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Abstract 26 

Approximately 450,000 cases of Non-Hodgkin’s lymphoma are diagnosed annually worldwide, 27 

resulting in ~240,000 deaths. An augmented understanding of the common mechanisms of 28 

pathology among relatively large numbers of B-cell Non-Hodgkin’s Lymphoma (BCNHL) patients 29 

is sorely needed. We consequently performed a large transcriptomic meta-analysis of available 30 

BCNHL RNA-sequencing data from GEO, consisting of 322 relevant samples across ten distinct 31 

public studies, to find common underlying mechanisms across BCNHL subtypes. The study was 32 

limited to GEO’s publicly available human B-cell RNA-sequencing datasets that met our criteria, 33 

and limitations may include lack of diversity in ethnicities and age groups. We found ~10,400 34 

significant differentially expressed genes (FDR-adjusted p-value < 0.05) and 33 significantly 35 

modulated pathways (Bonferroni-adjusted p-value < 0.05) when comparing lymphoma samples to 36 

non-diseased samples. Our findings include a significant class of proteoglycans not previously 37 

associated with lymphomas as well as significant modulation of extracellular matrix-associated 38 

proteins. Our drug prediction results yielded new candidates including ocriplasmin and 39 

collagenase. We also used a machine learning approach to identify the BCNHL biomarkers 40 

YES1, FERMT2, and FAM98B, novel biomarkers of high predictive fidelity. This meta-analysis 41 

validates existing knowledge while providing novel insights into the inner workings and 42 

mechanisms of B-cell lymphomas that could give rise to improved diagnostics and/or 43 

therapeutics. No external funding was used for this study. 44 

 45 

Introduction 46 

Lymphomas are cancers of the blood. In 2016, there were 461,000 cases of Non-Hodgkin’s 47 

lymphoma worldwide, resulting in 240,000 deaths (1). Among non-Hodgkin’s lymphomas, only 48 

~10-15% are T-cell lymphomas, while the remaining 85-90% are B-cell malignancies (2). B-cell 49 

Non-Hodgkin’s Lymphomas (BCNHLs) pose a significant disease burden worldwide. BCNHL 50 

subtypes include Burkitt’s lymphoma, nodal, extra-nodal, and splenic marginal-zone B-cell 51 
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lymphomas, follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, post-52 

transplantation lymphoproliferative disorders, small lymphocytic lymphoma, lymphoblastic 53 

lymphoma, lymphoplasmacytic lymphoma, and lymphomatoid granulomatosis (2). B-cell 54 

lymphomas are dependent on their extracellular environment for activation and transformation 55 

into malignancies, including antigen activation of the B-cell receptor, canonical B-cell growth 56 

signals which are also essential to the maturation of healthy B-cells, and signals delivered by 57 

other immune cells in the follicular/germinal center lymphoma microenvironment (3). 58 

 59 

The research community has dedicated extensive effort to identify the attributes that characterize 60 

cancers across all subtypes. Specifically, it has been suggested previously that all cancers share 61 

the following traits: selective proliferative advantage, altered stress response, vascularization, 62 

invasion and metastasis, metabolic rewiring, immune modulation, and an abetting 63 

microenvironment (4,5). One example of a molecular mechanism that is common in cancer is 64 

malignant development through TP53 mutation, with multiple mutations in the TP53 being 65 

associated with hundreds of cancer subtypes (6). Though not every gene-mechanism pairing will 66 

be found across malignant cells like TP53, it is logical to assume that identifying shared genes 67 

and mechanisms by meta-analyzing previous research in a focused set of related cancer 68 

subtypes can be beneficial. We can therefore leverage known mechanisms from well-studied 69 

subtypes to enable quicker, less expensive mechanism discovery for understudied subtypes. This 70 

approach could potentially enable researchers to develop safe and effective treatments. 71 

 72 

The widespread adoption of RNA-sequencing (RNA-seq) has opened new frontiers in disease 73 

research. Rather than identifying and characterizing individual proteins, transcriptomic meta-74 

analyses can provide a mechanistic snapshot of the many upregulated or downregulated genes 75 

that are affected in response to a given stimulus, such as lymphoma. Monitoring these 76 

transcriptional patterns can aid in the identification of genes that could be worth further 77 

experimental investigation due to their selective modulation in diseased samples. Though the 78 
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RNA-sequencing samples in the current study were previously published, compiling them into a 79 

meta-analysis can grant us new insights into disease mechanisms by increasing the signal of 80 

significant genes and reducing the statistical “noise” caused by outliers. 81 

 82 

The aim of this study was to identify some of the shared underlying molecular mechanisms and 83 

biomarkers of B-cell lymphomas by performing a meta-analysis of transcriptomic data from 84 

publicly available B-cell Non-Hodgkin’s Lymphomas (BCNHLs) clinical samples. We expect our 85 

analysis to validate past findings of B-cell cancer mechanisms and uncover mechanisms that 86 

have not been previously associated with BCNHL. 87 

 88 

Results 89 

We acquired our BCNHL samples from the NCBI Gene Expression Omnibus (GEO) using the 90 

search term, “b-cell lymphoma” with the goal of finding B-cell non-Hodgkin’s lymphoma samples 91 

and healthy B-cell controls. We excluded non-human samples, cell lines, formalin-fixed paraffin-92 

embedded tissues, gene expression microarray experiments, single-cell (10X) RNA-sequencing 93 

experiments, xenografts, samples known to be infected with EBV and KSHV, and samples which 94 

contained more diverse cell types (i.e., whole blood, lymph node, PBMCs, brain, etc.). We 95 

intentionally decided to not include multiple myeloma, leukemia, and Hodgkin’s lymphoma 96 

samples in favor of focusing on B-cell non-Hodgkin’s lymphomas. We then located more healthy 97 

B-cell control samples from BCNHL-unrelated studies to even out case and control numbers, the 98 

final three studies cited in Table 1. Our final dataset included a total of 322 samples (134 BCNHL 99 

samples and 188 healthy B-cell controls) from ten studies (Fig 1, Table 1, S1 File) (7–18). The 100 

samples included in our meta-analysis were all clinical samples. The risk of synthesizing study 101 

results and accounting for heterogeneity were reduced due to the lack of treatment metadata and 102 

patient outcome data as input to our analysis. Given that the aim of this study was to compare the 103 

maximum number of BCNHL samples to healthy B-cells, the only source of heterogeneity that we 104 
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are concerned with is the distribution of BCNHL samples across the included subtypes. Our study 105 

was limited to GEO’s publicly available human B-cell RNA-sequencing datasets that met our 106 

criteria, and limitations may include lack of diversity in ethnicities and age groups. 107 

Figure 1. PRISMA flow diagram for transparent reporting of meta-analysis study selection.  108 
Contains a study-by-study breakdown of selection criteria. All studies included were retrieved 109 
from the Gene Expression Omnibus (GEO) database hosted by NCBI. 110 
 111 
Table 1. Study-based origin of samples included in the meta-analysis. 112 
 113 

