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Abstract 

Background: Rupture of an intracranial aneurysm (IA) causes aneurysmal subarachnoid 

hemorrhage (ASAH). There is no accurate prediction model for IA or ASAH in the general 

population. Recent discoveries in genetic risk for IA may allow improved risk prediction.  

Methods: We constructed a genetic risk score including genetic association data for IA and 

17 traits related to IA (a metaGRS) to predict ASAH incidence and IA presence. The metaGRS 

was trained in 1,161 IA cases and 407,392 controls in the UK Biobank and validated in 

combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68,568 

controls from the Nordic HUNT study. We further assessed association between genetic risk 

load and patient characteristics in a cohort of 5,560 IA patients. 

Results: The hazard ratio for ASAH incidence was 1.34 (95% confidence interval = 1.20-1.51) 

per SD increase of metaGRS. Concordance index increased from 0.63 [0.59-0.67] to 0.65 

[0.62-0.69] upon including the metaGRS on top of clinical risk factors. The odds ratio for 

prediction of IA presence was 1.09 [95% confidence interval: 1.01-1.18], but did not improve 

area under the curve. The metaGRS was statistically significantly associated with age at 

ASAH (β=-4.82×10
-3

 per year [-6.49×10
-3

 to -3.14×10
-3

], P=1.82×10
-8

), and location at the 

internal carotid artery (OR=0.92 [0.86 to 0.98], P=0.0041). 
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Conclusions: The metaGRS was predictive of ASAH incidence with modest added value over 

clinical risk factors. Genetic risk plays a role in clinical heterogeneity of IA. Additional studies 

are needed to identify the biological mechanisms underlying this heterogeneity. 

Keywords: 

Intracranial aneurysm, aneurysmal subarachnoid hemorrhage, genetics, risk prediction 
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KEY MESSAGES 

What is already known on this topic 

Recent advanced in the understanding of genetic risk for IA opened and opportunity for risk 

prediction by combining genetic and conventional risk factors. 

What this study adds 

Here, we developed a genetic risk score based on genetic association information for IA and 

17 related traits. This risk score improved prediction compared to a model including only 

conventional risk factors. Further, genetic risk was associated with age at ASAH and IA 

location.  

How this study might affect research, practice, or policy 

This study emphasizes the importance of combining conventional and genetic risk factors in 

prediction of IA. It provides a metric to develop an accurate risk assessment method 

including conventional and genetic risk factors.  
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Introduction 

Rupture of an intracranial aneurysm (IA) leads to aneurysmal subarachnoid hemorrhage 

(ASAH), a severe type of stroke causing death in one third of cases, and permanent disability 

in another third.
1
 It is one of few cardiovascular diseases in which women are at higher risk 

than men and is caused by a complex interplay of genetic factors and environmental risk 

factors,
2, 3

 including smoking and hypertension.
4, 5

 Aneurysmal rupture can be prevented by 

endovascular treatment or surgery, with relatively low risk of complications compared to 

the high case fatality and morbidity of ASAH.
6
 Therefore, prediction of ASAH has high 

potential in reducing disease burden.  

Genetic risk scores (GRSs) showed potential in risk prediction of common diseases.
7
 New 

techniques improved prediction potential of GRSs by: 1. providing methods to include a 

large number of genetic variants
8
 and 2. combining GRSs for multiple traits (a so-called 

metaGRS), leading to improved prediction of, amongst others, coronary artery disease
9
 and 

ischemic stroke.
10

 These advances, combined with a substantial portion of heritability of IA 

being explained in the latest genome-wide association study (GWAS) of IA,
2
 provide an 

opportunity for genetic risk prediction of IA. 

A broad spectrum of clinical heterogeneity of IAs exists, including number, size and different 

locations of IAs.
11, 12

 A GRS constructed with only seven single nucleotide polymorphisms 

(SNPs) was higher in patients with IAs at the middle cerebral artery (MCA) compared to 

those with IAs at other locations, in a cohort of 1,691 IA patients.
13

 In a cohort of 4,890 

patients of whom 109 had an unruptured IA (UIA), a 10-SNP GRS was associated with 
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aneurysmal diameter and volume.
14

 These studies show a potential link between genetic 

predisposition and patient characteristics, but additional studies using larger populations 

and assessing across the genome are warranted.   

