectivity shapes the progression of atrophy 

To investigate if the connectome’s architecture shaped the progression of atrophy in PD, 

we generated sets of 500 rewired and 500 repositioned null models in which the 

connectome’s topology or geometry was randomized. For rewired models the peak fits 

were always significantly lower than the peak fit obtained with the true connectivity matrix 

(rnull ~ 0.12, p<0.0001 at every time point; Figure 3A). Using repositioned models to 

randomize the physical position of brain regions, we also observed that the peak fit was 

significantly disrupted at every time point (rnull ~0.29, p<0.0001 at every time point; Figure 

3C). Taken together, this demonstrates that the brain’s connectivity pattern and spatial 

embedding shape the progression of brain atrophy in PD. The main findings here are 

reported for 35% connectome density; we found similar results when using different 

network densities (Supplementary Figure 1). 

 
Gene expression shapes the progression of atrophy 

To investigate if regional gene expression shaped the progression of atrophy in PD, the 

expression of SNCA or GBA was randomized across brain regions. The fit between the 

simulated and observed patterns of atrophy was significantly disrupted at baseline and at 

each of the following time points when randomizing SNCA (SNCA: rnull=0.33 p<0.0001at 

baseline, rnull=0.32 at one year, and rnull=0.32 at two years with p<0.0001; Figure 3D) or 

GBA (rnull=0.23 at baseline, rnull=0.09 at one year, and rnull=0.17 at two years with p<0.0001; 

Figure 3B).  

 

 
DISCUSSION 

The prion-like model of PD makes three predictions: 1) misfolded aSyn isoforms act as a 

template to misfold normal aSyn molecules; 2) abnormal aSyn molecules propagate trans-
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synaptically via the connectome; 3) accumulation of misfolded aSyn leads to tissue damage 

in vulnerable regions. Here we test all three aspects of this model by simulating the fate of 

aSyn agents in the brain and comparing the resulting patterns to empirically derived 

atrophy maps from T1 MRI scans in people with PD. 

 

We studied the progression of brain atrophy in newly-diagnosed PD patients over 4 years. 

Three main observations were made: first, as demonstrated previously with this dataset 

(Tremblay et al. 2021), atrophy increased significantly over four years, being found in the 

striatum early on and involving a greater number of cortical regions as disease progresses. 

Second, the SIR model recreated in silico the pattern of atrophy observed longitudinally in 

PD patients. Third, the SIR model demonstrated that both cell-autonomous factors like 

SNCA and GBA gene expression levels and non-cell autonomous factors, namely the 

topology and geometry of the connectome, shaped the spatiotemporal progression of 

atrophy. These findings further support the theory of PD as a propagating synucleinopathy. 

 

Using age and sex-corrected measures of brain deformation, we found that 55% of brain 

regions showed significant atrophy in PD at some point over the 4-year follow-up. The 

regions with the strongest progression of atrophy over 4 years were the putamen and 

caudate and the middle and inferior temporal cortices. Atrophy in cortical regions such as 

the rostral anterior cingulate cortex and supramarginal cortex appeared after two years, 

whereas the limbic structures (i.e., amygdala and nucleus accumbens) and the superior 

parietal, posterior cingulate, and superior temporal cortices started showing atrophy after 

4 years of follow-up. This atrophy pattern involving basal ganglia first, followed by mostly 

posterior cortical regions, was also described in a large meta-analysis from the ENIGMA 

consortium (Laansma et al., 2020), which included PD patients with overall more advanced 

disease than our de novo cohort.  Note also that ENIGMA included the PPMI MRI scans 

used here although they only account for 15% of the 2357 PD datasets in that study. 

Interestingly, the substantia nigra, in which signal changes have been associated with the 

parkinsonian motor signs and symptoms associated with PD (Gaurav et al., 2021), was 

atrophied at baseline but did not show any atrophy progression during the follow-up years, 
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suggesting that this region may have already reached a floor effect at the time of clinical 

diagnosis, at least in terms of volume deformation.  