Sample Phenotype 

Single End 
or Paired 
End Reads GEO Accession # 

Relevant 
Samples 

Large B-Cell Lymphoma Paired End GSE153437 (7) 25 

Diffuse Large B-Cell Lymphoma Paired End GSE130751 (8) 63 

B-Cell Lymphoma + Healthy Single End GSE110219 (9) 2 

Diffuse Large B-Cell Lymphoma Paired End GSE95013 (10) 28 

Follicular Lymphoma + Healthy  Paired End GSE62241 (11,12) 14 

Diffuse Large B-Cell Lymphoma Paired End GSE50514 (13) 7 

Healthy Paired End GSE45982 (14,15) 8 

Healthy Single End GSE92387 (16) 12 

Healthy Paired End GSE118254 (17) 147 

Healthy Paired End GSE110999 (18) 16 
The samples used in this meta-analysis all originate from publicly-available RNA-sequencing 114 
projects and can be found on NCBI’s GEO. 115 
 116 
 117 
We began by trimming, mapping, and quantifying the reads prior to calculating the significant 118 

differential gene expression when comparing the Lymphoma to the non-diseased control 119 

samples. This comparison returned ~13,800 significant differentially expressed genes (DEGs) 120 

(Figs 2 and 3, Table 2, S2 File). We then ranked this list by the FDR-corrected p-value for each 121 

gene. We observed that the top 20 DEGs include accepted biomarkers of various Lymphomas. 122 

Specifically, we confirmed several genes that have previously been explored or characterized in 123 

various subtypes of BCNHL including Apolipoprotein C1 (APOC1; logFC = 6.93, FDR = 8.55 × 124 

10−117) and Vascular cell adhesion molecule 1 (VCAM1; logFC = 7.85, FDR = 2.29 × 10−120) to be 125 

upregulated in BCNHLs. We also found two pathological BCNHL genes, C-C motif chemokine 126 

ligand 18 (CCL18; logFC = 10, FDR = 3.74 × 10−123) and C-X-C motif chemokine ligand 9 127 
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(CXCL9; logFC = 11, FDR = 4.31 × 10−141) to be upregulated in BCNHL as compared to healthy 128 

B-cells.  129 

Figure 2. Visualization of Differentially Expressed Genes and Gene Ontologies.  130 
Differentially expressed gene volcano plot. Green dots represent genes which were not 131 
significantly differentially expressed between healthy B-cells and BCNHL, while the salmon and 132 
blue dots represent underexpressed and overexpressed genes respectively. 133 
 134 
Figure 3. Visualization of Gene Ontology Terms.  135 
Gene ontology visualization. Each rectangle represents a gene ontology term found in the KEGG 136 
Brite gene ontology hierarchy. The size of each rectangle corresponds to the number of BCNHL 137 
differentially expressed genes present in that category. The color of each rectangle corresponds 138 
to the average log2 fold change of the genes included in that gene ontology. No KEGG Brite gene 139 
ontologies were found to be significantly differentially expressed by the bc3net hypergeometric 140 
enrichment. 141 
 142 

Table 2. Top 20 significant differentially expressed genes.  143 
 144 
 Gene 

Symbol 
Ensembl ID Log2 Fold 

Change 
FDR-
corrected 
p-value 

1 LUM ENSG00000139329 11.1 1.11 × 10−145 
2 CXCL9 ENSG00000138755 11 4.31 × 10−141 
3 C1QC ENSG00000159189 9.65 2.70 × 10−132 
4 C1QA ENSG00000173372 9.54 2.03 × 10−123 
5 CCL18 ENSG00000278167 10 3.74 × 10−123 
6 VCAM1 ENSG00000162692 7.58 2.29 × 10−120 
7 C1QB ENSG00000173369 9.4 8.19 × 10−119 
8 APOC1 ENSG00000130208 6.93 8.55 × 10−117 
9 AL512646.1 ENSG00000203396 -15.6 2.24 × 10−115 
10 CCL19 ENSG00000172724 8.48 1.27 × 10−111 
11 SLAMF8 ENSG00000158714 7.77 4.01 × 10−111 
12 COL3A1 ENSG00000168542 10.1 1.67 × 10−110 
13 TCIM ENSG00000176907 8.07 7.86 × 10−110 
14 RARRES2 ENSG00000106538 7.25 8.21 × 10−109 
15 CXCL13 ENSG00000156234 8.8 1.72 × 10−107 
16 SPARCL1 ENSG00000152583 7.24 6.42 × 10−107 
17 PTGDS ENSG00000107317 7.69 1.07 × 10−105 
18 COL1A2 ENSG00000164692 8.33 3.70 × 10−102 
19 CXXC5 ENSG00000171604 -2.73 3.70 × 10−102 
20 C1R ENSG00000159403 4.7 1.41 × 10−100 
The top 20 differentially expressed genes between BCNHL and healthy B-cell samples. This list 145 
includes genes that have been previously researched in conjunction with BCNHL as well as novel 146 
genes.   147 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274444doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274444
http://creativecommons.org/licenses/by/4.0/


 

 

7 

 

We then examined the highest-ranking differentially expressed genes from our meta-analysis to 148 

identify gene-based mechanisms of disease. The first gene we observed using this approach was 149 

Lumican (LUM), which is a member of the small leucine-rich proteoglycans (SLRPs) (19), and 150 

was substantially upregulated in lymphoma (log2 fold change = 11.1, FDR p-value = 1.11 × 151 

10−145). In addition, the larger family of SLRPs appears to play a role in BCNHL (Table 2). 152 

Specifically, our data show that 12/18 SLRPs are expressed in cancerous B-cells, and that 11/12 153 

B-cell-expressed SLRPs are significantly differentially expressed in BCNHL samples. We found 154 

that overall, the SLRP fold changes substantially differed (9/12 expressed SLRPs are 155 

upregulated, 2/12 are downregulated, 1/12 had no significant change), with the genes encoding 156 

SLRPs (especially Classes I and V) being well represented in the B-cell lymphoma transcriptome. 157 

Table 3. Differential expression of members of the Small Leucine-Rich Proteoglycan 158 
Family (SLRPs). 159 
 160 
SLRP Class Name Log2 Fold 

Change 
FDR-corrected 
p-value 

Class I DCN 2.88 1.67 × 10−41 
 BGN 7.88 3.22 × 10−95 
 ASPN 3.09 2.27 × 10−25 
 ECM2 2.1 1.44 × 10−17 
 ECMX NP NP 
Class II FMOD 5.71 3.86 × 10−61 
 LUM 11.1 1.11 × 10−145 
 PRELP 0.617 1.54 × 10−4 
 KERA NP NP 
 OMD NP NP 
Class III EPYC NP NP 
 OPTC NP NP 
 OGN NS NS 
Class IV CHAD -3.49 1.33 × 10−24 
 NYX NP NP 
 TSKU 1.37 1.62 × 10−16 
Class V PODN 1.66 5.70 × 10−10 
 PODNL1 -1.49 3.15 × 10−11 
Out of the 18 members of the SLRP family, 12 are expressed in B-cells and 11 are significantly 161 
differentially expressed between BCNHL and healthy B-cells. This is a novel finding. 162 
*NS = not significant; NP = not present. 163 
 164 

