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Abstract 

In this manuscript, we derive a closed form solution to the full Kermack and McKendrick 

integro-differential equations (Kermack and McKendrick 1927) which we call the KMES. We 

demonstrate the veracity of the KMES using independent data from the Covid 19 pandemic and 

derive many previously unknown and useful analytical expressions for characterizing and 

managing an epidemic. These include expressions for the viral load, the final size, the effective 

reproduction number, and the time to the peak in infections. The KMES can also be cast in the 

form of a step function response to the input of new infections; and that response is the time 

series of total infections. 

Since the publication of Kermack and McKendrick’s seminal paper (1927), thousands of 

authors have utilized the Susceptible, Infected, and Recovered (SIR) approximations; 

expressions putatively derived from the integro-differential equations to model epidemic 

dynamics. Implicit in the use of the SIR approximation are the beliefs that there is no closed 

form solution to the more complex integro-differential equations, that the approximation 

adequately reproduces the dynamics of the integro-differential equations, and that herd immunity 

always exists. However, the KMES demonstrates that the SIR models are not adequate 

representations of the integro-differential equations, and herd immunity is not guaranteed. We 

suggest that the KMES obsoletes the need for the SIR approximations; and provides a new level 

of understanding of epidemic dynamics. 
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Introduction 

Modern epidemiological modeling has its roots in the Kermack and McKendrick 

epidemic model first published in 1927 (Kermack and McKendrick 1927). Since its publication, 

well over 10,000 authors have referenced this paper and used it as a foundational starting point. 

Throughout this vast literature, three basic tenets are held to be true: 1) There are no known or 

published closed-form solutions to the full set of Kermack and McKendrick’s integro-differential 

equations; 2) An approximation, known as the SIR (Susceptible, Infected, Recovered) model and 

its variants, are accepted as reasonable representatives of the full equations; and 3) the final 

number of uninfected individuals is always greater than zero (i.e., it is not possible for everyone 

to become infected). This last property is referred to as “herd immunity”.  

Despite the durability of these associations, in this manuscript, we explicate that a closed-

form solution to the equations can be derived; and based on this solution, we demonstrate that 

the arguments and mathematics used to justify the use of the SIR model, as well as those 

advanced to prove that herd immunity exists, rest upon faulty assumptions. As a preview to our 

approach, in this introduction, we present an outline for this solution and use this to highlight 

some of the inadequacies in the reasoning that supports the existence of herd immunity and 

other, improbable, properties of the SIR model. 
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General Outline of the Solution 

We begin by defining several quantities which describe the epidemic dynamics.  These 

are: 𝑁!, the total population of people who can become infected during the epidemic; 𝑆(𝑡), the 

subpopulation that has not yet become infected; 𝑁(𝑡), the subpopulation that is currently or has 

previously been infected; 𝐼(𝑡), the infectiousness of individuals within 𝑁(𝑡); and R(𝑡), the total 

recovery of individuals within 𝑁(𝑡). The relationships between these quantities are further 

clarified by noting that 𝑆(0) is the number of uninfected people in 𝑁! at the epidemic start, 𝑆(∞) 

is the number of uninfected people at the end of the epidemic, 𝐼(0) is the number of infectious 

individuals at the epidemic start; and therefore, 𝑁! = 𝑆(𝑡) + 𝑁(𝑡), 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡), and 

𝑁(0) = 𝐼(0).  We further assume that for our modelling purposes, 𝑁! is a constant and that once 

infected, people cannot become reinfected.   

We then write the following two relationships, 

 "#(%)
"%

= 𝐾'(𝑡)𝐼(𝑡),      (1) 

 "((%)
"%

= (𝐾'(𝑡) − 𝜇(𝑡))𝐼(𝑡),      (2) 

where 𝐾'(t) is a function describing the rate of new infections and 𝜇(𝑡) is the recovery rate of 

the infected people. Equation 1 arises directly from the notion that the currently infectious 

subpopulation, 𝐼(𝑡), is the sole cause of new infections. In a “systems” view, infections are 

expressly recognized as the driving force of the epidemic. 
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Equation 2 is easily solved to find an expression for I(𝑡), 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (*!(%)+,(%))"%
"
# .      (3)   

which can be rewritten as, 

 𝐼(𝑡) = 𝑒∫ *!(%)"%
"
# 𝐼(0)𝑒∫ +,(%)"%"

# .     (4) 

The righthand side of Equation 4 is the decaying step input of the initial infectious individuals, 

𝐼(0)𝑒∫ +,(%)"%"
# , multiplied by the response function, 𝑒∫ *!(%)"%

"
# , to this input. Corroborating this 

simple systems view, we see that if there were no recovery (i.e., if 𝜇(𝑡) = 0 for all time), then as 

long as 𝐾'(𝑡) > 0, the number of infectious individuals would grow exponentially.  

Herd Immunity 

With Equation 4 in hand, we can now explore several accepted tenets of epidemiological 

modeling. One generally accepted tenet, the concept of herd immunity, requires the 

determination of the epidemic’s final size. To see if our model predicts herd immunity, we first 

use Equations 1 and 3 to determine the time history of the total infections, N(𝑡); and find,  

 𝑁(𝑡) = ∫ 𝐾'(t)I(0)
%
- 𝑒∫ (*!(%)+,(%))"%

"
# 𝑑𝑡     (5) 

We then note that iff the condition 𝑁(𝑡) = S(0) can occur, 𝑆(∞) = 0 is possible; and herd 

immunity is not guaranteed.  
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By inspection of Equation 5, it is clear there are finite values of 𝐾'(t) and 𝜇(𝑡), which 

allow N(t) to assume any finite value, including 𝑁(𝑡) = S(0). Therefore, unless there are 

heretofore unknown or unstated physical restrictions on the range of values for 𝐾'(t) and 𝜇(𝑡), it 

is plausible that 𝑆(∞) can be zero; and herd immunity is not guaranteed. This finding is 

provocative and suggests that we carefully examine the logic used to reach the conclusion that 

herd immunity, a sine qua non of conventional epidemiological modeling, does always exist.  

The conventional approach to deriving an expression for the final size of an epidemic 

begins with the following summarized Kermack and McKendrick equations (Kröger M and 

Schlickeiser 2020), 

 ".(%)
"%

= − /(%).(%)0(1)
2$

  (6) 

 "((%)
"%

= /(%).(%)0(1)
2$

− 𝜇(𝑡)𝐼(𝑡)  (7) 

where ρ(𝑡) and µ(𝑡) are the time varying versions of the parameters that Kermack and 

McKendrick define respectively as the “rate of infectivity” and “the rate of recovery”, and 𝐴3 is 

the area that encompasses the population. 

The conventional final size derivation proceeds by dividing both sides of Equation 6 by 

𝑆(𝑡). But, within this early step hides a fundamental assumption. To divide Equation 6 by S(𝑡), 

we must first assume that both 	S(𝑡)	and		𝑆(∞) are ≠ 0 for all time. Thus, the conventional 
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demonstration that 𝑆(∞) ≠ 0, the essence of herd immunity, begins with the assumption that the 

conclusion is true. 