We created a metaGRS for IA that incorporates GWAS summary statistics for IA together 

with summary statistics for other stroke subtypes and risk factors for IAs, and assessed its 

predictive performance for ASAH incidence and IA presence. Next, we assessed how the 

metaGRS associates with clinical characteristics of IA patients.  
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Methods 

Figure 1 shows an overview of the study methods. In short, trait-level GRSs were 

constructed using summary statistics of the largest publicly available GWASs of IA and 

related traits (Supplementary Table 1). Optimal GRS model selection, and combining these 

GRSs into a metaGRS, was performed using the UK Biobank, a prospective cohort including 

1,161 IA patients (959 with ASAH and 202 with UIA) and 407,392 controls (Figure 1A, Table 

1). Predictive performance of the metaGRS was assessed in the HUNT prospective cohort 

study consisting of 828 IA patients (318 with ASAH and 510 with UIA) and 68,568 controls 

(Table 1). Associations of the metaGRS with patient characteristics were assessed in the 

well-phenotyped cohort of the international stroke genetics consortium (ISGC, 

www.strokegenetics.org) IA working group (ISGC-IA), including 5,560 IA patients of whom 

3,918 with ASAH and 1,642 with UIA (Supplementary Table 2; Supplementary Data for 

participant selection and quality control of all cohorts). 
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Table 1. Baseline characteristics of the study populations 

Characteristic UK Biobank HUNT study ISGC-IA phenotype 

cohort 

Age in years, mean (SD) 65.3 (8.0) 53.7 (17.5) 53.3 (13.0)** 

Women, N (%) 220,835 (54.1%) 36,887 (53.0%) 3,786 (68.1%) 

IA cases, N (%) 1,161 (0.28%) 828 (1.2%) 5,560 (100%) 

ASAH cases, N (%) 959 (0.23%) 318 (0.46%) 3,916 (70.4%) 

Controls, N 407,392 68,568 not applicable 

SBP, mean (SD) 138.2 (18.1) 134.4 (21.1) no data 

Self-reported 

hypertension, N (%)*** 

no data no data 2,150 (39.4%) 

Ever smokers, N (%) 123,604 (30.3%) 35,204 (50.6%) 3,481 (69.4%) 

Smoking packs/day, 

mean (SD)* 

0.56 (0.42) 0.39 (0.30) no data 

UK Biobank characteristics are estimated based on the most recent assessment date. 

*Packs/day are cumulative pack-years divided by age minus 16 based on ever smokers only. 

**In the ISCG-IA cohort only age at ASAH was recorded, and these numbers are shown. 

***In the ISGC-IA phenotype cohort, only self-reported hypertension was recorded. 

 

Constructing the metaGRS 

Methods of the metaGRS construction are shown in Figure 1A. Summary statistics of large 

GWASs of IA and 24 traits (potentially) associated with IA were obtained (Supplementary 

Table 1).
2
 These 24 traits included: 1. established risk factors for IA and/or ASAH, being 

diastolic and systolic blood pressure (SBP), smoking (cigarettes per day), and alcohol 

consumption (drinks per week);
4, 5, 15-19

 2. suggestive risk factors including those related to 

female hormones (age at menarche, age at menopause and number of births),
20-23

 and 

cardiovascular disease risk (diabetes type II, body-mass index, waist-to-hip ratio, low- and 

high density lipoprotein levels, total cholesterol, and triglyceride levels),
15, 24-29

 migraine,
30-32

 

epilepsy (focal and generalized),
2, 33

 and years of education
34, 35

 and 3. diseases genetically 
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correlated with IA, being intracerebral hemorrhage, ischemic stroke, abdominal aortic 

aneurysms, and fibromuscular dysplasia (multifocal and any type).
36-39

 Only data of 

European-ancestry individuals were used while UK Biobank participants were excluded. 

Data pre-processing steps are described in the Supplementary Data. 