 

PD is pathologically characterized by the accumulation of misfolded aSyn in Lewy bodies 

and Lewy neurites (Spillantini et al., 1997). Two theories currently exist to explain the 

aSyn-related pathogenesis in the brain: the prion-like protein propagation and the regional 

vulnerability hypotheses (Brundin & Melki, 2017; Surmeier et al., 2017). According to the 

prion-like hypothesis, pathologic aSyn imposes its misfolded conformation onto native 

proteins that can then spread trans-synaptically between neurons, a hypothesis that is 

supported by several studies in animals (Luk, Kehm, Carroll, et al., 2012; Masuda-

Suzukake et al., 2013; Rahayel et al., 2021). More recently, MRI studies performed in 

humans have shown that the pattern of atrophy observed in de novo patients with PD 

overlaps with known structural and functional networks (Pandya et al., 2019; Zeighami et 

al., 2015), suggesting that brain connectivity is a critical determinant of atrophy in 

synucleinopathies. However, there is also evidence that the  connectivity alone does not 

completely explain the pattern of Lewy-related pathology, and that intrinsic factors may 

govern the selective vulnerability of certain regions or cell types (Fu et al., 2018; Gonzalez-

Rodriguez et al., 2020). While several factors relating to cellular energetics and 

neurotransmitter metabolism have been proposed (Giguère et al., 2018), the concentration 

of normal aSyn and the expression of SNCA are also markers of cell vulnerability (Luna et 

al., 2018). 

 

Our model explicitly incorporates normal aSyn production and breakdown, and 

randomizing these values degrades its ability to replicate observed atrophy, as does 

randomizing connectivity values. Applied to de novo PD patients, the SIR model has 

previously demonstrated that SNCA and GBA expression and brain connectivity both 

significantly influence the distribution of atrophy in the brain of PD patients (Zheng et al., 

2019). Furthermore, the same model was recently used to predict the spread of pathologic 

aSyn injected in different brain regions of wild-type mice (Rahayel et al., 2021). However, 

no study had yet applied the agent-based model to the analysis of  atrophy progression in 

PD. 
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More specifically, we found that the increase in brain atrophy observed at 1 and 2 years 

was significantly recreated by the model. The use of null networks in which either gene 

expression or brain connectivity were randomized shows that the atrophy depends upon 

both connectivity and aSyn synthesis and metabolism. This is in line with similar studies 

showing that pathology and atrophy occur along brain networks in other neurodegenerative 

diseases such as frontotemporal dementia (Brown et al., 2019; Shafiei et al., 2022; Zhou et 

al., 2012), Alzheimer’s disease (Raj et al., 2015; Vogel et al., 2020, 2021) and amyotrophic 

lateral sclerosis (Meier et al., 2020). In contrast to other computational models, which 

generally simulate the spread of abnormal proteins by relying on a connectivity-based 

diffusion mechanism, our agent-based model generates a pattern of propagation and 

atrophy that also takes local vulnerability into account  by simulating the synthesis and 

degradation of aSyn as individual agents. 

 

The progression of atrophy occurring after four years could not be replicated by the model. 

This  may be due to the lower number of scans acquired at the four-year time point (85 

versus 105 at two years) causing reduced statistical power.  Also, attrition bias may be 

present whereby the group of PD patients still in the study at year 4 had milder disease 

(Tremblay et al., 2021). Another possibility is that  neuron and synapse loss over time 

modified the patients’ connectivity structures, leading to  inaccuracies in modeling spread 

of pathology using a healthy connectome. Future studies could integrate measures of 

ongoing loss of connectivity and integrate this into the SIR model. 

 

Regional aSyn concentration was modulated in the SIR model to assess regional 

vulnerability to pathology accumulation. Shuffling the expression level of either SNCA or 

GBA resulted in significantly disrupted fit between observed and simulated data across all 

time points, suggesting the importance of expression of both genes in shaping the spatial 

pattern of disease spread longitudinally. In other words, regional variations in synthesis 

and clearance of aSyn, as indexed by SNCA and GBA expression, contribute to the PD 

atrophy progression pattern in our model. This is consistent with the fact that mutations in 

both genes are risk factors for genetic forms of PD (Gan-Or et al., 2018; Konno et al., 2016; 
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Riboldi & Di Fonzo, 2019), and both are identified in genome wide associations studies of 

sporadic PD (Nalls et al., 2019). 

 

Similarly, the randomization of connectome topology (via rewired null models) and spatial 

organization (via spatial null models) resulted in disrupted fit between observed and 

simulated data. While this is consistent with trans-neuronal propagation of a toxic agent, it 

can also be explained by other forms of connectivity-related co-atrophy. For example, 

interconnected areas may share local properties that render them similarly vulnerable to 

neurodegeneration. These include glucose metabolism, gene expression, neuronal cell 

count and shape, synaptic spine density, and other cytoarchitectonic features (Fulcher & 

Fornito, 2016; Richiardi et al., 2015; Scholtens et al., 2014), which may all influence local 

vulnerability. 

