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Abstract

This work presents a methodology to recreate the observed dynamics of emerging
infectious diseases and to generate short-term forecasts for their evolution based on
superspreading events occurring on key calendar dates. The method is illustrated by the
COVID-19 pandemic dynamics in Mexico and Peru up to January 31, 2022. We also
produce scenarios obtained through the estimation of a time-dependent contact rate,
with the main assumption that the dynamic of the disease is determined by the mobility
and social activity of the population during holidays and other important calendar
dates. First, historical changes in the effective contact rate on predetermined dates are
estimated. Then, this information is used to forecast scenarios under the assumption
that the trends of the effective contact rate observed in the past will be similar on the
same but future key calendar dates. All other conditions are assumed to remain constant
in the time scale of the projections. One of the main features of the methodology is
that it avoids the necessity of fixing values of the dynamic parameters for the whole
prediction period. Results show that considering the key dates as reference information
is useful to recreate the different outbreaks, slow or fast-growing, that an epidemic can
present and, in most cases, make good short-term predictions.

Introduction 1

“Emerging” infectious diseases can be defined as infections that have newly appeared 2

in a population or have existed but are rapidly increasing in incidence or geographic 3

range [1]. More recent examples are H1N1 influenza (2009), Chikungunya (2014), Zika 4

(2015), and COVID-19 (2019 to the present), the latter being the cause, so far, of more 5

than 5.8 million deaths around the world. 6

Mathematical modeling has been widely used to study the COVID-19 epidemic. The 7

transmission dynamics has been modeled with many different methodologies, several of 8

them centered on estimating the effective reproduction number Rt with some version of 9

the well-known Kermack-McKendrick model [2–5]. During 2020 and 2021, much effort 10

was centered on projecting the COVID-19 pandemic and evaluating the efficacy of the 11

mitigation strategies adopted to contain it [6, 7]. Around the world, the implementation 12
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of these measures has varied in strength ranging from strict and mandatory governmental 13

enforcement to a voluntary personal decision. Regardless of the particular version of 14

the mitigation strategy followed, these strategies must be based on local factors that 15

combine public health status, economic impact and political conditions [8]. 16

The central phenomena of human behavior that we explore are superspreading events 17

occurring in particular calendar dates associated with religious, commercial, or civic 18

holidays specific to the country. During or after these events (depending on their length), 19

the contact rate changes. We, therefore, use these events as change points. We argue 20

that in Mexico and Peru (both middle-income countries with a very stressed economic 21

activity due to the pandemic), these change points (key calendar dates) reflect on the 22

contact rate more clearly than changes imposed by the government (non-pharmaceutical 23

interventions or NPIs) [9, 10]. Using key calendar dates has another advantage from the 24

perspective of forecasting: these dates are known in advance and therefore mobility can 25

be anticipated (short vacations, family visits, buying sprees, etc). 26

Here, we present a methodology that uses the known history of the disease reflected 27

in the contact rate as a baseline to recreate the observed disease dynamics and forecast 28

short-term epidemic scenarios. In [9], the authors have used a similar idea but, in our 29

case, to determine changes in the contact rate, we look at particular events occurring on 30

dates related to school, civic or religious periods (vacations, civic holidays, commercial 31

events) that are known in advance each year for a given country. With this historical 32

information in hand, we forecast the short-term evolution of the COVID-19 pandemic. 33

Our results are illustrated considering as examples some Mexican states (Mexico City, 34

Queretaro, Quintana Roo, and Sonora) and some departments of Peru (Arequipa, Cusco, 35

Lima, and Piura). 36

The COVID-19 epidemic impact on the regional and global economy influences 37

decisions on how and when businesses, public centers, tourism, schools and universities 38

can safely reopen [11]. For decision-makers it has been of the highest importance to 39

count with plausible scenarios for the evolution of the SARS-CoV-2 pandemic in order to 40

design effective mitigation strategies. This knowledge is even more pressing in countries 41

that lack the full infrastructure to acquire a more precise or, perhaps we should say, a 42

less uncertain idea of the behavior of the pandemic for days or, ideally, weeks into the 43

future. Our methodology is an advance in such an alternative. 44

The manuscript is organized as follows: First, we present the formulation of our 45

mathematical model and the methodology used for parameter estimation. Then, we 46

show our results for some Mexican states and departments of Peru. Finally, we present 47

our discussion. 48

Methods 49

Mathematical model 50

A compartmental model is used to describe the evolution of the COVID-19 pandemic. The 51

model considers three classes of infected individuals: Asymptomatic (I), Symptomatic 52