Complement proteins are typically regarded as components of the innate immune system, which 165 

bind to antigen-antibody complexes to facilitate the formation of the membrane attack complex. 166 
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We found that genes encoding the Complement C1q A (C1QA; logFC = 9.54, FDR = 2.03 × 167 

10−123), Complement C1q B (C1QB; logFC = 9.4, FDR = 8.19 × 10−119) and Complement C1q C 168 

(C1QC; logFC = 9.65, FDR = 2.7 × 10−132) chains were all dramatically and significantly 169 

upregulated in BCNHL. 170 

 171 

We detected AL512646.1 (also known as LOC100128906 and as a WDR45-like pseudogene) as 172 

differentially expressed by B-cell non-Hodgkin’s lymphoma samples, a novel observation which 173 

was somewhat unexpected. Though AL512646.1 is annotated as a pseudogene, the RNA-174 

sequencing data shows that it is downregulated in at least a subset of BCNHLs (log2FC = -15.1), 175 

and it has not been previously associated with cancer. 176 

 177 

Next, we used the DRIMSeq algorithm to determine which genes had significant differences in 178 

the presence of splice variants between case and control samples. This analysis returned 320 179 

genes for which splice variants were significantly different (Table 4, S3 File). Apolipoprotein E 180 

(APOE) was the most statistically significant splice variant (Lr [likelihood ratio] = 4470, # of 181 

alternate splice variants = 4, adjusted p-value = 0). Specifically, we observed the expression of 182 

APOE transcripts ENST00000252486, ENST00000425718, ENST00000434152, 183 

ENST00000446996, and ENST00000485628 to significantly differ between non-Hodgkin’s 184 

lymphoma and non-diseased B-cells. 185 

Table 4. Top 20 most significant splice variants (by gene). 186 
 187 
Gene 
symbol 

Ensembl ID Lr* # of Alternate 
Transcripts 

Adjusted P-
value 

APOE ENSG00000130203 4470 4 0 
COL1A1 ENSG00000108821 1520 12 5.56 × 10−315 
COL27A1 ENSG00000196739 1060 7 6.71 × 10−220 
RPL5 ENSG00000122406 1040 10 3.86 × 10−214 
KLF6 ENSG00000067082 961 6 7.41 × 10−201 
SRSF6 ENSG00000124193 954 5 1.56 × 10−200 
CYBRD1 ENSG00000071967 931 6 2.17 × 10−194 
PLEKHM1P1 ENSG00000214176 924 5 3.78 × 10−194 
VCP ENSG00000165280 912 6 2.37 × 10−190 
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DDX6 ENSG00000110367 872 7 8.01 × 10−181 
THRAP3 ENSG00000054118 846 3 6.63 × 10−180 
FCGR2B ENSG00000072694 771 4 1.75 × 10−162 
CHI3L1 ENSG00000133048 715 4 2.40 × 10−150 
IFITM3 ENSG00000142089 691 3 2.53 × 10−146 
ADAM28 ENSG00000042980 719 11 4.56 × 10−144 
CIB1 ENSG00000185043 662 2 2.04 × 10−141 
ZNF318 ENSG00000171467 645 3 1.88 × 10−136 
RPS28 ENSG00000233927 621 3 3.10 × 10−131 
CCDC124 ENSG00000007080 549 3 1.14 × 10−115 
ZNF335 ENSG00000198026 545 3 8.02 × 10−115 
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Significantly differentially expressed splice variants sorted by gene. 188 
*Lr = likelihood ratio 189 
 190 

We also observed that Collagen type I alpha 1 chain (COL1A1) had significant splice variants (Lr 191 

= 1520, # of alternate splice variants = 12, adjusted p-value = 5.55999999807983 × 10−315). 192 

Interestingly, our study also found that the COL1A1 gene was significantly upregulated in BCNHL 193 

(logFC = 3.73, FDR = 9.78 × 10−48). We also observed novel significant splice variants in 194 

Collagen type XXVII alpha 1 chain (COL27A1), which was found to be significant in BCNHL (Lr = 195 

1060, # of alternate splice variants = 7, adjusted p-value = 6.71 × 10−220). 196 

 197 

We then wanted to determine which functional terms in the Gene Ontology were over-198 

represented by the list of DEGs in BCNHL. The Camera algorithm checked 14,901 terms 199 

(including gene ontologies and human phenotypes) for enrichment against the significant 200 

differentially expressed genes that we generated with edgeR. Although there were 482 results (p-201 

value < 0.05), none remained significant after multiple hypothesis correction (S4 File). The lack of 202 

significant results is somewhat expected given the overall molecular heterogeneity of BCNHL 203 

subtypes. To visualize the gene ontology changes, we used a hypergeometric enrichment 204 

algorithm that applied a p-value cutoff of 0.05. We then averaged the edgeR fold-change values 205 

for the genes of each gene ontology in the KEGG Brite hierarchy and plotted the enrichment 206 

results using the R Treemap package to better understand the contribution of various terms to the 207 

overall list of DEGs (Fig 3).  208 

 209 

To better understand the results of our analysis at a more mechanistic level, we used the 210 

signaling pathway impact analysis (SPIA) algorithm to identify intracellular signaling pathways 211 

that play important roles in Lymphoma. This pathway analysis generates a null distribution 212 

through bootstrapping to identify pathways that are significantly modulated when comparing sets 213 

of samples. Our analysis revealed 33 significantly modulated pathways between lymphoma B-214 

cells and non-diseased B-cells (Table 5, S5 File). Specifically, we observed eight pathways that 215 
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were involved with the extracellular matrix and connective tissue in general, including Integrin 216 

signaling pathway, Extracellular matrix organization, ECM-receptor interaction, Focal adhesion, 217 

Integrins in angiogenesis, integrin signaling pathway, Collagen formation, and Collagen 218 

degradation. The upregulation of these pathways indicate that BCNHL likely benefits from 219 

modulations to the extracellular matrix. 220 

Table 5. Significant differentially modulated signaling pathways. 221 
 222 
 Name pSize NDE  tA  pGFWER  Source 

Database 
1 Integrin signalling pathway 99 86 114.394 2.39 × 10−5 Panther 
2 Extracellular matrix organization 204 180 80.7398395 3.14 × 10−5 Reactome 
3 ECM-receptor interaction 70 64 77.659 4.47 × 10−5 KEGG 
4 Staphylococcus aureus infection 32 29 110.568396 0.000503428 KEGG 
5 Complement and coagulation cascades 36 32 37.5461944 0.000674242 KEGG 
6 Urokinase-type plasminogen activator 