 

This study has some limitations. First, the PD patients recruited as part of the PPMI study 

are younger and have less cognitive impairment than the more general population of PD 

patients (Marek et al., 2011). However, PPMI represents the largest longitudinal dataset of 

PD patients with MRI acquisition and clinical assessments. Second, the agent-based SIR 

model did not account for the cell loss that may have occurred as agents spread throughout 

the system; the atrophy occurring during the spread of agents may have modified the 

constraints of the system and therefore its outputs. For example, the substantia nigra is a 

source of propagating aSyn in our model having both high SNCA expression and 

widespread connectivity (Zheng et al., 2019); however, cell loss in this region could impact 

disease pattern in later stages of PD, something our model does not incorporate. Gene 

expression was only investigated for SNCA and GBA due to their known importance in 

aSyn synthesis and degradation; future studies should perform a more thorough evaluation 

of the different genes that may impact aSyn spread. Finally, our model does not consider 

the synergy between aSyn accumulation and autophagy-lysosomal dysfunction or 

mitochondrial failure (Hou et al., 2020; Senkevich & Gan-Or, 2020), which may also 

display regional variance. 
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In conclusion, we showed that brain atrophy progresses in PD over four years into patterns 

that could be recreated by the agent-based SIR model, a computational model that 

generates in silico the propagation of aSyn and brain atrophy using gene expression and 

connectivity. This computational model may represent a promising tool for better 

understanding the mechanisms underlying the progression of atrophy in neurodegenerative 

diseases. 
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TABLE 

 

Variables Baseline  1-year follow up 2-year follow-up 4-year 

follow-up 

PD 

 (n=318) 

HC 

(n=157) 

p PD 

(n=113) 

p PD 

(n=104) 

p PD 

(n=79) 

p 

Age  60.9 

(10.0) 

60.1  

(11.9) 

0.41a 60.7 

(9.5) 

<0.001 

a* 

62.4 

(9.4) 

<0.001 

a* 

 

64.6 

(9.8) 

<0.001 

a* 

 

Sex (% male)  201 (63%) 103 

(66%) 

0.68b 72  

(64%) 

 65  

(63%) 

 54 

(68%) 

 

Education, 

years  

15.77 

(2.94) 

16.06  

(2.94) 

0.31 a 

 

15.4  

(2.8) 

 

 

15.2  

(2.6) 

 

 

15.5 

(2.9) 

 

 

MDS- 

UPDRS-III 

18.52 

(7.82) 

1.14 

(2.19) 

<0.001 

a 

21.5 

 (10.0) 

0.001 a* 23.3  

(11.4) 

<0.001 

a* 

23.4 

(10.4) 

<0.001 

a* 

MDS- 

UPDRS-II 

5.20 

(4.06) 

0.41 

(0.97) 

<0.001 

c 

7.1  

(4.6) 

<0.001 

c 

7.3  

(4.8) 

<0.001 

c 

9.3 

(5.7) 

<0.001 c 

MDS-

UPDRS-I 

3.51 

(2.70) 

2.44 

(2.64) 

<0.001 

c 

4.8 

 (3.2) 

<0.001 

c 

5.0 

 (3.1) 

<0.001 

c 

6.4 

(4.0) 

<0.001 c 

GDS 2.27 

(2.40) 

1.13 

(2.24) 

<0.001c 2.5  

(2.7) 

0.43 c 2.4  

(2.7) 

0.93c 2.2 

(2.1) 

0.72 c 

STAI 93.52 

(7.90) 

94.31  

(7.14) 

0.29 a 92.2 

 (7.2) 

0.24a* 92.0   

(7.2) 

0.14 a* 92.5 

(7.7) 

0.31a* 

SCOPA-AUT 9.27 

(5.94) 

3.78 

(3.92) 

<0.001c 10.3 

(5.6) 

<0.001c 10.8 

 (5.4) 

<0.001c 12.3 

(6.2) 

<0.001c 
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Probable 

RBD, % 

cases 

120 

(38%) 

33 

(21%) 

<0.001b 32 

(28%) 

 38 

(37%) 

 34 

(43%) 

 

MoCA 27.4                 

(2.1) 

28.3  

(1.1) 

<0.001c 27.1 

(2.6) 

0.27 c 27.1  

(2.3) 

0.16 c 27.5  

(2.6) 

0.64 c 

SDMT 41.52 

(9.34) 

46.9 

(11.1) 

<0.001 

a 

41.7  

(10.2) 

0.67 a* 

 

41.0 

 (10.1) 