Adherents of the analysis justify the assumption that	S(𝑡) and 𝑆(∞) are ≠ 0 by either 

explicitly or implicitly assuming and accepting that ρ(𝑡) or its equivalent, is finite.  Using the 

further assumption that ρ(𝑡) and µ(𝑡)	are constants, and employing Equations 6 and 7, they then 

arrive at the following implicit expression for determining the final size (Brauer, et al 2008), 

 log	( .(-)
.(4)

) = 𝑅-(1 −
.(4)	
#%	

),  (8) 

where 𝑅- =
/(%)
6(%)

. When presented in these analyses, Equation 8 is also accompanied by the 

statement ρ(𝑡) < ∞; and therefore 𝑆(∞) > 0. There are variations on this theme, but in all cases 

the conclusion that 𝑆(∞) > 0 rests on the assumption that ρ(𝑡) < ∞. 

The critical assumption, that ρ(𝑡) < ∞, is supported in these analyses by making one or 

the other of two physical assertions. One assertion is that ρ(𝑡) is the contact rate between the 

susceptible and infected populations (Brauer 2005) and therefore can never be infinite.  In the 

second assertion, the quantity I(t)ρ(𝑡) is referred to as the “force of infection” (Breda, et al, 

2021, Diekmann, et al, 2021) which, by its very nature, is assumed to be finite.  

However, a simple dimensional analysis of Equation 5 lays bare the historical 

controversy and contravenes the assertions that 𝜌(𝑡) must remain finite. In Equation 6, the units 

of ρ(𝑡) and I(t)ρ(𝑡) must be: 789	:7;8<%:=7>	?	@A8@
(:7;8<%8"	?	>B><83%:CD8	?	%:E8)

  and 789	:7;8<%:=7>	?	@A8@
(>B><83%:CD8	?	%:E8)

,  
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respectively. Therefore, based on their units and their definition, as S(𝑡) approaches zero, 

because each new infection occurs in proportion to an ever-decreasing value of S(𝑡), both ρ(𝑡) 

and I(t)ρ(𝑡) should be expected to become increasingly large and approach infinity. Beyond 

these dimensional problems, questions such as upper limits and functionality are simply 

unaddressed and unanswered in these analyses. The arguments that ρ(𝑡) and I(t)ρ(𝑡) must 

remain finite are, therefore, unconvincing.  

Flatten the Curve 

Despite the foregoing analysis, in typical analyses that use the SIR model, as a 

simplifying assumption, ρ(𝑡), the rate of infectivity, is replaced in Equations 6 and 7 by the 

constant 𝛽. Importantly, the origins of both parameters ρ(𝑡) and 𝛽 have their roots in Kermack 

and McKendrick’s initial assumption that the population is well mixed. The term 𝑆(𝑡)I(t) in 

Equation 6 quantifies the well mixed population; but since it is absurd to think that everyone in a 

population could possibly contact everyone else, Kermack and McKendrick introduced ρ(𝑡) in 

an attempt to capture the transmissions occurring due to the actual level of interactions by stating 

that “…the chance of infection is proportional to the number of infected …, and to the number 

not yet infected…”; and ρ(𝑡) is the time-based parameter of proportionality. The use of ρ(𝑡) was 

intended to capture the dynamics of the disease transmission and the population interactions and 

this purpose is extended to the use of the constant 𝛽. In the literature describing the SIR model, 𝛽 

is thought of as proportional to and a proxy for the actual interactions.  
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However, simply multiplying 𝑆(𝑡)I(t) by a parameter, here the constant 𝛽, is not the 

proper method to account for the actual number of interactions, because regardless of the value 

of ρ(𝑡) or 𝛽, the use of the term 𝑆(𝑡)I(t) in Equations 6 and 7 signifies that everyone is still in 

contact with everyone else. Lower values of 𝛽, then, merely represent less efficient transmission 

during those interactions. 𝛽 is not a proxy for the level of population interactions; rather, it is a 

parameter describing the efficiency of transmission.  

We highlight the commonplace misrepresentation of 𝛽 as a proxy for the population 

interactions because it has led authors to attribute the SIR model phenomenon known as “flatten 

the curve” to reduced population interactions. Many modelers have shown that lower values of 𝛽 

in the SIR model project the peak in new infections to occur later (See, for example, Di Lauro, et 

al, 2021). Since they believe 𝛽 to be a proxy for the population behavior, they then propose that 

lower numbers of population interactions will lead to a later epidemic peak. During the Covid-19 

pandemic, the belief in this relationship led to many public and political discussions about 

whether it was more beneficial to shutdown economies and delay the end of the epidemic or to 

allow the epidemic to peak quickly and end sooner.  

Socio-tragically, the “flatten the curve” discussion is based on the incorrect interpretation 

of the role that 𝛽 plays in the SIR model. The proper interpretation of a lower 𝛽 is that this 

represents less efficient disease transmission. That the peak is pushed out in time with less 

efficient transmission is not surprising, but this should not be confounded with lowering the 

number of population interactions. Contrary to popular belief, as we show in this manuscript, 
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when population interactions are properly considered, lower numbers of interactions 

significantly shorten the time of the epidemic.  

Coincidence of the Peaks of Infections and New Infections 

While the posited phenomena of herd immunity and “flatten the curve” are well known 

characteristics of the SIR models, a lesser known, but equally important phenomenon is that the 

SIR model with constant coefficients predicts that the peak in the new cases, "#(%)
"%

, will occur 

earlier than the peak in infections, I(t). This can be seen by substituting the constants 𝛽 and 𝛾 for 

ρ(𝑡) and µ(𝑡), respectively, in equations 6 and 7. Then, by first differentiating Equation 6 and 

setting the quantity "0(%)
"%

 equal to zero, it is clear that "
&#(%)
"%&

 is negative when "0(%)
"%

= 0; indicating 

that the SIR model projects that the daily number of new infections will have already peaked 

before the only source of new cases, the infections themselves, has peaked. 

We created Equation 1 from the simple premise that all new infections are caused by, and 

directly flow from existing infections; that is, apart from an original inoculum, no new infections 

are introduced from outside the population under consideration.  This assertion applies to all 

models; and, therefore, it should be expected that the projected course of new infections in every 

model will parallel the course of the infections and peak when the infections peak. Clearly, if 

𝐾'(𝑡) is a constant in Equation 1, in an epidemic described by that equation, the peak in new 

cases coincides with the peak in infections. In contrast, this is never the case in SIR models. 
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We have argued above, that in the SIR model with constant coefficients, 𝛽 should only 

characterize the efficiency of disease transmission. Therefore, one might suspect that the reason 

new cases peak before the peak in infections in the SIR model is that a hidden phenomenon 

exists within the SIR model. As we lay out in this manuscript, this hidden phenomenon is 

equivalent to an assumption of quite implausible population behaviors which have been obscured 

by the SIR model structure. 