For traits genetically correlated with IA (P<0.05) trait-level GRSs were created 

(Supplementary Data for more details) using three methods: LD-based clumping with 9 

different LD thresholds, summary statistics-based best linear unbiased predictor
40

 and 

summary statistics-based BayesR
8
 (Figure 1A, Supplementary Data). To assess whether the 

trait-level GRSs captured risk of the respective trait, we assessed the association and 

predictive performance of optimal trait-level GRS with those traits in the UK Biobank. 

Samples with a missing genotype were ignored for association of the specific variant, while 

samples with missing phenotype were excluded (Supplementary Data for detailed 

methods).  

For each trait, the trait-level GRS with highest Nagelkerke pseudo-R
2
 in predicting IA status 

in the UK Biobank cohort was selected (Supplementary Table 3) and subsequently jointly 

analyzed in an elastic-net regression to obtain per-trait weights (Figure 1A). Trait-level SNP 

weights were scaled according to the per-trait weights and population standard deviation, 

and then summed over traits to create metaGRS SNP weights (see Supplementary Data for 

extensive methods). These analyses were performed for the whole cohort and for men and 

women separately. A separate GRS was constructed only considering the IA GRS, to assess 

potential added value of a metaGRS over an IA-only GRS. 
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Prediction of ASAH and IA by the metaGRS  

Prediction by the metaGRS was evaluated in the HUNT study in two models: 1. for ASAH 

incidence using cox regression with age at ASAH as outcome and age at last assessment for 

controls as censoring time, and 2. for IA presence (including both UIA and ASAH) using a 

logistic regression with IA case-control status as outcome. For logistic regression, age, SBP, 

and average smoking packs per day since age 16 (SBP and smoking as three-knot polynomial 

spline), were included as covariates. For Cox regression, age was left out as covariate 

(further details described in the Supplementary Data). The added value of specific predictors 

was assessed using various models: 1. a reference model (sex and age), clinical model (only 

sex, age, SBP, and smoking), 2. a reference+metaGRS model, 3. a full model (clinical model + 

metaGRS), and 4. models leaving out a single predictor from the full model. Predictive value 

was determined in the HUNT study using a metaGRS created with GWAS summary statistics 

for IA leaving out samples from the HUNT study (Figure 1B).  

Association between metaGRS and patient characteristics 

The ISGC-IA phenotype cohort of 5,560 IA patients was used to determine the association of 

the metaGRS with the following patient characteristics: sex, smoking status (ever or never), 

self-reported hypertension, age at ASAH, and family history of IA (≥1 first degree relative 

with ASAH and/or UIA), IA location, number of IAs (single vs multiple), rupture status (UIA vs 

ASAH), and aneurysmal size at rupture. Locations of IA were grouped: 1) internal carotid 

artery (ICA) including the ICA, ophthalmic artery, and cavernous artery, 2) posterior 

communicating artery (PCOM), 3) anterior cerebral arteries (ACA) including the A1 anterior 
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segment, anterior communicating artery, and A2 segment, 4) MCA, and 5) posterior 

circulation (PC), including the vertebrobasilar system. IA at other locations were excluded 

from these analyses. 

Since most cases of the ISGC-IA phenotype cohort were included in the IA GWAS, we 

created stratum-specific metaGRSs leaving out samples from the ISGC-IA phenotype cohort 

one GWAS stratum at a time from the IA GWAS summary statistics, resulting in nine 

metaGRS versions (Figure 1B, Supplementary Data). To control for differences in metaGRS 

versions between strata, we used the different cohorts of the ISGC-IA phenotype cohort 

(Supplementary Table 4) as covariate in all subsequent analyses. 

We calculated associations between metaGRS and patient characteristics, correcting for sex 

and cohort using a generalized linear model. We tested whether statistically significantly 

associated phenotypes were independently associated from one another using a 

multivariate model. For each phenotype, samples with missing values were excluded for 

analysis of that specific phenotype. In analyses studying the association with IA location, we 

included only patients with one IA. Statistical analyses were done in R 4.1.2. Statistical 

significance was determined by Bonferroni correction for the number of phenotypes in the 

primary analyses: rupture status, sex, family history, IA multiplicity, five locations, age at 

ASAH, and size at rupture (P<0.05/11). More details on the statistics are described in the 

Supplementary Data.  
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Results 