(uPA) and uPAR-mediated signaling 
28 25 130.821315 0.000740169 NCI 

7 Cytokine-cytokine receptor interaction 168 140 98.294 0.000780995 KEGG 
8 Focal adhesion 182 150 236.615459 0.001133449 KEGG 
9 PI3K-Akt signaling pathway 271 221 260.046197 0.001344307 KEGG 
10 Complement cascade 29 27 102.278583 0.001440498 Reactome 
11 Systemic lupus erythematosus 17 15 67.4577222 0.001616635 KEGG 
12 b cell survival pathway 22 19 26.576 0.00167109 BioCarta 
13 Small cell lung cancer 78 64 121.170067 0.001930414 KEGG 
14 Integrins in angiogenesis 52 41 146.143424 0.00285984 NCI 
15 Olfactory transduction 93 74 -148.8965 0.002966626 KEGG 
16 integrin signaling pathway 37 29 77.0156667 0.003336442 BioCarta 
17 erk and pi-3 kinase are necessary for 

collagen binding in corneal epithelia 
34 26 166.268917 0.003755165 BioCarta 

18 RNA Polymerase I Promoter Clearance 85 72 -40.156 0.004307328 Reactome 
19 Initial triggering of complement 15 14 44.508 0.004480759 Reactome 
20 RNA Polymerase I Promoter Opening 39 34 -40.907 0.004675938 Reactome 
21 RHO GTPases activate PKNs 67 57 39.779 0.004802382 Reactome 
22 DNA Damage/Telomere Stress Induced 

Senescence 
61 52 32.7708077 0.004980633 Reactome 

23 Creation of C4 and C2 activators 7 7 27.365 0.005633091 Reactome 
24 Collagen formation 66 63 26.4272897 0.006045837 Reactome 
25 Activated PKN1 stimulates transcription 

of AR (androgen receptor) regulated 
genes KLK2 and KLK3 

41 35 39.094 0.006675281 Reactome 

26 MET activates PTK2 signaling 18 16 63.573 0.007079287 Reactome 
27 Collagen degradation 17 15 131.8905 0.008037505 Reactome 
28 MET promotes cell motility 28 24 97.5445 0.00808298 Reactome 
29 Regulation of IGF Activity by IGFBP 11 10 25.958725 0.008404989 Reactome 
30 Classical antibody-mediated complement 

activation 
5 5 27.354 0.008619298 Reactome 

31 Serotonin Neurotransmitter Release 
Cycle 

11 9 -13.301889 0.015608196 Reactome 

32 Class A/1 (Rhodopsin-like receptors) 81 77 5.908 0.026176599 Reactome 
33 Peptide ligand-binding receptors 79 75 5.84 0.040928099 Reactome 
The significantly differentially modulated pathway results. Included are nine extracellular matrix-223 
associated pathways. 224 
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*Abbreviations: psize = number of genes in pathway. NDE = number of genes from pathway 225 
which were differentially expressed. tA = measure of change between healthy and lymphoma 226 
expression; directionality indicates up- or down-regulation. pGFWER = p-value with adjustments 227 
appropriate to a multiplexed interaction network. (20) 228 
 229 
 230 

We next used the Pathways2Targets algorithm to identify potentially novel drug targets for 231 

BCNHL from the signaling pathway results (S6 File). We sorted the results so that drug targets 232 

present in multiple signaling pathways would be ranked higher (Table 6, S7 File). We predicted 233 

the most relevant existing FDA-approved drugs for other indications that could affect the 234 

lymphoma phenotype are Doxycycline, Ocriplasmin, and Collagenase. We also identified ATN-235 

161 as a candidate drug, but it has only been tested in phase-two trials.  236 

Table 6. Predicted BCNHL drugs based on signaling pathways. 237 
 238 
 Drug Name Drug ID Significan

t 
Pathways 
Targeted 

Is FDA 
Approve
d 

Highes
t 
Clinical 
Trial 
Phase 

Has Been 
Withdrawn 

1 OCRIPLASMIN CHEMBL209522
2 

13 TRUE 4 FALSE 

2 ATN-161 CHEMBL429745
6 

10 FALSE 2 FALSE 

3 DOXYCYCLINE CHEMBL120069
9 

10 TRUE 4 FALSE 

4 DOXYCYCLINE CHEMBL1433 10 TRUE 4 FALSE 

5 AS-1409 CHEMBL210941
3 

9 FALSE 1 FALSE 

6 COLLAGENASE 
CLOSTRIDIUM 
HISTOLYTICUM 

CHEMBL210870
9 

9 TRUE 4 FALSE 

7 FIRATEGRAST CHEMBL210496
7 

9 FALSE 2 FALSE 

8 L19IL2 CHEMBL210960
8 

9 FALSE 3 FALSE 

9 L19SIP 131I CHEMBL210941
2 

9 FALSE 2 FALSE 

1
0 

L19TNFA CHEMBL210958
9 

9 FALSE 2 FALSE 

1
1 

VOLOCIXIMAB CHEMBL210806
1 

9 FALSE 3 FALSE 

1
2 

ABITUZUMAB CHEMBL210962
1 

8 FALSE 2 FALSE 

1
3 

AL-78898A CHEMBL459445
7 

8 FALSE 2 FALSE 

1 CILENGITIDE CHEMBL429876 8 FALSE 3 FALSE 
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4 

1
5 

EPTIFIBATIDE CHEMBL1174 8 TRUE 4 FALSE 

1
6 

ETARACIZUMAB CHEMBL174301
4 

8 FALSE 2 FALSE 

1
7 

HUMAN C1-
ESTERASE 
INHIBITOR 

CHEMBL429754
9 

8 TRUE 4 FALSE 

1
8 

INTETUMUMAB CHEMBL174303
2 

8 FALSE 2 FALSE 

1
9 

PEGCETACOPLA
N 

CHEMBL429821
1 

8 FALSE 3 FALSE 

The top 19 drug predictions for BCNHL. Included are several drugs currently in use and others 239 
that are novel candidates. 240 
 241 

Rather than solely rely on the significant differential expression data to determine biomarkers, we 242 

applied a more robust random forest machine learning method to predict biomarkers of BCNHLs. 243 

Specifically, the DEG statistics focus on identifying genes that have a large difference in 244 

expression between two states, while the random forest approach identifies genes that 245 

consistently change across disease vs. healthy samples. Consequently, the random forest 246 

approach identifies transcripts that are best capable of differentiating between disease and 247 

healthy states. The top three genes identified by our random forest analysis included YES1, 248 

FAM98B, and FERMT2 (Table 7, Figs 4A and 4B, S8 File). We then calculated the area under 249 

the curve for the receiver-operator characteristic curve, which showed that when the expression 250 

values from these three genes are combined they are 99.889% accurate at predicting whether 251 

the patient samples had BCNHL (Fig 4C). 252 

Figure 4. Biomarker Prediction Yields Three-Gene Signature with 99% Predictive Ability. 253 

A) Biomarkers ranked by mean decrease in Gini impurity and permutation values using random 254 
forest show YES1, FAM98B, and FERMT2 as the highest ranked predictive biomarkers (ranked 255 
by mean decrease of Gini impurity score). B) Random forest biomarker prediction for the top 256 
three genes in isolation. C) Receiver-operator characteristic curve using only YES1, FAM98B, 257 
and FERMT2 shows these three genes are 99.889% accurate at predicting BCNHL status 258 
(healthy or diseased). 259 

 260 

Table 7. BCNHL biomarkers predicted from gene expression using machine learning 261 
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Gene 
Symbol 

Mean 
Gini 
Decrease 

edgeR 
Log 

�
 

Fold 
Change 

edgeR 
False 
Discovery 
Rate 

Disease 
Status  

Mean 
(Read 
Counts) 