Our Approach  

In this manuscript, we use the full Kermack and McKendrick integro-differential 

equations and an appropriate definition of the population interactions to develop a complete 

solution, which we refer to as the KMES (Kermack and McKendrick Equation Solution). We 

validate the KMES by accurately projecting data obtained from the Covid-19 pandemic. 

Building on this, we derive many useful, new analytical formulas for characterizing and 

managing an epidemic. Included in these are expressions for the viral load and for both N(𝑡) and 

N(∞).  

Lastly, the availability of a closed form solution enables us to closely examine the 

assumptions behind the SIR epidemiological compartmental models. In that examination, we 

find implicit, implausible assumptions, which have not been previously appreciated. This last 

exercise also demonstrates that the conventional imagery of people travelling irreversibly from 

one compartment to the next, even under the assumption of perfect immunity in recovery, 

requires significant adaptation.  
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Section 1: Solution to the Kermack and McKendrick Equations 

(Note: We use the following equation notation, (X, SY-Z), where X is the equation number in 

the body; and if the equation is used in a supplement, Y is the supplement number and Z is the 

number of the equation in the supplement). A list of all equations is provided in Supplement 7. 

Definition of terms 

Similar to SIR models, the KMES only requires the specification of two parameters: one 

describing disease dynamics and a second describing the dynamics of population interactions. In 

the KMES, the disease dynamics are described by 𝐾'(𝑡), the rate at which the infectious people 

cause new infections; while the population dynamics are described by 𝑃<(𝑡), the number of 

infectable contacts between people within the entire population. We define 𝑃<(𝑡) with the 

expression: 

 𝑃<(𝑡) = lim
∆%→-

∫ 𝑃<A(𝑡)𝑑𝑡
%H∆%
% ,  (9) 

where 𝑃<A(𝑡) is the rate of infectious contact for the entire population. 𝑃<(𝑡) is understood to be 

the instantaneous average of the contacts within the population. Infectious contacts can be 

fractions of a whole between two contacts; in other words, there is an amplitude associated with 

every contact and these weighted contacts average to 𝑃<(𝑡) for the population. 

To begin the derivation of the KMES, we first define 𝐼(𝑡) and 𝑅(𝑡) more precisely. In 

the conventional literature 𝐼(𝑡) is conceptualized as the sub-population that is currently able to 

advance the epidemic by infecting previously uninfected people; and 𝑅(𝑡) is thought to 
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represent people who have been infected, but because they have recovered, can no longer infect 

anyone. As the epidemic progresses, the members of the population 𝐼(𝑡) move in a one way 

sense into the population, 𝑅(𝑡). 

To develop the KMES, we defined 𝐼(𝑡) as the infectiousness of the population 𝑁(𝑡) 

where, by “infectiousness”, we mean the ability to infect others.  We define 𝑅(𝑡) as the portion 

of 𝑁(𝑡) that is unable to infect others and is therefore “not infectious”. In the following three 

thought experiments, we illustrate how our definitions of 𝐼(𝑡) and 𝑅(𝑡) expand on conventional 

notions.  

In the first thought experiment, we imagine a person with an active infection who has 

no contacts at all or only with persons who cannot become infected. This person is certainly a 

member of the population 𝑁(𝑡); but since they cannot infect anyone, they cannot advance the 

epidemic; and, therefore, cannot be defined as infectious. In our approach, they would be 

included in 𝑅(𝑡). This thought experiment explains why 𝐼(𝑡) and 𝑅(𝑡) should be dependent 

upon 𝑃<(𝑡).  

In a second thought experiment, imagine that a person has just infected a new person. In 

this case, the infecting person cannot reinfect that newly infected person nor can the newly 

infected person infect their infector. For the purposes of our model, we assume that 𝑃<(𝑡), does 

not change quickly when compared to the rate that people become infected. This means that, 

mathematically, the infecting people durably remain in infectious contact with the people they 

have infected. Therefore, according to our definition, the infectiousness of the infecting people 
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diminishes with each infection they cause; and, in symmetry, their recovery, the degree to which 

they are unable to infect others, increases.   

In the third thought experiment, we recognize that during the course of an infection, the 

quantity and quality of the infectious agent within any infected person, the so-called “viral load”, 

will rise and fall with time. The ability of a person to infect susceptible people will also vary in 

synchrony, therefore, we postulate that the value of the infectiousness will approximately track 

the variation in viral load. It is easy to see that persons whose infection has passed the maximum 

viral load, will, in a static social situation, become increasingly less infectious; and, in a sense, 

partially recovered. Therefore, mathematically, infected persons, while clearly no longer 

susceptible, should be considered to be a part of both subpopulations 𝐼(𝑡) and 𝑅(𝑡).  

Our intent in presenting these three examples is to provide intuitive insight into the 

characteristics we should expect for the variables 𝐼(𝑡) and 𝑅(𝑡) within the KMES. Specifically, 

the key characteristic is that 𝐼(𝑡) is a measure of infectiousness which depends upon a person’s 

ability and, importantly, opportunity to infect others. Adopting this definition of 𝐼(𝑡) leads 

inexorably to the conclusion that an individual will necessarily sometimes be a member of both 

the 𝐼(𝑡) and 𝑅(𝑡) subpopulations. 

Kermack and McKendrick’s model structure 

Kermack and McKendrick (1927) derived their integro-differential equations by 

imagining 𝑁(𝑡) to be the sum of incremental subpopulations of people who had been infected at 

the time 𝑡 − 𝜃; where 𝜃 was a dummy variable for time used to indicate the time since infection 
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of each subpopulation. The time history of the epidemic was then imagined as a square t by t 

array with every successive row representing an increment of time, ∆𝑡, and each column 

representing an increment of 𝜃. We designate each increment of 𝜃 as ∆𝑡 since 𝜃 has the units of 

time.  

The progress of each 𝜃 group in Kermack and McKendrick’s analysis was then tracked 

through time diagonally across the array with each 𝜃 group starting at time 𝑡 − 𝜃 and progressing 

diagonally thereafter. The array is square because 𝜃 ≤ 𝑡; and ∆𝜃 = ∆𝑡. Their equations were 

then developed by initially summing over 𝜃 and then taking the limit as ∆𝜃	𝑎𝑛𝑑	∆𝑡 → 0. A full 

rendition of the arrays relevant to their equations is in Supplement 6. A close review of these 

arrays may be helpful for the reader to fully understand the relationship between time and 𝜃. 