(Y) and Reported (T). Once reported, infected individuals are effectively isolated and 53

no longer participants in the transmission process. The model allows Susceptible (S) 54

individuals to be Vaccinated (V) with a vaccination rate ψ. It is assumed that the 55

vaccine is not perfect which implies that vaccinated people can be infected. Likewise, it 56

is assumed that vaccinated individuals become susceptible after a certain period. Vital 57

dynamics are also included since this work models the whole history of the pandemic. 58

Fig 1 shows the corresponding model diagram. 59
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Fig 1. Mathematical model diagram. There are three types of infectious
individuals: asymptomatic, symptomatic and reported. Reported cases do not play a
role in transmission. Here, λS(t) and λV (t) represent the infection force related to
susceptible and vaccinated people, respectively.

Thus, the mathematical model is given by the following equations:

S′ = ωR+ ϕV + χM − β(t)(Y + qI)
S

N
− [χ+ ψ]S,

V ′ = ψS − (1− σ)β(t)(Y + qI)
V

N
− [ϕ+ χ]V,

E′ = β(t)(Y + qI)
S

N
+ (1− σ)β(t)(Y + qI)

V

N
− [γ + χ]E,

I ′ = ργE − [δ + χ]I, (1)

Y ′ = (1− ρ)γE − [ϵη + (1− ϵ)ν + χ]Y,

T ′ = (1− ϵ)νY − [α(t)κ+ (1− α(t))µ+ χ]T,

R′ = δI + ϵηY + α(t)κT − [ω + χ]R,

D′ = (1− α(t))µT,

with N = S + V + E + I + Y +R and M = N + T . Table 1 shows a description of all 60

the model’s parameters and their values. 61

Table 1. Description and values of the model’s parameters given in System 1.
See [12,13] for sources.

Parameter Description Value Units
ψ Vaccination rate varying days−1

ν Screening rate varying days−1

µ Disease mortality rate varying days−1

ϕ Vaccine immunity waning rate 0.006 days−1

ω Natural immunity waning rate 0.006 days−1

γ Incubation rate 0.196 days−1

δ Asymptomatic recovery rate 0.143 days−1

η Symptomatic recovery rate 0.071 days−1

κ Reported recovery rate 0.1 days−1

χ Natural mortality rate 3.629×10−5 days−1

ρ Proportion of asymptomatic 0.35 %
ϵ Proportion of symptomatic recovered 0.94 %
q Asymptomatic infectiousness reduction 0.45 %
σ Vaccine efficacy varying %
α(t) Proportion of reported recovered people estimated %
β(t) Effective transmission contact rate estimated days−1

The model depicted in Fig 1 is standard, but its main feature is how the contact rate 62

β and the proportion of reported recovered people α are handled. Both parameters are 63

time-dependent and defined through the interpolation of k change points. Interpolation 64

is done using Hermite polynomials instead of splines to guarantee that both rates remain 65

positive at any point in time. It is possible to estimate these two functions by using 66

two time series: the number of reported cases and deaths. The k points in time when 67

changes in β and α occur are pre-defined dates associated with the beginning of the 68

mitigation measures and also civic or religious holidays. 69

Vaccination parameters. Many countries worldwide are using more than one vaccine. 70

However, our model does not incorporate a detailed vaccination dynamic with different 71

April 27, 2022 3/12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274465doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274465
http://creativecommons.org/licenses/by/4.0/


vaccines, doses, and efficacies since there is limited information about this process in 72