Standard 
Deviation 
(Read 
Counts) 

Median 
(Read 
Counts)  

YES1 0.77 2.38 1.98x10��� Lymphoma 1151.756 1246.946 629 
    Healthy 38.87234 66.01043 11 
FAM98B 0.68 1.58 1.48x10��� Lymphoma 1797.452 1174.797 1456 
    Healthy 248.4202 954.1375 32 
FERMT2 0.67 2.83 1.46x10��� Lymphoma 1246.993 1200.669 841 
    Healthy 32.46809 73.10299 4 
The top three genes identified by our random forest biomarker prediction are high-fidelity 262 
biomarkers of BCNHL due to their consistent and extreme upregulation across our 134 clinical 263 
BCNHL samples as compared to our 188 healthy B-cell samples. Presented above are statistics 264 
that capture the spread of transcriptional levels between BCNHL and healthy groups. 265 
 266 
 267 

Discussion  268 

The goal of this study was to collect publicly available RNA-seq data from GEO and process 269 

those data to find differentially expressed genes, pathways, splice variants, and biomarkers. We 270 

confirmed several biologically- and clinically relevant biomarkers and pathologic mechanisms that 271 

were identified previously, as well as novel entities. We found several key genes that are 272 

significantly differentially expressed in BCNHL including LUM and other SLRPs, complement 273 

protein components, and the supposed pseudogene AL512646.1. We confirmed that previously 274 

characterized biomarkers such as APOC1, VCAM1, CCL18, and CXCL9 are overexpressed in 275 

BCNHL, and that 320 genes including APOE, COL1A1, and COL27A1 had differentially 276 

expressed splice variants. We additionally found a BCNHL reliance on the upregulation of 277 

pathways associated with the extracellular matrix.  278 

 279 

To our knowledge, this is the largest meta-analysis of human samples in the BCNHL field to-date. 280 

While some may be concerned that the signals from the individual subtypes of non-Hodgkin’s B-281 

cell lymphomas could drown one another out, we believe that including representative samples 282 

from multiple BCNHL subtypes augments the signal(s) that are shared among the represented 283 

subtypes and could aid in the identification of shared mechanistic insights with reduced bias. One 284 

potential limitation of our study was to only evaluate samples from the GEO database for 285 
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inclusion in our analysis. Our intentional focus on BCNHL excluded multiple myelomas, B-cell 286 

leukemias, or Hodgkin’s B-cell lymphomas. Promising future directions may include mining 287 

additional public databases for similar data and potentially expanding the scope of any future 288 

meta-analysis to include all B-cell malignancies. In addition, it is possible that our focus on 289 

incorporating multiple publicly available datasets may have introduced potential biases in patient 290 

age, gender, or ethnicity. 291 

 292 

Though there is evidence in the literature that directly associate BCNHL to some of our results 293 

(e.g. genes, splice variants, and pathways), some of our findings are novel to BCNHL. In cases 294 

where no previously published research indicates the relationship between BCNHL and our 295 

results, we will appeal to the Hallmarks of Cancer to investigate the relationship between our 296 

differentially expressed result and a distinct cancer system (4). We therefore ranked both the 297 

accuracy and confidence in our results by their relevance to BCNHL, followed by B-cell cancers in 298 

general, all blood cancers, and finally all cancers. We believe that identifying a possible 299 

mechanism for a gene that is associated with other cancers, and unresearched in BCNHL is still 300 

relevant. We expect that a subset of these findings will justify additional wet lab experimentation. 301 

 302 

Differentially expressed genes suggest shared underlying 303 

mechanisms for lymphomas 304 

LUM seems to play a role in the progression or non-progression of several different cancer types. 305 

Mahadevan et al. previously reported upregulated LUM in both T- and B-cell lymphomas, but 306 

offered no insights on potential mechanisms (21). A literature search of parallel systems revealed 307 

that in breast cancer, high stromal-cell expression of LUM adjacent to the tumor stalls tumor 308 

growth, and lowered stromal expression of LUM correlates with higher breast cancer mortality 309 

rates and increased severity (22). In melanoma, LUM in the extracellular matrix halts metastasis 310 

through direct interaction with alpha-2-beta-1 integrin (23). Both breast cancer and pancreatic 311 
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cancer cells have been documented to upregulate LUM, along with many other cancer types (19). 312 

Overall, LUM expression by cancer cells seems to correlate with more aggressive cancers and 313 

poorer patient outcomes. The massive LUM upregulation illustrated in our samples may be due to 314 

the fact that the BCNHL samples available on GEO were mostly from advanced or refractory 315 

cases of BCNHL. The prior finding that high LUM expression around tumors is protective against 316 

metastasis in several cancer subtypes indicates the potential for LUM as a cancer-stalling 317 

therapy.  318 

 319 

Interestingly, a subset of the members in the SLRP protein family have been previously identified 320 

in B-cell Non-Hodgkin’s lymphomas including DCN (24), BGN (24), ASPN (25), FMOD (26), LUM 321 

(21), PRELP (26), and TSKU (27). However, other members within the SLRP family have not 322 

been previously considered as lymphoma biomarkers or potential pathology-inducing molecules. 323 

Our novel finding is that the SLRPs ECM2, CHAD, PODN, and PODNL1 are differentially 324 

expressed in BCNHL. Proteoglycans have been shown to be associated with pro-cancer 325 

mechanisms in prostate, breast, colon, lung, ovary, mesothelium, pancreatic, lymphoma, and 326 

esophageal cancers (19). Our results show two upregulated pathways in BCNHL that were 327 

previously shown to be mechanistically intertwined with proteoglycans in cancer, which are the 328 

Focal Adhesion pathway (28) and the PI3K-Akt signaling pathway (29). Taken together, this may 329 

suggest a connection between previously established proteoglycan cancer mechanisms and B-330 

cell non-Hodgkin’s lymphomas. Additional work is still required to elucidate the role(s) that these 331 

entities play in BCNHL. 332 

  333 

In the context of other cancers, increased expression of complement genes C1QA and C1QB at 334 

week 16 of mantle cell lymphoma treatment by Venetoclax and Ibrutinib was significantly 335 

associated with a worse prognosis (30), illustrating that C1QA and C1QB may be associated with 336 

resistance to cancer drugs. Jiang et al. showed via immunohistochemistry that C1QB localizes to 337 

the nuclei of gastric cancer cells (31). C1QB’s nuclear localization suggests that C1QB may have 338 
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additional function(s). Upregulation of C1QA, C1QB, and C1QC in peripheral T-cell lymphoma 339 

(32) and upregulation of C1QC in Epstein-Barr Virus-positive diffuse large B-cell lymphoma (33) 340 

have been reported previously. In other in-vitro and in-vivo cancer models, the whole C1q protein 341 

has been shown to mediate metastasis, motility, growth and proliferation, and adhesion (34). Our 342 

results add to the growing body of work suggesting a potential alternate function of complement 343 

proteins in cancer that warrants further investigation. 344 

 345 

In addition to our novel findings on differentially expressed genes, we were also able to detect 346 

statistically significant genes that were previously characterized in at least one subtype of 347 