To derive the solution to Kermack and McKendrick’s equation, we initially adopt their 

convention using 𝜃 and use the following notation. First, unless otherwise specified, all 

dependent variables and parameters are assumed to be both dependent on time, designated as t, 

and 𝜃, defined as the time since infection. Examples of notation used to show this explicitly are 

𝐼(𝑡, 𝜃) or 𝜓(𝑡, 𝜃). If a variable (not a parameter) is designated as a function of time alone, then it 

is to be understood that the variable has been integrated over all 𝜃. For instance, 𝐼(𝑡) =

∫ 𝐼(𝑡, 𝜃)I
- 𝑑𝜃. In contrast to the variables, however, if a parameter is designated as solely a 

function of time or 𝜃 alone, then the parameter is considered to be constant over the alternate 

temporal dimension; over either 𝜃 or time respectively. The dependent variables used in this 

manuscript are S, I, N, R; and the parameters are: 𝐾' ,	𝑃< ,	φ,	𝜑A , ρ,	ψ,	µ,	β,	𝑃<A ,	and	𝛾.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


17 

 

We also note that Kermack and McKendrick, in their manuscript, showed the parameters, 

φ,	ψ,	and	β,	at	times as solely dependent on either 𝜃 or t, which is sometimes confusing. For 

clarity, we choose to initially show these parameters as dependent on both	𝜃	and	t	(i.e., we write 

them as φ(𝑡, 𝜃), ψ(t, 𝜃), and β(𝑡, 𝜃)) and then let the analysis determine whether they are solely 

dependent on 𝜃, t, or both. As the analysis proceeds, the importance of this clarification will 

become apparent. 

With the prior concepts of	𝐾'(𝑡),	𝑃<(𝑡), 𝐼(𝑡) and 𝑅(𝑡) in mind, we write the Kermack and 

McKendrick integro-differential equations in terms of time and 𝜃: 

 ".(%)
"%

= − J(1)
2$
(∫ 𝐴(𝑡, 𝜃) "#(%+I,-)

"%
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))%

- ,  (10) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)%
- ,   (11) 

 "L(%)
"%

= ∫ 𝐶(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)%
- ,  (12) 

 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡)  (13) 

where 𝐵(𝑡, 𝜃) = 𝑒+∫ M(%,@)"@"
"'𝜃 , 𝐶(𝑡, 𝜃) = 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃), and 𝐴(𝑡, 𝜃) = 𝜑(𝑡, 𝜃)𝐵(𝑡, 𝜃).	 

Kermack and McKendrick (1927, p. 703) defined 𝜑(𝑡, 𝜃) as “the rate of infectivity at age 𝜃”, 

and 𝜓(𝑡, 𝜃) as “the rate of removal” (page 703) of the infected population to the recovered 

population. 𝐴3 is the area that contains the population and, as previously defined, 𝜃 is the time 

since infection of any member of the population 𝑁(𝑡). 
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The integration limits in the integral in the definition of 𝐵(𝑡, 𝜃) require some additional 

explanatory details. In Kermack and McKendrick’s development of their equations, they 

assumed that the 𝐵 term, the infectiousness of each 𝜃 group at time, t, was only a function of 𝜃 

because they assumed that infectiousness only represented the progress of the infections within 

each 𝜃 group. They chose, therefore, to assume that every 𝜃 group would proceed along identical 

time paths from the time since infection, 𝜃. Consequently, the integration limits in the 𝐵 term 

were chosen to only depend upon the time since infection (i.e., 0 to 𝜃), regardless of the actual 

interval. They should have been more precise in their notation. The appropriate limits are 𝑡 − 𝜃 

and 𝑡 because this is the actual time period associated with each 𝜃 group.  

It was the recognition of these integration limits that enabled the solution which is 

demonstrated later in this section. We surmise that this subtle imprecision in Kermack and 

McKendrick’s notation; and the misinterpretation of the units of the parameters are likely the 

reasons that subsequent authors have not successfully found a pathway to a solution to the 

integro-differential equations. 

Derivation of the KMES 

Our goal is to find a solution to Equations 10-13 in terms of t, 𝐾'(𝑡) and 𝑃<(𝑡). To 

develop this solution, we first convert Equations 10-13 into equations dependent on the variable t 

alone using 𝐾'(𝑡) and the parameter µ(𝑡). We then solve these new equations, express the 

solution in terms of 𝐾'(𝑡) and 𝑃<(𝑡); and use the resulting equations to develop expressions for 

𝐵(𝑡, 𝜃), 𝜑(𝑡, 𝜃), and 𝜓(𝑡, 𝜃) to complete the solution. Lastly, we make the simplifying 
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assumption that the epidemic parameters, 𝐾'(𝑡) and 𝑃<(𝑡) are constants, which leads to a simple 

set of intuitive expressions describing the epidemic dynamics. 

We begin by using the definition of 𝑁(𝑡) as the total number of people that have been 

infected. Therefore: 

 𝑁! − 𝑆(𝑡) = 𝑁(𝑡)   (14) 

and, 

  ".(%)
"%

= − "#(%)
"%

  (15) 

We have already defined 𝐾'(𝑡) in Equation 1 as the rate of new infections caused by 

𝐼(𝑡), therefore,	

	 − ".(%)
"%

= "#(%)
"%

= 𝐾'(𝑡)𝐼(𝑡)  (16) 

Equation 16 describes a direct relationship between the cause of the epidemic, namely, 

infections, 𝐼(𝑡), and the change in the susceptible population; therefore, the units of 𝐾'(𝑡) must 

be: #89	(7;8<%:=7>
(7;8<%8"	38A>=7	?	':E8

.   

If we divide Equation 10 by Equation 11, and combine with Equation 16, we can express 

𝐾'(𝑡) in terms of Kermack and McKendrick’s variables as the negative of the change in the 

susceptible population per infectiousness, 𝐼(𝑡): 

 𝐾'(𝑡) = −
()(")
("
((%)

=
J(1)(∫ 2(%,I)(,("'-,#)(" "IH2(%,%)((-))"

#

2%(∫ N(%,I)(,("'-,#)(" "IHN(%,%)((-))"
#

  (17) 
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Likewise, by dividing Equation 12 by Equation 11 we can also define the parameter, 

µ(𝑡),	as the change in the recoveries per infectiousness, 𝐼(𝑡): 

 µ(𝑡) 	=
(/(")
("
((%)

=
∫ O(%,I)(,("'-,#)(" "IHO(%,%)((-)"
#

∫ N(%,I)(,("'-,#)(" "IHN(%,%)((-)"
#

.   (18) 

We note here that, as defined, µ(𝑡), is only a function of time, meaning that for all values of 𝜃 at 

a given time, t, µ(𝑡) has the same value. The same is true for the parameter 𝐾'(𝑡). 

We then rewrite Equations 10-13 in the following form as functions of time, 

 − ".(%)
"%

= "#(%)
"%

= K'(𝑡)	𝐼(𝑡),  (19)  

 "((%)
"%

= 𝐾'(𝑡)	𝐼(𝑡) − µ(𝑡)	𝐼(𝑡),  (20) 

 "L(%)
"%

= µ(𝑡)𝐼(𝑡) and  (21) 

 𝑆(𝑡) = 𝑁! − 𝑁(𝑡),   (22) 

where 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡). We now use Equations 10 and 11 along with Equations 19 and 20 to 

find a relationship between	µ(𝑡)	and	𝜓(𝑡, 𝜃); and then a relationship between 𝐾'(𝑡) and	𝜑(𝑡, 𝜃).  