Constructing the metaGRS 

Seventeen out of 24 traits showed genetic correlation with IA (P<0.05, Figure 1, 

Supplementary Table 5). Characteristics of the UK Biobank training cohort are shown in 

Table 1. We checked for the trait-level GRSs of which a representative phenotype was 

available in the UK Biobank, whether it was associates with that trait and an improvement 

of area under the curve (AUC) or R
2
 compared to a reference model (for example, the trait-

level GRS for SBP being associated with SBP in the UK biobank). This was the case for all 

phenotypes except intracerebral hemorrhage (Supplementary Table 6). Traits with an effect 

in the elastic-net regression were included in the metaGRS. Elastic-net regression weights 

for each trait-level GRS are shown in Supplementary Table 7. In total, 7,078,955 SNPs were 

included in the metaGRS. In separate models trained in only men or women in the UK 

Biobank, 6,618,190 and 6,671,269 SNPs remained, respectively.  

Prediction of ASAH by the metaGRS 

Characteristics of the HUNT study validation cohort are shown in Table 1. The metaGRS 

ranged from -0.83 to +0.50, with mean -0.22 and standard deviation 0.14. In the HUNT 

study, the metaGRS showed improved prediction of ASAH incidence compared to a 

reference model including only sex (hazard ratio [HR] = 1.34 [95% confidence interval, CI: 

1.20 – 1.51], Supplementary Table 8). The C-index increased from 0.53 [0.49-0.56] to 0.58 

[0.55-0.62] upon including the metaGRS to the reference model (Supplementary Table 9). 
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With a higher HR, the metaGRS seemed to outperform a GRS constructed using only 

summary statistics of IA (HR=1.25 [1.12-1.41], C-index=0.57 [0.53-0.61). Maximum 

prediction was reached upon including the metaGRS on top of clinical risk factors, where the 

C-index increased from 0.63 [0.59–0.67] to 0.65 [0.62–0.69] (Figure 2). Given the HR per 

standard deviation, HR for a person at the highest 1% of metaGRS compared to median 

metaGRS is 1.99 [1.52-2.61], while the highest 1% versus lowest 1% had a HR of 3.96 [2.31-

6.81]. 

In the model trained in women in the UK Biobank and validated in women in the HUNT 

study, the metaGRS alone had a larger effect compared to the model of both women and 

men and the model of men only (women: HR per SD of metaGRS=1.36 [1.18-1.60], men: 

1.12 [0.93-1.34], Supplementary Figure 1, Supplementary Table 8). Similarly, clinical risk 

factors combined provided better prediction in women, and worse in men (women: C-index 

= 0.71 [0.67-0.75], men: 0.57 [0.52-0.62], Supplementary Table 9). Furthermore, metaGRS 

outperformed IA-only GRS in women, similar to in the whole cohort (IA-only GRS in women: 

HR=1.30 [1.11-1.51]).  

Prediction of IA by the metaGRS 

In prediction of IA presence (either UIA or ASAH) in the HUNT study, the metaGRS provided 

marginal added value on top of clinical risk factors (odds ratio [OR] = 1.09 [95% CI: 1.01-

1.18], Supplementary Table 10). The metaGRS did not improve prediction above a model 

including clinical risk factors (AUC clinical model = 0.76 [0.75–0.78], AUC clinical + metaGRS 

= 0.76 [0.75–0.78], Supplementary Figure 2, Supplementary Table 11). Only the predictor 
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age showed independent added value (ΔAUC excluding age versus full model = -0.067 [-

0.092 to -0.043]).  

Association between metaGRS and patient characteristics 

In the ISGC-IA phenotype cohort, patients with multiple IAs had a higher metaGRS than 

patients with a single IA, with nominal significance (OR=1.05 [1.01–1.09], P=0.010, Table 2, 

Figure 3A). Younger age at ASAH was associated with a higher metaGRS (β=-4.82×10
-3

 per 

year [-6.49×10
-3

 to -3.14×10
-3

], P=1.82×10
-8

, Figure 3B ). Accordingly, the effect of one 

standard deviation increase of metaGRS on age at ASAH was -1.70 [-2.30 to -1.11] years. 