BCNHL. The first of these proteins is Apolipoprotein C1 (APOC1), which we observed to be 348 

upregulated in BCNHL. APOC1 is one of three genes whose expression levels are predictive of 349 

diffuse large B-cell lymphoma severity (35), and it is also upregulated in late stage lung cancers 350 

as compared to early stage lung cancers (36). This suggests that APOC1 may be contributing to 351 

cancer pathology across diverse cancers in multiple cell types. 352 

 353 

Our observation that C-C motif chemokine ligand 18 (CCL18), which has a well-recognized role in 354 

lymphoma, was upregulated in our BCNHL analysis is relevant since this gene assists large B-355 

cell lymphoma in cell proliferation, the NF-Kappa-B pathway, and the PI3K-AKT pathway (37). Its 356 

upregulation in macrophages and dendritic cells from cutaneous T-cell lymphoma lesions was 357 

associated with a negative prognosis (38). 358 

 359 

Our finding C-X-C motif chemokine ligand 9 (CXCL9) to be significantly upregulated in our 360 

analysis of B-cells is interesting since this gene has been shown to promote the progression of 361 

diffuse large B-cell lymphoma by halting degradation of beta-catenin (CTNNB1) and upregulating 362 

its initial expression (39). Our findings support this proposed mechanism with CTNNB1 being 363 

upregulated in lymphoma (log2FC = 1.1, FDR = 1.54 × 10−33), while other elements of the 364 

CTNNB1 “destruction complex” were mostly downregulated. Specifically, several of the known 365 
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components of the destruction complex that were detected in our analysis include APC (log2FC = 366 

-0.755, FDR = 3.51 × 10−11), GSK3B (log2FC = -0.692, FDR = 2.62 × 10−3), CSNK1A1 (not 367 

significant), AXIN1 (log2FC = 0.533, FDR = 3.96 × 10−10), BTRC (not significant), and FBW11 368 

(log2FC = -0.692, FDR = 5.60 × 10−20). 369 

 370 

We identified several other genes of that may be relevant to pathogenesis. Small but significant 371 

upregulation of AXIN1 is of interest for additional investigation due to its ties to CXCL9, and is not 372 

known to have multiple heterogenous functions (40). AXIN1 regulates the Wnt and JNK signaling 373 

pathways (41), and it regulates the Wnt pathway by degrading CTNNB1 (39). If CTNNB1 isn't 374 

degraded by AXIN1, CTNNB1 translocates to the nucleus and interacts with LEF1, which we 375 

found to be significantly upregulated,  and TCF7 (not significant in this study), causing 376 

transcription of Wnt pathway target genes to occur (42,43). Wnt helps to regulate cell cycle and 377 

contributes to the increased growth rate of many cancer types (44). AXIN1 activates the JNK 378 

signaling pathway by binding to MAP3K1, which we found to be significantly downregulated, or to 379 

MAP3K4, which was significantly upregulated (45). Since CTNNB1 has been shown to contribute 380 

to apoptosis resistance in multiple myeloma cells (46), it is possible that the inability to stop the 381 

destruction of CTNNB1 in lymphoma may share a similar mechanism.  382 

 383 

Finally, VCAM1 upregulation is associated with a poor prognosis for patients with non-Hodgkin's 384 

lymphomas, and VCAM1 is under investigation as a potential serum biomarker for assessing 385 

disease progression (47). Adhesion molecules such as VCAM1 promote cancer metastasis, or in 386 

the case of blood cancers, extravasation, by allowing cancer cells to exit the bloodstream and 387 

integrate with healthy tissues throughout the body (48).  388 

 389 

Splice variants suggest relevance to lymphomas 390 

To better understand the contribution of differentially expressed splice variants to disease, we 391 

examined the highest-ranked DRIMseq results. This algorithm calculates statistical significance 392 
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based on the number of reads mapped to exons that are present in each splice variant. Our 393 

observation that Apolipoprotein E (APOE) was the highest-ranking splice variant result validates 394 

previous findings that associate this gene with pancreatic cancer pathology (49). In addition, 395 

pediatric patients with malignant lymphoma and acute lymphoblastic leukemia who express 396 

isoforms E3 and E4 of APOE are at higher risk of developing extreme hypertriglyceridemia (50). 397 

Though little research has been done concerning the mechanisms of APOE in BCNHL, we 398 

believe that APOE may be contributing to disease by participating in the Regulation of Insulin-like 399 

Growth Factor (IGF) activity by Insulin-like Growth Factor Binding Protein (IGFBP) pathway, 400 

which is we found to be a significantly modulated pathway that includes APOE. The significance 401 

of APOC1 as a DEG in BCNHL, paired with the evidence of significant APOE splice variants 402 

suggest that apolipoproteins may be useful targets for future BCNHL treatments. 403 

 404 

Our observation of Collagen type I alpha 1 chain (COL1A1) as a highly ranked splice variant 405 

result is novel to the best of our knowledge. However, the literature indicates that the COLA1A-406 

014 transcript regulates the CXCL12-CXCR4 axis in gastric cancer, leading to tumor progression 407 

(46). In addition to displaying significant differences in splice variant expression, we also found 408 

COL1A1 to be significantly upregulated in BCNHL. COL1A1 has previously been reported to be 409 

upregulated in peripheral T-cell lymphoma (21). In Hodgkin’s lymphoma, COL1A1 overexpression 410 

is associated with epigenetic silencing of the RNA demethylase ALKBH3 and reduced survival 411 

(51). COL1A1 is a member of several of our significant upregulated pathways involving the 412 

extracellular matrix (ECM-receptor interaction, Focal adhesion, Extracellular matrix organization, 413 

and Collagen formation). This involvement in extracellular matrix-related pathways strengthens 414 

the case that the mechanism of COL1A1 may involve tumor cell interaction with its outer 415 

environment.  416 

 417 

Collagen type XXVII alpha 1 chain (COL27A1) having significant changes among its expressed 418 

splice variants in BCNHL is interesting since it was recently reported as being overexpressed in 419 
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adenoid cystic carcinoma (52). Like COL1A1, COL27A1 is a member of the upregulated 420 

Extracellular matrix organization and Collagen formation pathways, suggesting that COL27A1 421 

could play a role in BCNHL extravasation. 422 

 423 

Extracellular matrix-related pathways may contribute to disease 424 

Our signaling pathway enrichment analysis broadened the scope of our analysis and 425 

interpretation. Many of our findings supported an interesting reliance of BCNHL on pathways 426 

associated with the extracellular matrix. Recent research has suggested the importance of 427 

extracellular matrix components in reactivating quiescent cancer cells through the β1-integrin 428 

signaling pathway (53). It would follow that interaction with extracellular matrix components also 429 

plays a role in regulating cancer cells. To our knowledge, no studies have reported the integrin 430 

signaling pathway to be activated in BCNHL, though it has been reported as activated in the 431 

closely-related cancer NK/T-cell lymphoma (21). The activation of these pathways suggests that 432 

malignant BCNHL cells may have an advantage by interacting with the extracellular matrix. Such 433 

interactions with the extracellular matrix are typically considered to be an important part of 434 

metastasis (48). We found this result to be interesting since lymphomas are liquid tumors, 435 

unbound by extracellular matrix. This upregulation of pathways allowing interaction with the 436 

extracellular matrix may suggest that BCNHL could be invading non-lymphatic and/or non-437 

circulatory tissues. 438 

 439 

The trend of extracellular matrix interaction is also seen in the DEG results, adding support to the 440 

idea that interaction with the extracellular matrix is important for BCNHL growth and survival. 441 