Equation 20, is, of course, identical to Equation 2, and its solution is therefore Equation 3 

from the introduction, 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (*!(%)+,(%))"%
"
# .      (3)   
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We now note that "#(%)
"%

= "#(%,-)
"%

, since the value of "#(%,I)
"%

= 0 for all 𝜃 > 0. Then, since we 

know the relationship between "#(%)
"%

 and 𝐼(𝑡) from Equation 16, we can utilize the exponential 

forms of 𝐵(𝑡, 𝜃) and 𝐵(𝑡, 𝑡), substitute Equations 3 and 16 into Equation 11, keeping in mind 

that 𝑑𝜃 = 𝑑𝑡, and find the following relationship, 

 𝐼(𝑡) = ∫ 𝑒+∫ M(%,@)"@"
"'𝜃 𝐾'(𝑡 − 𝜃)𝐼(0)𝑒∫ (*!(@)+,(@))"@

"'-
# 𝑑𝜃 + 𝑒+∫ M(%,@)"@"

# 𝐼(0)%
-  (23) 

If we then divide Equation 23 by Equation 3, we find, 

 1 = ∫ 𝑒+∫ (M(%,@)+,(@))"@"
"'𝜃 𝐾'(𝑡 − 𝜃)𝑒+∫ *!(@)"@

"
"'- 𝑑𝜃 + 𝑒+∫ (M(%,@)+,(@)H*!(@))"@

"
#

%
-   (24) 

Since the integral, ∫ 𝐾'(𝑡 − 𝜃)𝑒+∫ *!(@)"@
"
"'- 𝑑𝜃%

- , can be evaluated by using the 

relationship, "(8
'∫ 1!(2)(2

"
"'- )
"I

= 𝐾'(𝑡 − 𝜃)𝑒+∫ (*!(@)"@
"
"'- , Equation 24 is satisfied if 𝜓(𝑡, 𝜃) =

𝜇(𝑡), which is the first sought after relationship. 

The second relationship, between 𝐾'(𝑡) and 𝜑(𝑡, 𝜃), can be found by substituting 

Equations 3 and 16 into Equation 10, using the exponential forms of 𝐵(𝑡, 𝜃) and 𝐵(𝑡, 𝑡), and 

obtaining the following, 

𝐾'(𝑡)𝐼(𝑡) =
J(1)
2$
(∫ 𝜑(𝑡, 𝜃)𝑒+∫ M(%,@)"@"

"'𝜃 𝐾'(𝑡 − 𝜃)𝐼(0)𝑒∫ (*!(@)+,(@))"@
"'-
# 𝑑𝜃 +%

-

 𝜑(𝑡, 𝜃)𝑒+∫ M(%,@)"@"
# 𝐼(0))     (25) 
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By using the relationship, 𝜓(𝑡, 𝜃) = 𝜇(𝑡); dividing Equation 25 by Equation 3 and by 

𝐾'(𝑡), we find the following expression, 

1 = ∫ J(1)P(%,I)
*!(%)2$

𝐾'(𝑡 − 𝜃)𝑒+∫ *!(@)"@
"
"'- 𝑑𝜃 + J(1)P(%,%)

*!(%)2$
𝑒+∫ *!(@)"@

"
#

%
-    (26) 

 We then find that, as before, since "(8
'∫ 1!(2)(2

"
"'- )
"I

= 𝐾'(𝑡 − 𝜃)𝑒+∫ (*!(@)"@
"
"'- , Equation 

26 can be satisfied if 𝐾'(𝑡) =
J(1)P(%,I)

2$
, which is the second sought after relationship. 

We now need to express µ(𝑡) (and, therefore, 𝜓(𝑡, 𝜃)) in terms of the epidemic 

parameters, 𝐾'(𝑡) and 𝑃<(𝑡).	We begin by first dividing Equation 16 by 𝑁(𝑡), integrating, and 

exponentiating to arrive at the following expression, 

 𝑁(𝑡) = 𝑁(0)𝑒∫ *!(%)
3(")
,(")"%

"
#       (27) 

The remaining task is to find a relationship between ((%)
#(%)

 in terms of the parameters of the 

epidemic, 𝐾'(𝑡) and 𝑃<(𝑡) which we will then use to find the form of µ(𝑡). 

To this end, we continue the analysis by noting that every person within both 𝑁(𝑡) and 

𝐼(𝑡) contacts 𝑃<(𝑡) people in each period ∆𝑡. Beginning at 𝑡 = 0, then, according to Equation 1, 

a total of 𝐾'(0)𝐼(0)∆𝑡 people within the 𝐼(0)𝑃<(0) group becomes infected during the time ∆𝑡; 

and the number of non-infected people within the 𝐼(0)𝑃<(0) group is changed to, 𝐼(0)𝑃<(0) −

𝐾'(0)𝐼(0)∆𝑡 + 𝐼(0)∆𝑃<7:(0); where 𝑃<7:(𝑡) is the number of people within 𝑃<(𝑡) who are still 

susceptible. We add the term 𝐼(0)∆𝑃<7:(0) to account for any additional susceptible people that 

the 𝐼(𝑡) group may contact infectiously during the time interval ∆𝑡. This also means that, per 
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potentially infectious contact, 𝐼(0)𝑃<(0), the infectiousness of the people within 𝑁(0), has been 

changed by the factor, 1 − *!(-)∆%+∆!456(-)
!4(-)

, because *!(-)∆%
!4(-)

 is the portion of 𝑃<(0) the contacting 

infected people can no longer infect and  ∆!456(-)
!4(-)

 is the number of new contacts that can be 

infected. 

After a time ∆𝑡, the infectiousness, 𝐼(∆𝑡), in the affected population 𝑁(∆𝑡) is, therefore, 

per contact, 

 𝐼(∆𝑡) = 𝑁(∆𝑡) − *!(-)∆%+∆!456(-)
!4(-)

𝑁(∆𝑡)    (28) 

Dividing both sides by 𝑁(∆𝑡), we obtain a difference equation for the ratio of the 

infectiousness, 𝐼(∆𝑡), to the total of the ever infected, 𝑁(∆𝑡),	population, 

 ((∆%)
#(∆%)

= 1 − *!(-)∆%+∆!456(-)
!4(-)

     (29) 

In the next time step, another 𝐾'(∆𝑡)∆𝑡𝐼(∆𝑡) people within the group 𝑃<(∆𝑡) become 

infected and, therefore, the infectiousness within 𝑁(2∆𝑡) is changed by an additional factor,    

1 −	*!(∆%)∆%+∆!456(∆%)
!4(∆%)

. This is expressed mathematically as, 

 ((Q∆%)
#(Q∆%)

= (1 − *!(-)∆%+∆!456(-)
!4(-)

)(1 − *!(∆%)∆%+∆!456(∆%)
!4(∆%)

)   (30) 

The process repeats itself in each period ∆𝑡; and therefore, we can write the recursion 

formula, 

((7∆%)
#(7∆%)

= `1 − *!(-)∆%+∆!456(-)
!4(-)

a `1 − *!(∆%)∆%+∆!456(∆%)
!4(∆%)

a…`1 − *!(7∆%)∆%+∆!456(7∆%)
!4(7∆%)

a (31) 
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As we indicated in the second thought experiment, we now make the simplifying 

assumption that a change,	∆𝑃<7:(𝑡), to 𝑃<7:(𝑡) will occur much more slowly than the creation of 

new infections, which means that ∆𝑃<7:(𝑛∆𝑡) ≪ 𝐾'(𝑛∆𝑡)∆𝑡. Therefore, in Equation 31, we can 

neglect the ∆𝑃<7:(𝑛∆𝑡) terms. The situation where ∆𝑃<7:(𝑛∆𝑡) is plausibly growing as fast as 

𝐾'(𝑛∆𝑡)∆𝑡 corresponds to an outbreak from the main epidemic. This is explored in more detail 

in Supplement 5.1. 