This equates to patients with a top 5% metaGRS suffering ASAH on average 2.70 [0.65–4.74] 

years earlier compared to patient with a mean metaGRS, while this is 3.83 [0.95–6.70] years 

earlier in patients with a top versus bottom 1% metaGRS. Of all aneurysmal locations, only 

patients with an IA at the ICA had lower genetic risk (OR=0.92 [0.86 to 0.98], P=0.0041, 

Figure 3C, Supplementary Figure 3-7). This effect reduced and was not statistically 

significant anymore when considering ruptured IAs only (OR=0.94 [0.86–1.03], P=0.16, and 

Supplementary Figure 8-12). No effect was observed for sex, positive family history, rupture 

status of an IA, or aneurysmal size at rupture (Table 2, Supplementary Figure 13-16). A 

higher metaGRS was associated with hypertension (OR=1.10 [95% CI=1.06–1.14], 

P=3.82×10
-7

) and ever smokers (OR=1.14 [1.10–1.18], P=9.30×10
-10

, Supplementary Table 

12, Supplementary Figure 17-18), which is expected due to including summary statistics for 

these traits in the metaGRS. 
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Table 2. Associations between metaGRS and patient characteristics in the ISGC-IA 

phenotype cohort. 
Subset Phenotype Comparison P Value Cases / 

controls 

OR/Beta* 95% CI 

All cases (N=5,560) 

Ruptured  Yes / No 0.77 3918 / 1642 1.01 [0.96-1.05] 

Sex Men / Women 0.74 1774 / 3786 1.01 [0.97-1.04] 

Positive Family 

History  

Yes / No 0.80 1258 / 3666 1.01 [0.95-1.06] 

Multiple 

Aneurysms 

Yes / No 0.010 1544 / 3955 1.05 [1.01-1.09] 

Single aneurysm all 

cases (N=3,820) 

ICA ICA / other 0.0041 578 / 3242 0.92 [0.86-0.98] 

PCOM PCOM / other 0.94 517 / 3303 1.00 [0.94-1.06] 

ACA ACA / other 0.084 1377 / 2443 1.04 [1.00-1.08] 

MCA MCA / other 0.78 918 / 2902 1.01 [0.96-1.06] 

PC Posterior / anterior 0.75 430 / 3390 1.01 [0.94-1.08] 

Single aneurysm 

ASAH only 

(N=2,751) 

ICA ICA / other 0.16 257 / 2494 0.94 [0.85-1.03] 

PCOM PCOM / other 0.93 445 / 2306 1.00 [0.93-1.07] 

ACA ACA / other 0.89 1131 / 1620 1.00 [0.95-1.05] 

MCA MCA / other 0.53 597 / 2154 1.02 [0.96-1.08] 

PC Posterior / anterior 0.72 321 / 2430 1.01 [0.94-1.09] 

ASAH only 

(N=3,918) 

Age at Rupture Years per SD 1.82×10
-8

 N=3,893 -4.82×10
-3

 [-6.49×10
-3

 to 

-3.14×10
-3

] 

Age at Rupture 

(outcome)** 

Years per SD 1.82×10
-8

 N=3,893 -1.70 [-2.30 to -

1.11] 

Aneurysm Size at 

Rupture 

Millimeter per SD 0.35 N=2859 2.61×10
-3

 [-2.87×10
-3

 to 

8.10×10
-3

] 

*OR/Beta: odds ratio for all phenotypes, or beta for age at rupture and aneurysm size and 

rupture. ISGC-IA: international stroke genetics consortium intracranial aneurysm working 

group. **Age as rupture was also used as outcome instead of dependent variable to obtain 

an interpretable effect size of the association between metaGRS and age at rupture. 

Cases/controls: number of persons with / without for the respective phenotype, or total 

sample size in the case of a quantitative phenotype. CI: confidence interval. ASAH: 

aneurysmal subarachnoid hemorrhage. ICA: internal carotid artery. PCOM: posterior 

communicating artery. ACA: anterior cerebral artery. MCA: middle cerebral artery. PC: 

posterior circulation. per SD: effect size per standard deviation of the independent variable. 