Additionally, COL1A1 and COL27A1, which are members of extracellular matrix-related 442 

pathways, are two of the genes with the most significantly differential expression of splice 443 

variants. 444 

 445 
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Drug prediction algorithm returned both tested and novel 446 

candidates 447 

Of our top drug results, doxycycline is currently in use for ocular B-cell lymphomas (54,55). It is 448 

additionally under investigation for diffuse large B-cell lymphoma; recent work found doxycycline 449 

suppresses diffuse large B-cell lymphoma growth in vitro and in vivo via CSN5 inhibition (56). 450 

ATN-161 is a novel drug candidate for BCNHL. Though it is only in phase two of clinical trials, it 451 

has been a successful drug against refractory solid tumors, making it a promising drug candidate 452 

for other susceptible malignancies (57). ATN-161 suppresses cancer via integrin beta1 alpha5 453 

antagonism, disabling invasion and metastasis (58). Ocriplasmin reverses vitreomacular 454 

adhesion via interaction with fibronectin and laminin (59). Though ocriplasmin has never been 455 

used in cancer before, it may be a promising drug candidate due to its ability to modulate 456 

adhesion. Collagenase clostridium histolyticum is under investigation for treating collagen-rich 457 

uterine fibroids and was successful at reducing the stiffness of the tumors (60). 458 

 459 

Machine learning predicts novel biomarkers of BCNHL  460 

YES1, FERMT2, and FAM98B are novel biomarkers not previously associated with BCNHL. 461 

However, each has well-documented cancer associations. YES1 is a tyrosine kinase which 462 

regulates cell cycle and apoptosis in vitro and cell growth in vivo of tumors with YES1 463 

amplification (61). YES1 has been previously identified as a biomarker for non-small cell lung 464 

cancer and esophageal adenocarcinoma (62,63) and may be a potential membrane biomarker. 465 

YES1 can anchor to the inner membrane with help from peptide SMIM30 (64), but whether it can 466 

flip to the outer leaflet has not been investigated. The role of YES1 in BCNHL pathogenesis also 467 

needs additional investigation. FERMT2 has previously been pinpointed as a biomarker for other 468 

cancers previously including non-small cell lung cancer and prostate cancer (65,66), but not for 469 

BCNHL. FERMT2 stabilizes CTNNB1, which is a well-documented activator of oncogene 470 

transcription, and is implicated in Wnt pathway regulation (67). Additionally, FERMT2 enhances 471 
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integrin signaling and mediates migration, invasion, and focal adhesion (68,69). Though FAM98B 472 

has been shown to play an important role in the development of multiple cancers, it has not 473 

previously been identified as a biomarker for any cancer. FAM98B is an arginine 474 

methyltransferase, is utilized in tumorigenesis, and works in tandem with DDX1, a pan-cancer 475 

marker, in RNA metabolism/processing (70,71). Like YES1 and FERMT2, FAM98B has not been 476 

previously identified as a biomarker for BCNHL. These three genes have substantial diagnostic 477 

potential as a liquid biopsy that could be generalizable across B-cell non-Hodgkin’s lymphoma 478 

subtypes. Further validation is needed to determine whether these are suitable biomarkers for 479 

diagnostic or screening application. 480 

 481 

 482 

In summary, our meta-analysis identified many significant DEGs and pathways that play a role in 483 

B-cell non-Hodgkin’s lymphomas. Our findings confirm results of previous BCNHL research, 484 

indicating that the statistical analyses applied within our computational workflow pipeline are 485 

effective at accurately identifying statistically significant genes, splice variants, and pathways with 486 

clinical and pathological relevance. Additionally, several of our results are novel, which need 487 

additional validation in future experiments. It is likely that at least some of these novel findings 488 

were detected due to the ability of our meta-analysis to reduce the statistical “noise” produced by 489 

outliers from individual studies and increase the biologically-relevant signal. Specifically, our 490 

findings suggest that LUM and 10 other small leucine-rich proteoglycans are significantly 491 

differentially expressed in BCNHL, that AL512646.1 is not a pseudo-gene, that APOE, COL1A1, 492 

and COL27a1 have significant differentially expressed splice variants in BCNHL, and that BCNHL 493 

is strongly reliant on the overexpression of extracellular matrix-associated pathways. The 494 

predominant drug prediction results nearly universally targeted extracellular matrix-associated 495 

mechanisms, and has yielded several promising new potential drug candidates including 496 

ocriplasmin and ATN-161. Our random forest biomarker discovery pinpointed three novel 497 

biomarker genes not previously associated with BCNHL, YES1, FERMT2, and FAM98B, which 498 
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show high fidelity in predicting lymphoma presence based on transcriptional levels. These 499 

findings shed additional light on the underlying intracellular mechanisms of BCNHL and could be 500 

used in the development of improved diagnostics and therapeutics to further improve human 501 

health. 502 

 503 

 504 

Methods 505 

Collecting samples 506 

RNA-sequencing samples were acquired from the National Center for Biotechnology Information 507 

(NCBI) Gene Expression Omnibus (GEO) database using the search term, “b-cell lymphoma” to 508 

find B-cell non-Hodgkin’s lymphoma samples and healthy B-cell controls. The automatic GEO 509 

filters “Homo sapiens” and “high-throughput RNA-sequencing” were applied. Cell lines, formalin-510 

fixed paraffin-embedded tissues, gene expression microarray experiments, single-cell (10X) 511 

RNA-sequencing experiments, xenografts, samples known to be infected with EBV and KSHV, 512 

and samples which contained more diverse cell types (i.e., whole blood, lymph node, PBMCs, 513 

brain, etc.) were manually excluded. All samples that had one or more of these disqualifying 514 

attributes were excluded from the dataset prior to analysis, which may have included only a 515 

subset of samples from any individual study in the meta-analysis. Multiple myeloma, leukemia, 516 

and Hodgkin’s lymphoma samples were intentionally excluded in favor of focusing on B-cell non-517 

Hodgkin’s lymphomas. Records were accepted or rejected based on the standardized exclusion 518 

criteria detailed above by our team. To avoid inclusion bias, any sample that could not be 519 

excluded by the standardized exclusion criteria was included in the study. While a subset of the 520 

healthy control samples was obtained from the same RNA sequencing projects as the BCNHL 521 

samples, others were obtained from three unrelated B-cell datasets with healthy controls to 522 

create roughly equivalent-sized BCNHL and healthy groups. Final dataset assembly from GEO 523 

concluded on October 22, 2020, resulting in a dataset of 322 samples (134 BCNHL samples and 524 
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188 healthy B-cell controls) from ten studies (7–18). The raw data for these experiments were 525 

previously collected by the data providers and conform to the appropriate ethical oversight to 526 

protect patient autonomy and patient identity. All 10 primary RNA-sequencing datasets from 527 

which samples were gathered for our lymphoma meta-analysis have been published in the peer-528 

reviewed literature, increasing overall confidence that each dataset has acceptable quality (Table 529 