Mexico. 73

The lack of information on the vaccination process affects the knowledge of important 74

parameter values. Thus, as a first approach, it is assumed that susceptible individuals 75

are vaccinated at a rate ψ to estimate the vaccination rate. Since the probability of 76

having been vaccinated at time t is 1−exp(−ψt) then, if a proportion p of the susceptible 77

population is already vaccinated at time TV , then the vaccination rate that achieves this 78

coverage is given by 79

ψ = − log(1− p)

TV
. (2)

Parameters p, TV and therefore, ψ, will vary between regions depending on the start 80

of vaccination and vaccine stock. More details about the above will be provided in the 81

Results Section. 82

Parameter estimation 83

Data. We use the available COVID-19 data of each Mexican state [14]. Data consists of 84

daily records of reported cases and deaths from the start of the pandemic (late February 85

to early March, depending on the specific location) until February 7, 2022. 86

Statistical inference. A Bayesian approach is used to estimate key parameters of 87

System 1: the time dependent contact rate β(t), the proportion of recovered reported 88

individuals α(t) and the initial number of symptomatic and asymptomatic infected 89

people, I0 and Y0, respectively. 90

To simplify the estimation process of functions β(t) and α(t), it is assumed that each 91

of them is determined by their values at preset times τ1, τ2, . . . , τk, which are associated 92

to the key dates of the study regions. Let ai be the proportion of reported recovered 93

individuals at time τi, and bi the contact rate at time τi, for i = 1, . . . , k. Values of 94

β(t) and α(t) for any other point in time are obtained by interpolation using Hermite 95

polynomials instead of splines to guarantee that both rates remain positive. 96

Let θ = (E0, I0, Y0, a1, a2, . . . , ak, b1, b2, . . . , bk) the vector of parameters that will be 97

estimated. All the other parameters needed to solve System 1 are fixed and their values 98

can be found in Table 1. It is assumed that initial conditions E0, I0 and Y0 can only 99

take values in the interval (0,10). Parameters bi are limited to the interval (0,5), while 100

parameters a1 must take values in (0,1). 101

Let Wj and Xj be the random variables that count the number of daily COVID-19
reported infected individuals and deaths at time tj , respectively, for j = 1, 2, ...n. Here,
tj represents the number of days since the start of the pandemic in each region. It is
assumed that the probability distribution of Wj , conditional on the vector of parameters
θ, is a Poisson distribution such that E[Wj ] = C(tj |θ)−C(tj−1|θ), with C(t|θ) being the
cumulative number of reported cases according to System 1. Similarly, the probability
distribution of Xj , conditional on the vector of parameters θ, is a Poisson distribution
such that E[Xj ] = D(tj |θ) −D(tj−1|θ), with D(t|θ) being the cumulative number of
deaths according to the compartimental model. Assuming that variablesW1,W2, . . . ,Wn
and X1, X2, . . . , Xn are conditionally independent, then the likelihood function is given
by

π(w1, . . . , wn, x1, . . . , xn|θ) =
n∏

j=1

[C(tj |θ)− C(tj−1|θ)]wj exp{−[C(tj |θ)− C(tj−1|θ)]}
wj !

×
n∏

j=1

[D(tj |θ)−D(tj−1|θ)]xj exp{−[D(tj |θ)−D(tj−1|θ)]}
xj !

(3)

The joint prior distribution for vector θ is a product of independent Uniform distributions.
For all the initial conditions I0 and Y0, the prior distribution is Uniform(0,10); for
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parameters a1, . . . , ak, the prior is Uniform(0,1); and finally, for b1, . . . , bk the prior is
Uniform(0,5). Then

π(θ) = π(I0)π(Y0)
k∏

i=1

π(bi)π(ai) ∝ 1.