If we neglect the ∆𝑃<7:(𝑛∆𝑡) terms in Equation 31; and, since by definition, 𝑛∆𝑡 = 𝑡, as 

𝑛 → ∞, ∆𝑡 → 0, Equation 31 becomes, 

 ((%)
#(%)

= 𝐹:(0)𝑒
+∫

1!(")
%4(")	

"%"
#       (32) 

where 𝐹:(0) =
((-)
#(-)

; and is the fraction of 𝑁(𝑡) that is infected at 𝑡 = 0. Equation 32 is the 

sought for relationship for ((%)
#(%)

, in terms of 𝐾'(𝑡) and 𝑃<(𝑡).   

Substituting Equation 32 into Equation 27, we now have the following expression for 

N(t), 

 𝑁(𝑡) = 𝑁(0)𝑒R6(-) ∫ *!(%)8
'∫

18(2)
%4(2)

(2"
# "%"

#     (33) 

and, by multiplying Equations 32 and 33, we obtain an expression for 𝐼(𝑡), 

 𝐼(𝑡) = 𝐼(0)𝑒R6(-) ∫ *!(%)8
'∫

18(2)
%4(2)

(2"
# "%"

# +∫
18(")
%4(")

"%"
#    (34) 
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From the definition of 𝑁(𝑡) and using Equations 33 and 34 we find the expression for 

𝑅(𝑡), 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒+∫
18(")
%4(")

"%"
# )𝑒R6(-) ∫ *!(%)8

'∫
18(2)
%4(2)

(2"
# "%"

#    (35) 

If we substitute Equations 33 to 35 into Equations 19 through 22, we find that they are a solution 

if µ(𝑡) = 𝐾'(𝑡)−𝐹:(0)𝐾'(𝑡)𝑒
+∫

1!(")
%4(")
"
# "% + *!(%)

!4(%)
, which is the sought after expression for µ(𝑡). 

To complete the solution to Kermack and McKendrick’s integro-differential equations, 

we use the expression for µ(𝑡) to write the forms of 𝐵(𝑡, 𝑡), 𝐵(𝑡, 𝜃), 𝜑(𝑡, 𝜃), and 𝜓(𝑡, 𝜃) in 

terms of 𝐾'(𝑡) and 𝑃<(𝑡), 

 𝐵(𝑡, 𝜃) = 𝑒+∫ M(%,@)"@"
"'- = 𝑒+∫ (*!(@)+R6(-)*!(@)8

'∫
1!(9)
%4(9)

(2
# 9

H1!
(2)

%4(2)
)"@"

"'-   (36)		

	 𝐵(𝑡, 𝑡) = 𝑒+∫ M(%,@)"@"
# = 𝑒+∫ (*!(@)+R6(-)*!(@)8

'∫
1!(9)
%4(9)

(2
# 9

H1!
(2)

%4(2)
)"@"

#   (37) 

	 	𝜇(𝑡) = 𝜓(𝑡, 𝜃) =
(/(")
("
((%)

= 𝐾'(𝑡)−𝐹:(0)𝐾'(𝑡)𝑒
+∫

1!(")
%4(")
"
# "% + *!(%)

!4(%)
  (38) 

 𝜑(𝑡, 𝜃) = *!(%)2$
.(%)

     (39) 

Equations 33 through 39 form a complete solution to Equations 10 through 13. We refer 

to this solution as the KMES (Kermack and McKendrick Equation Solution) We also note that in 

Equations 38 and 39, 𝜓(𝑡, 𝜃) and 𝜑(𝑡, 𝜃) are only functions of time; and we therefore continue 
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this manuscript with only the use of 𝜓(𝑡) and 𝜑(𝑡). Lastly, with no loss of generality, since 

𝑆(𝑡) = 𝑁! − 𝑁(𝑡), rather than communicate the progress of the epidemic in terms of 

susceptibles, 𝑆(𝑡), we will continue to express it in terms of the total cases, 𝑁(𝑡), as in Equation 

33. 

Simplified expressions 

As we indicated at the beginning of the KMES derivation, the complex solution in 

Equations 33 through 39 can be written in simplified, more intuitive forms. The first of these is 

what we term the “Step Response” form, which is derived by using Equation 37 to rewrite 

Equations 33 through 35 as,  

 𝐼(𝑡) = 𝑒∫ *!(%)"%
"
# 𝐵(𝑡, 𝑡)𝐼(0)  (40) 

 𝑁(𝑡) = 𝑒∫ (*!(%)H
1!(")
%4(")

)"%"
# 𝐵(𝑡, 𝑡) ((-)

R6(-)
  (41) 

 𝑅(𝑡) = (8
∫ (1!("):

1!(")
%4(")

)(""
#

R6(-)
− 𝑒∫ *!(%)"%

"
# )𝐵(𝑡, 𝑡)𝐼(0)  (42) 

Since 𝐵(𝑡, 𝑡) is the time varying infectiousness input of the original infected group, 𝐼(0), 

the exponential expressions, 𝑒∫ *!(%)"%
"
# , 8

∫ (1!("):
1!(")
%4(")

)(""
#

R6(-)
, and 8

∫ (1!("):
1!(")
%4(")

)(""
#

R6(-)
− 𝑒∫ *!(%)"%

"
# , are the 

step response functions to this input. Equation 40 also shows that if there were no recovery, that 

is, if 𝐵(𝑡, 𝑡)𝐼(0) = 1, then the epidemic would proceed exponentially until the entire population 

was infected, an intuitive and sensible result.  
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In a final simplification of the solution, as an approximation, if we assume that both 

𝐾'(𝑡) and 𝑃<(𝑡) are constant for a period in Equations 33 through 35 and if 𝐹:(0) = 1, we arrive 

at simplified statements for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡), 

 𝑁(𝑡) = 𝑁(0)𝑒+!4(8
'	
18
%4

"
+S)     (43) 

 𝐼(𝑡) = 𝐼(0)𝑒
+!4T8

'	
18
%4

"
+SU+18%4

%
     (44) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒+
18
%4
%)𝑒+!4(8

'
18
%4

"
+S)    (45)  

Section 2: Useful expressions derived from the solution 

In this section we illustrate the many additional useful expressions that can be derived 

from the KMES. For simplicity, we assume that 𝐾' and 𝑃< are constants and that 𝐼(0) = 𝑁(0) =

1 = 𝐹:(0). These simplifying assumptions allow the nature of the expressions to be more easily 

seen and understood.  