1, Fig 1). 530 

 531 

Preprocessing of RNA-sequencing data 532 

Following the manual curation of the RNA-seq samples, the fastq files were pre-processed as 533 

previously described (72). In brief, fastq files containing RNA-sequencing data were downloaded 534 

from the Sequence Read Archive (SRA) using the sratools software package. The fastq files, the 535 

associated metadata file, and a configuration file for each dataset were then generated and used 536 

as input to the Automated Reproducible MOdular Workflow for Preprocessing and Differential 537 

Analysis of RNA-seq Data (ARMOR) workflow (73). A configuration file was used by ARMOR to 538 

appropriately set up a python-based Snakemake workflow (74). In the ARMOR workflow, 539 

adapters and poor-quality regions of reads were trimmed with TrimGalore! (75), quality control 540 

metrics were calculated with FastQC (76), reads were mapped to the human GRCh38 541 

transcriptome and total gene transcripts quantified with Salmon (77), significant differential gene 542 

expression was calculated using a negative binomial distribution implemented in edgeR (78), 543 

Gene Ontology enrichment was performed against terms from the MSigDB (79) while adjusting 544 

for inter-gene correlation using the Camera algorithm (80), and significant splice variants were 545 

predicted with DRIMseq (81). The significant differentially expressed genes from the ARMOR 546 

workflow were then used as input to the signaling pathway impact analysis (SPIA) algorithm to 547 

enrich differentially expressed genes against intracellular signaling pathways from five databases 548 

including KEGG, Panther, BioCarta, Reactome, and NCI (20,82–85). Differentially expressed 549 

genes and splice variants calculated by ARMOR and DRIMSeq were evaluated by the effect 550 
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measures log2 fold change and likelihood ratio respectively. Confidence in results was 551 

accomplished using false discovery-rate adjusted p-values. 552 

 553 

Additional analysis and visualization of differentially expressed 554 

genes and gene ontologies 555 

The PRISMA flowchart template was used to generate figure one consistent with transparent 556 

reporting of meta-analysis generation and results (86). 557 

 558 

The R package ggplot was used to construct the Fig 2 volcano plot from using FDRs and log2 559 

fold change values for each gene from the edgeR output (87). 560 

 561 

The KEGG ontology was extracted from the Brite Hierarchy using existing code (82). Genes 562 

included in the Brite Hierarchy were then computationally matched to their corresponding edgeR 563 

log2 fold change values. A statistical enrichment of the KEGG gene ontologies was performed 564 

using the R package bc3net (88) prior to visualizing the bc3net enrichment results with the R 565 

package Treemap in Fig 3 (89). 566 

 567 

Biomarker prediction using differentially expressed gene data 568 

Salmon-derived transcript counts were organized into a tabular format and samples were 569 

randomly assigned to either the testing set (30%) or the training set (70%). The R package 570 

randomForest was used to run a supervised classification analysis to determine biomarkers (90). 571 

The initial results from the whole transcriptome were then reduced to the 3, 5, and 10 best-572 

scoring transcriptional biomarkers, based on the mean Gini impurity decrease values for each of 573 

the features. These values were then sorted by size to determine the transcribed genes from the 574 

original dataset with the largest association. The area under the curve (AUC) was calculated from 575 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274444doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274444
http://creativecommons.org/licenses/by/4.0/


 

 

26 

 

the receiver operator characteristic curves that were generated for each set of random forest 576 

results to determine the efficacy of the selected biomarkers for disease prediction. 577 

 578 

Drug prediction using differentially modulated pathways 579 

Drug prediction was conducted by running the significantly modulated pathways file that was 580 

generated by SPIA file through Pathways2Targets2.R algorithm (91). To summarize drug 581 

findings, the Pathways2Targets output was processed using a custom R script 582 

most_common_treatments_2021_09_19.R (92). 583 

 584 

Other information 585 

This meta-analysis was not registered. The review protocol was not prepared separately but is 586 

described in detail in the methods section. This meta-analysis received no specific financial 587 

support and was supported by general funding from Brigham Young University. Brigham Young 588 

University played no role in the ideation, synthesis, or analysis of this transcriptomic meta-589 

analysis. The authors each declare that they have no competing interests. All raw data analyzed 590 

in this study can be found in NCBI’s GEO. Analytical codes can be found as cited in materials and 591 

methods. All processed data are available in the supplementary materials or at DOI: 592 

10.5281/zenodo.4757764. 593 
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 855 

S0 File. B-Cell Non-Hodgkin’s Lymphomas Transcriptomic Meta-Analysis: Supplementary 856 

Materials Description. This document contains a guide to allow readers to easily navigate the 857 

supplementary files. 858 

S1 File. PRISMA 2020 checklist for transparent meta-analysis reporting. This document 859 

contains the PRISMA guidelines for reporting meta-analyses/systematic reviews and the 860 

manuscript location of required information. 861 

S2 File. Differentially expressed gene results (edgeR output). The entire BCNHL differentially 862 

expressed gene list produced by edgeR. The file is written in TSV format and can be successfully 863 

opened in Excel. Some genes in the original TSV file have more associated data than can fit on 864 

one line. The genes in the file are ranked according to FDR, with the smallest FDRs at the top. 865 

Please note, the file also contains differential expression results for genes which were not 866 

significantly differentially expressed at the bottom. For description of column contents, please 867 

see S0 File. 868 
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S3 File. Differentially expressed splice variants (by gene; DRIMSeq output). The BCNHL 869 

differentially expressed splice variant results (by gene) produced by DRIMSeq. Genes are ranked 870 

according to adjusted p-value, with the lowest adjusted p-value at the top. NOTE: Should you 871 

desire to discover which transcripts of a certain gene are present in the BCNHL dataset, see the 872 

"tx_ids" column in Supplementary File S1. For description of column contents, please see S0 File. 873 

S4 File. Differentially expressed gene ontology results (Camera output). The BCNHL 874 

differentially expressed gene ontology results produced by Camera. No gene ontologies were 875 

significant after performing the FDR correction. For description of column contents, please see 876 

S0 File. 877 

S5 File. Differentially regulated pathway results (SPIA output). The BCNHL differentially 878 

expressed pathway results produced by SPIA. For description of column contents, please see S0 879 

File. 880 

S6 File. Drug prediction results by gene (Pathways2Targets unsorted output). The raw drug 881 

prediction results from Pathways2Targets2.R. 882 

S7 File. Drug prediction results sorted by most significant pathways impacted 883 

(Pathways2Targets sorted output). The sorted drug prediction results, ranked according to 884 

which drugs impact the highest number of significantly modulated pathways. 885 

S8 File. Biomarker prediction results (randomForest output). The ranked random forest 886 

biomarker prediction results. Sheet one contains all genes, and sheet two contains the random 887 

forest results when the selection was narrowed to the top three genes. 888 

 889 
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