The posterior distribution of the parameters of interest is

π(θ|w1, . . . , wn, x1, . . . , xn) ∝ π(w1, . . . , wn, x1, . . . , xn|θ)π(θ),

and it does not have an analytical form since the likelihood function depends on the 102

numerical solution of the ODE System 1. We analyze the posterior distribution using an 103

MCMC algorithm called t-walk [15] since it is implemented in the programming language 104

Python and works well with highly correlated parameters, which typically appear in 105

this type of estimation problems. For each state, 4 chains of 1,000,000 iterations are 106

run, from which 200,000 are discarded as burn in. At the end, only 5000 iterations are 107

retained to create the estimations presented in this work. 108

It is important to mention that confirmed COVID-19 cases can be grouped in different 109

forms in order to represent the epidemic curve. In the case of Mexico, the number of 110

cases can be grouped by date of symptoms onset, by the date when individuals seek 111

medical attention (or tests), and by date of test results. In the case of Mexico, reported 112

cases X1, . . . , Xn are those who seek medical attention at time t. This is why parameter 113

ν is referred as the screening rate, the time from symptoms onset to testing. In the case 114

of Peru, reported cases X1, . . . , Xn are those that got positive test results at time t. In 115

that case, ν−1 represents the time from symptoms onset to test results. Notice that 116

there is no need to modify the compartmental model to handle the difference between 117

these two types of data, it is enough to change parameter ν. 118

Results 119

COVID-19 dynamics for selected Mexican states 120

As mention above, we use the available COVID-19 data of each Mexican state [14]. The 121

dates when parameters β and α are assumed to change are shown in Table 2). These 122

dates are the same for all states except for the start of the pandemic. 123

Table 2. Pre-defined dates used to estimate the contact rate and the
proportion of reported recovered people for Mexican States.

Description Dates Description Dates
First case Varying
NPIs start 2020-03-23 Valentines day 2021-02-14
Childrens day 2020-04-30 Easter 2021-04-04
Mothers day 2020-05-10 Childrens day 2021-04-30
Fathers day 2020-06-21 Mothers day 2021-05-10
Independence day 2020-09-16 Fathers day 2021-06-20
Day of the dead 2020-11-02 Independence day 2021-09-16
Buen Fin ends 2020-11-21 Day of the dead 2021-11-02
Day of the virgin 2020-12-12 Buen Fin ends 2021-11-16
Christmas 2020-12-24 Day of the virgin 2021-12-12
New Year 2020-12-31 Christmas 2021-12-24
Wise men day 2021-01-06 New Year 2021-12-31
Break 2021-03-14 Wise men day 2022-01-06
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To calculate the vaccination rate in Eq 2, let, for each state, TV be the number of 124

days from the start of vaccination up to February 7, 2022. The proportion of vaccinated 125

people p during that period is approximated from official communications of the Mexican 126

government [16]. On the other hand, we consider the total number of vaccines applied 127

until February 7, 2022 [16], and the reported efficacy of the vaccines used in Mexico [17] 128

to calculate the weighted vaccine efficacy (σ). 129

Fig 2 shows the COVID-19 model dynamics of reported cases in comparison with the 130

observed data from the beginning of the pandemic to January 31, 2022. To exemplify 131

the results, we chose states located at the north, center, and south of the country: 132

Sonora, Mexico City, Queretaro, and Quintana Roo. Note that each epidemic curve has 133

a different behaviour. Nevertheless, the proposed scheme based on key dates provides a 134

good fit for the data. 135

Fig 2. New reported COVID-19 cases in four Mexican states. (A) Mexico City,
(B) Queretaro, (C) Sonora, and (D) Quintana Roo. Blue bars show reported cases data.
Red lines show the median posterior estimates. The gray shadow illustrates 95%
pointwise probability regions.

Fig 3 shows the daily mortality given by the model in comparison with the observed 136

deaths until January 31, 2022 for the same Mexican sates. The fit is also good even 137

when the observed data shows state specific patterns. Furthermore, observe that the 138

dynamics of reported cases and deaths is typical to each state. 139

Fig 3. New reported COVID-19 deaths in four Mexican States. (A) Mexico
City, (B) Queretaro, (C) Sonora, and (D) Quintana Roo. Black bars show reported
deaths. Red lines show median posterior estimates. The gray shadow illustrates 95%
pointwise probability regions.