 

In the multivariate model, the association of multiple IAs with metaGRS was not 

independent of smoking and hypertension (OR=1.03 [0.99–1.08], P=0.16). Upon including 

smoking and hypertension, the effect of location at the ICA slightly reduced and became 

nominally significant (OR=0.93 [0.87–0.99], P=0.021), while the association between age at 
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ASAH and metaGRS remained essentially the same (β=-5.2×10
-3

 per year [-7.03×10
-3

 to -

3.30×10
-3

], P=6.15×10
-8

) (Supplementary Table 13-15). Since the mean metaGRS was higher 

in persons from Finland (Supplementary Figure 19) we performed the associations analyses 

on multiple IAs, location at the ICA, or age at ASAH excluding these persons but the effect 

sizes remained essentially the same (Supplementary Table 16).  
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Discussion 

We created a metaGRS for IA based on GWAS summary statistics for IA and 17 IA-related 

traits. The metaGRS displayed added value in predicting ASAH incidence in combination 

with clinical risk factors, and added value compared to a GRS trained using only IA 

association data. Moreover, we demonstrated that prediction by the metaGRS for ASAH, 

which disease is seen more often in women than in men,
4, 5

 performs better in women than 

in men. Last we showed that the metaGRS was higher in patients who suffered ASAH at a 

younger age and lower in patients with an IA located at the ICA which associations were 

independent of hypertension and smoking.  

In a previous study comparing genetic risk between 109 persons with UIA and 4,781 

controls using a 10-SNP GRS no difference was found.
14

 This may be explained by the low 

number of patients and SNPs included in that GRS. Otherwise, it may be argued that the lack 

of association is caused by the fact that only UIAs were studied as in our study we were also 

unable to show predictive ability of the metaGRS for IA presence (combined group of UIA or 

ASAH). However, we think that in our study we were unable to predict IA presence because 

many UIAs are likely to be left undetected since UIAs are often incidental findings and 

therefore have a high chance of not being diagnosed in participants of observational 

population cohorts as used in our study.
41

 This probably resulted in low statistical power for 

prediction of UIA alone or in combination with ASAH. The argument that UIAs may be left 

undetected does not apply to the previous study on 109 persons with UIA and 4,781 

controls as all participants were systematically screened with for UIAs using brain MRI.
14
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A metaGRS has been developed for other cardiovascular diseases being ischemic stroke and 

coronary artery disease.
9, 10

 In the present study, we found a hazard ratio per standard 

deviation of metaGRS for prediction of ASAH which was lower than assessed for coronary 

artery disease (HR=1.71, 95% CI=0.168-1.73), but higher than assessed for ischemic stroke 

(HR=1.26, 95% CI=1.22-1.31).
9, 10

 

A previous study indicated that persons with IA at the MCA had higher genetic risk than 

persons with IA at other locations, while no associations were found for aneurysmal size at 

ASAH, patient age at ASAH, or family history of UIA/ASAH.
13, 14, 42

 We did not replicate the 

increased genetic load for patients with an IA at the MCA. Since this effect was found in 

participants from Finland and the Netherlands, and we included additional countries, this 

might indicate population-dependent heterogeneity. Alternatively, due to the smaller 

sample size (N=1,613) the previous study may have been more sensitive to false positive 

findings, meaning there is in no true effect. Instead, we found a decreased genetic load in 

patients with an IA at the ICA, which location was not analyzed in the previous study.
13

 

Interestingly, IAs at the ICA also have the lowest rupture risk compared to IA at other 

locations.
43

 Overall, location-specific rupture risks and genetic risks followed similar patterns 

(highest risk for ACA, PCOM and PC, medium for MCA and lowest for ICA),
43

 albeit not 

statistically significant. This could mean that location-specific rupture risks are in part a 

downstream result of genetic risk factors, but this remains to be confirmed in future studies. 

The predictive performance of the metaGRS was in part captured by the inclusion of clinical 

risk factors smoking and SBP. This further supports the importance of genetic predisposition 
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for smoking and blood pressure in the risk for ASAH.
2
 Whether the remaining added value of 

the metaGRS is driven by additional genetic causes independent of smoking and SBP, or 

whether the metaGRS better captures lifelong exposure to smoking and SBP than clinical 

measurements of these phenotypes, remains subject for future studies.  