0.11 a* 40.1 

(11.3) 

0.02 a* 

LNS 10.73 

(2.72) 

10.93 

(2.64) 

0.46 a 10.8  

(2.5) 

0.08 a* 10.8 

 (2.8) 

0.37 a* 10.6 

(3.3) 

0.12 a* 

BJLO 25.68 

(4.18) 

26.36 

(3.75) 

0.06 c 25.2 

 (4.3) 

<0.01 c 25.7 

 (4.1) 

0.19 c 26.2 

(3.6) 

0.75 c 

Semantic 

fluency 

14.52 

(4.59) 

14.96 

(4.15) 

0.12 c 14.3 

 (4.0) 

0.85 c 14.7 

 (4.1) 

0.66 c 14.3 

(4.6) 

0.84c 

Phonemic 

fluency 

13.27 

(4.73) 

14.04  

(4.45) 

0.09 a 13.8 

 (4.4) 

0.02 a* 13.9  

(4.6) 

<0.01 a* 14.7 

(4.6) 

<0.001 

a* 

HVLT-R, 

total recall 

24.8 

(5.0) 

26.0 

(4.5) 

0.01 a 24.6 

 (5.4) 

0.28 a* 24.5 

 (5.7) 

0.04 a* 24.8 

(6.0) 

0.05 a* 

HVLT-R, 

delayed recall 

8.57 

(2.48) 

9.27 

(2.26) 

0.002 c 8.6 

 (2.6) 

0.91c 8.5  

(2.5) 

0.76 c 8.5 

(3.2) 

0.25 c 

HVLT-R, 

recognition 

11.24 

(1.19) 

11.51 

(0.82) 

0.006 c 11.3 

 (1.4) 

0.27 c 11.3 

 (1.7) 

0.03 c 11.3 

(0.9) 

0.25 c 

 

Table 1. Demographics and clinical characteristics of patients and controls. Data are 

shown as mean (standard deviation). The performance in PD patients at the follow-up time 

point was statistically compared to their performance at baseline.  
a unpaired t-test, a*paired t-test, bchi-square test, cMann-Whitney U test. 
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BJLO = Benton Judgment of Line Orientation; GDS = Geriatric Depression Scale; HC = 

healthy controls; HVLT-R = Hopkins Verbal Learning Test-Revised; LNS = Letter-

Number Sequencing; MDS-UPDRS = Movement Disorders Society-Unified Parkinson’s 

Disease Rating Scale; MoCA = Montreal Cognitive Assessment; PD = Parkinson’s disease; 

RBD = REM sleep behavior disorder; SCOPA-AUT = Scales for Outcomes in Parkinson’s 

Disease-Autonomic; SDMT = Symbol-Digit Modalities Test; STAI = State-Trait Anxiety 

Inventory.  
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FIGURES 

 

 

Figure 1. Regional longitudinal changes in PD over 4 years. (A) represents the 

DBM maps observed at baseline and during follow-up time points (i.e., one, two, 

and four years) in patients with PD for the 42 regions. (B) Brain maps showing the 

regions that were significantly deformed at each time point compared to baseline. 

Only the left hemisphere is shown due to limitations regarding the gene expression 

scores and the structural connectivity measures. Color bar reflects the first occurrence 

of a time effect on volume. Dark yellow, orange and red represent significant changes after 

1, 2 years and 4 years of follow-up, respectively. 
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Figure 2. The agent-based SIR Model recreates the progression of brain 

atrophy. (A) The peak fit was assessed using Spearman’s rank correlation coefficient at 

each of the 10,000 simulation timestep between simulated pattern of atrophy to the patterns 

of atrophy observed at baseline and (B) atrophy difference at each follow-up time point 

(i.e., one, two, and four years). (C) Scatterplots showing the observed and simulated 

atrophy for each region at each simulation peak correlation fit.  
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Figure 3. Brain connectivity and gene expression shape the progression of brain 

atrophy in PD. the distributions of null peak correlation fits when shuffling randomly 

either the (A) connectivity weights between regions, (B) the local expression of GBA, (C) 

the spatial embedding of regions, or (D) the local expression of SNCA. The average null 

peak fit was compared to the original peak fit obtained when using the real parameter. The 

black circle refers to the value of the peak correlation fit between the observed pattern of 

atrophy and the simulated pattern with the original non-shuffled parameter. The 

comparisons are made at baseline and for the one- and two-year time points. For all null 

models, there was a significant difference between the original fit and the shuffled fits at 

p<0.0001 using one-tailed t test. 
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