COVID-19 dynamics for Peru 140

We show here that the proposed methodology can be applied to other countries using 141

COVID-19 data from Peru until February 7, 2022, as example [18,19]. The key dates 142

used to estimate parameters β and α for Peru are shown in Table 3. Data used to 143

calculate values for ψ and σ can be found in [20]. 144

Table 3. Pre-defined dates used to estimate the contact rate and the
proportion of reported recovered people for department of Peru.

Description Dates Description Dates
First case Varying
NPIs start 2020-03-16 Valentines day 2021-02-14
Easter 2020-04-12 Easter 2021-04-04
Labor day 2020-05-01 Labor day 2021-05-01
Mothers day 2020-05-10 Mothers day 2021-05-10
Fathers day 2020-06-21 Fathers day 2021-06-20
St Peter and St Paul day 2020-06-29 St Peter and St Paul day 2021-06-29
Independence day 2020-07-28 Independence day 2021-07-28
Santa Rosa de Lima day 2020-08-30 Santa Rosa de Lima day 2021-08-30
Battle of Angamos 2020-10-08 Battle of Angamos 2021-10-08
Saints’ day 2020-11-01 Saints’ day 2021-11-01
Immaculate Conception day 2020-12-08 Immaculate Conception day 2021-12-08
Christmas 2020-12-24 Christmas 2021-12-24
New Year 2021-01-01 New Year 2022-01-01
Wise men day 2021-01-06 Wise men day 2022-01-06
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Fig 4 and Fig 5 show observed and fitted COVID-19 confirmed cases and mortality, 145

respectively, in four departments of Peru: Arequipa, Cusco, Lima and Piura. We can 146

see that despite the differences between both countries, the fit continues to be good for 147

confirmed cases and deaths. 148

Fig 4. New confirmed COVID-19 cases in four departments of Peru. (A)
Arequipa, (B) Cusco, (C) Lima, and (D) Piura. Blue bars shows confirmed cases. Red
lines show the median posterior estimates. The gray shadow illustrates 95% pointwise
probability regions.

Fig 5. New reported COVID-19 deaths in some departments of Peru. (A)
Arequipa, (B) Cusco, (C) Lima, and (D) Piura. Black bars shows reported cases data.
Red lines show the median posterior estimates. The gray shadow illustrates 95%
pointwise probability regions.

Projected scenarios 149

Having β and α as time-dependent functions generates a good fit of the observed data. 150

However, an important question is: how to predict the disease dynamics in the short, 151

medium, and long term? In the case of models with dynamic parameters, it is necessary 152

to set their values for the whole prediction period. The easiest way to address this is 153

by continuing the last trend estimated from the observed data, which is what most 154

models do. This can provide good predictions as long as there are no important events 155

that impact transmission dynamics such as superspreading events, new virus variants, 156

vaccination changes, climate changes, etc. This work proposes an alternative procedure 157

to create predictive scenarios by using the history of the epidemic. The contact rate 158

for the prediction period will change as it did during the same period of last year. For 159

example, if the contact rate increased a 10% from December 24 to December 31, 2021, 160

then it is assumed that it also will increase 10% from December 24 to December 31 161

during 2022. Finally, System 1 is solved using the new values of β to generate the the 162

predicted state variables. 163

Fig 6 shows one month projections for Quintana Roo state at six different periods: 164

June, July, August, September, October and November of 2021. Red bands show forecasts 165

where darker tones denote more likely scenarios. Although there is a considerable amount 166

of variability in some predictions, the observed trend is consistent with the forecast. 167

Results for other states are shown in the Appendix A. 168

Fig 6. Projections of the COVID-19 evolution for Quintana Roo state. Each
figure shows forecasts for different months: (A) June, (B) July, (C) August, (D)
September, (E) October, (F) November. Blue bars show the reported data. Green dots
represent observed data in the projection period. Red lines show the predictive
posterior distribution for the dynamics of the reported cases. Darker tones indicate
more likely scenarios.