Herd Immunity 

If  𝐾' truly is a function of the disease alone, it is likely to be a constant, at least in the 

initial stages of an epidemic.  Using this inferred property, and assuming the population does not 

change its behavior (i.e.,	𝑃< 	is	a	constant) during the pandemic, we find the following expression 

for the final size, 𝑁(∞) as 𝑡 → ∞, using Equation 43, 
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 𝑁(∞) = 𝑒!4       (46) 

From Equation 46, we can see that, if 𝑃< is large enough, it is possible for 𝑁(∞) to equal 

𝑆(0) and, therefore, herd immunity is not guaranteed.  

The time it would take for 𝑁(∞) = 𝑆(0) is given by the following expression, 

 𝑡 = − !4
*!
𝑙𝑛(1 − VW	(.(-))

!4
)      (47) 

and the criteria that must be true for the entire population to become infected is, 

 𝑃< > ln	(𝑆(0))       (48) 

Equations 46 through 48 enable the estimation of the level of social interaction that will 

cause the total population to be infected and they demonstrate very directly that the existence of 

herd immunity is not an inherent property of the Kermack and McKendrick model. 

Basic and Effective Reproduction Number, R0 and REff 

If we divide 𝐾' by 𝜓(𝑡) we find an expression for the Effective Reproduction Number 

(𝑅X;;): 

 𝑅X;; =
S

S+8
'
18
%4

	"
H ;
%<	

.  (49) 

A function of both the disease and the behavior of the population, the value of 𝑅X;; marks two 

key epidemic points. First, the peak in the number of new infections occurs and the epidemic 
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begins to decline when 𝑅X;; = 1. Second, when 𝑡 = 0, 𝑅X;; = 𝑅- = 𝑃Y =

𝐵𝑎𝑠𝑖𝑐	𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑁𝑢𝑚𝑏𝑒𝑟. 

Time to Peak New Infections 

By setting 𝑅X;; = 1 in Equation 49, we obtain the following expression for the time 

when the decline in new cases, "#(%)
"%

, begins: 

 𝑡"8<D:78 =
!4VW	(!4)

*!
.   (50) 

Likewise, if we differentiate both sides of Equation 43 twice, we can obtain an identical 

expression for the time when "#(%)
"%

 is a maximum,  

 𝑡E@? =
!4VW	(!4)

*!
,  (51, S3-5) 

where 𝑡E@? = the time to the peak of new infections. As it should, the time of the peak in new 

cases coincides with the start of the decline of infections.  

Equation 51 demonstrates the relationship between the strength of social intervention 

measures, 𝑃Y, and the time to the peak of new infections. When social interventions are stronger 

(smaller 𝑃Y), the time to the peak will always be shorter. 

Measuring the Control of an Epidemic 

A key purpose in developing a closed form model is to use expressions such as Equations 

46 to 51 to determine whether control measures in place are adequately managing the epidemic. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


30 

 

Here we develop tools from the KMES for assessing the condition of the epidemic in real time to 

enable adjustments to control measures. 

First, by differentiating both sides of Equation 33, dividing both sides by	𝑁(𝑡),	

rearranging the terms, and then taking the natural log of both sides, we obtain the following 

useful expression, 

 𝑅𝐶𝑂 = 𝑙𝑛 r
(,(")
("
#(%)

s = ln(𝐹:(0)𝐾') −
*8
!4
𝑡    (52) 

We label this the “Rate of Change Operator” (RCO) because it is a measure of the rate of change 

of 𝑁(𝑡), per person within 𝑁(𝑡). The RCO is a convenient expression to use in evaluating the 

current epidemic conditions because it only requires knowledge of the recent data on total 

number of cases, 𝑁(𝑡), and daily new cases, "#(%)
"%

, and as we show later, estimates of both 𝐾' 

and 𝑃< can be made from the value of the RCO. 

Another important expression, derived by differentiating Equation 43 twice, is the rate of 

acceleration of the epidemic: 

"&#(%)
"&%

= t𝐾Z𝑒
+1!%4

% − *!
!4
u "#(%)

"%
= 𝐾'(

((%)
#(%)

− S
!4
) "#(%)

"%
=	`𝑒LO[(%) − *!

!4
a "#(%)

"%
= 𝐾Z

"((%)
"%

 .  (53) 

Equation 53, with its four equivalent expressions, demonstrates the power that an 

authentic model provides. The leftmost expression allows us to compare the acceleration—the 

potential to change the rate of new infections—at any stage of the epidemic for any two 
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countries, even those with different population densities, using only the daily case rate and the 

defining constants, 𝐾' and 𝑃<.  

Equation 53 is also an immediate determinant of whether the control measures in place, 

represented by 𝑃Y, are effective enough. If the value of the term, 𝑒LO[(%) − *!
!4

 , in the third 

equality is positive, then the control measures are not strong enough. Conversely, when this term 

is negative, the epidemic is being brought under control.  

The maximum value of 𝑃< that will begin to bring down the new cases per day is the 

value that turns the acceleration in Equation 53 negative. If we set the left-hand side of Equation 

53 to zero, use the third expression from the left in Equation 53 and solve for 𝑃<, we arrive at the 

defining relationship for this critical objective of epidemic management: 

 𝑃< < 𝐾'𝑒+LO[(%).   (54) 

Since the value of 𝑅𝐶𝑂(𝑡) can be easily determined every day by calculating 

𝑅𝐶𝑂 = 𝑙𝑛 r
(,(")
("
#(%)

s during the epidemic and the value of 𝐾' can be determined using the 

technique illustrated in Section 3, the maximum allowable value of 𝑃< needed to reduce the 

number of daily cases can always be determined. This value of 𝑃< is the maximum level of 

infectable social contact allowable if we want the number of new daily cases to continue 

decreasing. Also, as explained in Supplement 5.1, if the slope of the RCO curve is determined 

from the graphical analysis to be greater than zero, then an outbreak has occurred and immediate 

reductions in social interactions are needed.   
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If we define a desired target for "#(%)
"%

, the number of new cases per day, at a future time, 

𝑡 + 𝑡%@A\8%, we can derive a new quantity, the desired fraction of the current new cases, 𝐷%;, as: 

 𝐷%; =
(,=":""2>?@"A

("
(,(")
("

= #89	O@>8	'@A\8%	L@%8
OBAA87%	#89	O@>8	L@%8

,   (55) 

Using the derivative of Equation 43, we arrive at the following expression: 

 𝐷%; = 𝑒+!4	(8
'
1!
%4

":""2>?@"+8
'
1!
%4

(")
)𝑒+

1!
%4
%BCDEFB.   (56) 

If 𝑡 ≫ 𝑡%@A\8%, then 𝑒+
1!
%4
%H%"2>?@" − 𝑒+

1!
%4
(%) ≈ 0 and we obtain the following equation 

from the remaining terms: 

 𝑡%@A\8% = − !4VW	(]"G)
*!