Prevalence of IA and incidence of ASAH is higher in women than men, in contrast to most 

other cardiovascular diseases.
5, 41

 Here, we found improved prediction of ASAH, when the 

metaGRS was trained and validated in women, and reduced when trained and validated in 

men. Predictive value of clinical risk factors was also better in women compared to in men. 

Sex differences have also been described for the number and location of IAs, for which 

characteristics we also showed differences in genetic load.
44

 To understand the difference in 

genetic mechanisms of IA between men and women future investigations of genetic risk 

factors for IA and ASAH need to emphasize on sex differences and interactions between 

genetic variants and sex. 

In summary, we developed a metaGRS which showed predictive ability for ASAH with 

modest added value over clinical risk factors, but no improved prediction of IA presence 

(UIA and ASAH combined). Genetic risk prediction was more effective in women, warranting 

further study on the sex-specific genetic causes of IA. Calibration of the metaGRS combined 

with clinical risk factors in independent high-risk and population cohorts are the necessary 

next steps before the metaGRS can be implemented for clinical use. The metaGRS was 

associated with age at ASAH and IA location, showing further evidence for a role of genetic 

risk in clinical heterogeneity of IA.  
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Figure legends 

Figure 1. Overview of constructing the metaGRS. A) Steps to create the metaGRS used for 

prediction in the HUNT study. Dark grey boxes with diagonal line indicate traits without 

genetic correlation with IA and were not used for the next step. B) Steps to create IA GWAS 

summary statistics to be included in an adjusted metaGRS version for phenotype-genotype 
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correlation analysis. Single IA GWAS strata were excluded from the IA GWAS in a leave-one-

out manner prior to the ‘Best model selection’ step in panel A. IA: intracranial aneurysm, 

SBP: systolic blood pressure, CPD: cigarettes per day, DBP: diastolic blood pressure, BMI: 

body-mass index, YoE: years of education, WHR: waist-to-hip ratio, FMD (mf): multifocal 

fibromuscular dysplasia, FMD (any) any fibromuscular dysplasia, TG: triglycerides, HDL: high 

density lipoprotein, AAA: abdominal aortic aneurysm, ICH (deep): deep intracerebral 

hemorrhage, MIG (any): any migraine, IS (any): any ischemic stroke, Age Mrch: age at 

menarche, T2D: type II diabetes, Vert AD: vertebral artery dissection, LDL: low density 

lipoprotein, EPI (gen): generalized epilepsy, N births: number of births, EPI (focal): focal 

epilepsy, DPW: alcoholic drinks per week, TC: total cholesterol, Age Mnp: age at 

menopause, sCEU: stratum of mixed European ancestry, sFC: French Canada, sFIN: Finnish, 

sFRA: France, sNL1, sNL2: Netherlands, sPOL: Poland, sUK1, sUK2: United Kingdom, sUSA: 

United States of America, HUNT: Nordic HUNT study.  

Figure 2. Prediction of ASAH using the metaGRS in the HUNT study. C-index according to 

different combinations of clinical risk factors and metaGRS are shown on the horizontal axis. 

Error bars denote 95% confidence intervals. HR: hazard ratio per standard deviation of the 

IA-only GRS or metaGRS in the model. Reference: model including only sex. Clinical: model 

including sex, SBP, and smoking. IA: intracranial aneurysm. GRS: genetic risk score. 

Figure 3. Association of metaGRS with patient characteristics. Phenotypes with at least 

nominally significant effect on metaGRS are shown, except hypertension and smoking 

status, of which proxies were included in the metaGRS. The metaGRS was transformed to 
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mean 0, variance 1. A) metaGRS according to single or multiple IAs. Horizontal lines 

correspond to population mean (middle line), and mean ± one population standard 

deviation. B) Effect of age at ASAH on metaGRS. Line denotes regression line, and shared 

area is 95% confidence interval of the regression. C) Effect of IA at the ICA versus other 

locations, on the metaGRS. Format same as 3A. IA: intracranial aneurysm, ASAH: 

aneurysmal subarachnoid hemorrhage, ICA: internal carotid artery. 
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