Discussion 169

Emerging infectious diseases are an important concern for public health. COVID-19 170

disease is the more recent example that has caused more than 5.8 million deaths and 171

419 million confirmed cases around the world as of late February, 2022 [21]. This disease 172

has once again shown the role of mobility in the spread of acute respiratory diseases [13]. 173
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This is consistent with research from [22] where superspreading events are found to be 174

phenomena that has shown to be determinant for many infectious diseases [22]. 175

The epidemic dynamics observed in all of Mexico have been driven by events associated 176

with heightened mobility and increased social activity [23–31] during holidays and other 177

important calendar key dates. In previous works, earlier in the pandemic, it has been 178

reported that key calendar days are a very good support to changes in the contact rates. 179

As an example, in Mexico City the first case occurred by the end of February 2020, and 180

the first set of mitigation measures was applied on March 23, 2020. Later that year, 181

there were superspreading events in Mexico City during Easter celebrations (April 6-12) 182

and early May (April 30 to May 10) that shifted the day of maximum incidence to the 183

end of May, and pushed the epidemic into a quasi-stationary state characterized by 184

values of Rt ≈ 1 [12,13]. This behavior, observed around the world, has been explored 185

in [32–34]. In particular, [34] claim that this quasi-linear growth and the maintenance of 186

the effective reproduction number around Rt ≈ 1 for sustained periods of time, involves 187

critical changes in the structure of the underlying contact network of individuals. In the 188

case of Mexico City, we have argued that these changes relate to superspreading events 189

on key calendar dates (Easter holidays and children’s, Holly Cross’ and mother’s days). 190

In this study, we have extended the ideas presented in [12, 13]. We have shown 191

that key calendar days are a good reference to identify times where contact rates have 192

changed. This has helped us to recreate different outbreaks of the COVID-19 disease 193

dynamics in Mexico and Peru and also to give short-term projections. 194

Although this methodology has proven useful for fitting epidemic data, forecasting 195

is still a challenge when extreme events affect the dynamic of the disease such as the 196

appearance of new variants. Nonetheless, this is a problem that all modeling approaches 197

have to face. The ideas presented in this work are intended to provide other perspectives 198

to create predictive scenarios. The forecasting method proposed here are naive in the 199

sense that it relies on the assumption that the behaviour observed in the past will 200

be repeated in the future. Although this is a strong hypothesis, it still provides good 201

short-term predictions in many situations as was shown. Moreover, we have shown 202

that the method can capture important characteristics of the epidemic curve such as 203

seasonality and the impact of repeated events such as holidays. Also, this procedure can 204

potentially increase its relevance as the emerging disease moves towards and endemic 205

state. Once two or more years of data are collected, projections could be done by a 206

weighted average of the behaviour of the disease along several years. This is still a work 207

in progress. 208

Supporting information 209

Appendix A Projected scenarios for other regions. Figs 7 to 9 show one month 210

projections for Mexico City, Queretaro state and Sonora state, respectively. Here, we 211

consider six different periods: June, July, August, September, October and November of 212

2021. Red bands show forecasts where darker tones denote more likely scenarios. 213

Fig 7. Projections of the COVID-19 evolution for Mexico City. Each figure
shows the projections for different months. (A) June, (B) July, (C) August, (D)
September, (E) October, (F) November. Blue bars show the reported data. Green dots
represent data in the projection period. Red lines show the median posterior estimates
for the dynamics of the reported cases. Red shadow, with different intensities, shows the
projected scenarios.
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Fig 8. Projections of the COVID-19 evolution for Queretaro state. Each
figure shows the projections for different months. (A) June, (B) July, (C) August, (D)
September, (E) October, (F) November. Blue bars show the reported data. Green dots
represent data in the projection period. Red lines show the median posterior estimates
for the dynamics of the reported cases. Red shadow, with different intensities, shows the
projected scenarios.

Fig 9. Projections of the COVID-19 evolution for Sonora state. Each figure
shows the projections for different months. (A) June, (B) July, (C) August, (D)
September, (E) October, (F) November. Blue bars show the reported data. Green dots
represent data in the projection period. Red lines show the median posterior estimates
for the dynamics of the reported cases. Red shadow, with different intensities, shows the
projected scenarios.
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