.   (57) 

Equation 57 quantitates the number of days, 𝑡%@A\8%, that a level of social containment, 𝑃<, 

must be imposed to achieve a fraction of daily cases, 𝐷%;, compared to the current level. In 

Supplement 5, using quantitative examples, we explain the use of Equations 53 through 57 to 

characterize and control an epidemic. 

Section 3: Veracity of the solution 

We can test the KMES projections using data from the Covid-19 pandemic. To do this, 

we must first determine the appropriate values of 𝐾' and 𝑃<.  

Projecting Country Data 
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If we assume that both 𝐾' and 𝑃< are at least piece-wise constant for substantial periods 

of time, we see that Equation 52 is a linear equation in time. By applying Equation 52 to data 

(Roser, et al. 2021) from six different countries during the initial stages of the Covid-19 

pandemic, we obtained the curves in Figure 1. As can be seen in the figure, before and shortly 

after the date (indicated by the arrows in the figures) of the imposition of containment actions in 

the six countries, these RCO curves became straight lines. This is a strong indication that it is 

reasonable to assume that 𝐾' and 𝑃< were approximately constants both before and after the 

imposition of the containment actions. 

To project the course of the epidemic in the individual countries, we used a small portion 

of the data immediately after the imposition of the containment measures to determine the values 

of ln(𝐹:(0)𝐾') and *8
!4

 by fitting Equation 52 to short, early portions of the straight segments of 

the RCO time series. These early portions comprised nine data points each and Table 1 displays 

the values derived for each country.  

Using these values in Equation 43, we then predicted the course of daily total cases 

(Figure 2) for the six countries.  These predictions matched the actual time series of the daily  
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Figure 1. Rate of change operator (RCO) curves for COVID-19 cases in various countries.  
An epidemic can be described by a piecewise linear model using the RCO (Equation 52). A short segment of orange 
dots in each graph is a linear fit to the corresponding points (blue/white circles) in the observed data. The slopes and 
initial points of these dotted-line segments are the values of 𝐾H and 𝐾I respectively which are tabulated in Table1.  
In some countries, RCO curves changed markedly soon after the date containment measures were implemented 
(arrows): A) South Korea, February 21; (the oval highlights a departure of the observed data from the RCO slope, 
indicating failures in, or relaxations of, social distancing); B) USA, March 16; C) Sweden did not implement any 
specific containment measures, so the model calibration was begun on April 1, the date when the slope of the RCO 
curve first became steady. D) Italy, March 8; E) Spain, March 14; F) New Zealand, March 25. All dates are in 2020. 
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Table 1. Social containment parameters used to model total cases and new daily cases of 

infection for different countries (Roser et al 2021). 

 𝑲𝐓

𝑷𝒄
 𝒍𝒏(𝑭𝒊(𝟎)𝑲𝑻) N(0) Date range for RCO fit 

South Korea 0.24 −1.58 3,736 March 1–March 9 
USA 0.076 −1.39 46,136 March 23–March 31 
Sweden 0.036 −2.47 5,320 April 1–April 9 
Italy 0.080 −1.93 31,506 March 17–March 25 
Spain 0.09 −2.11 65,719 March 27–April 4 

New Zealand 0.17 −2.06 708 April 1–April 9 

Parameters from linear fit of rate of change operator (RCO) data in Figure 1. J!
K"

, slope; 𝑙𝑛(𝐹L(0)𝐾M), 
intercept; N(0), number of cases at time (t=0), the first day of time range used. All dates are in 2020.  

 

total cases with an R2 > 0.97 in each of the six countries for the 45 days following the date 

containment measures were introduced. We then used the derivative of Equation 43 to plot the 

predicted time series of the daily new cases in Figure 3 for the six countries for the same 45 days. 

These predictions have an R2 range of 0.29 to 0.90; and as seen in the figure; the predicted peak 

of new cases was close to the observed peak for all countries.  

It is important to emphasize that the predictions in Figures 2 and 3 are not fits to the full-

length of the data shown. Rather, the two constants, ln(𝐹:(0)𝐾') and *8
!4

 were estimated using 

only a short, linear, nine-point portion of the epidemic data starting between 7 to 14 days after 

the imposition of containment measures. These constants were then used to project the data for 

the days after the nine points.  
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 Figure 2. Complete KMES model predictions for daily total case counts. A) South Korea; B) 

USA; C) Sweden; D) Italy; E) Spain; and F) New Zealand.  Dots are daily data points observed from (white-center 
and all blue) or calculated (orange) for each country. The KMES model was calibrated using data from the date 
ranges listed in Table 1 (white-center blue dots).  R2 > 0.97 for the model fit for all countries for the 45 days after the 
containment measures were implemented: South Korea, February 21-April 4; USA, March 16-April 30; Italy, March 
8–April 22; Spain, March 14-April 28; New Zealand, March 25-May 9. Sweden did not implement any specific 
containment measures, so the dates used were March 23- May 7. The deviation of the model from the data in the 
USA, panel (B), after April is elucidated in Supplement 5. All dates are in 2020. 
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Figure 3. Complete KMES model predictions for number of new daily cases. A) South Korea, R2 = 0.86; 
B) USA, R2 = 0.83; C) Sweden, R2 = 0.29; D) Italy, R2 = 0.69; E) Spain, R2 = 0.65; and F) New Zealand, R2 = 0.90. 
The orange dotted line is the model in all panels. The all-blue and white-center blue dots are data points, daily 
observations from each country. The white-center blue points are used to determine model parameters. R2 values are 
between the model and the data, across countries for the 45 days after containment measures were instituted. 
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Figure 4. Verification that 𝑲𝑻 is the same for all countries. The data from Table 2 is plotted using Equation 
58 and 𝐴H = 0.48	𝑘𝑚I. Each data point corresponds to a different country. The value of 𝐾M is the negative of the 
slope of the line, and	𝐾M is closely approximated everywhere by 𝐾M ≈ 0.26 

 

𝑲𝑻(𝒕) as a Parameter of the Disease 

In an additional demonstration of the veracity of the KMES, we tested the assumption 

that, in the initial portion of the epidemic, 𝐾'(𝑡)	is a constant and a property of the disease, and 

therefore, should be the same for each country. Equation 58, S2-5, derived in Supplement 2, 

shows that the model parameters, expressed in a purposefully constructed function,  

 𝐹{𝑁(𝑡)| = −𝐾'𝑡,     (58, S2-5) 

Where 𝐹{𝑁(𝑡)| = 2;#$
2
ln r1 + VW_#(%)`

+
N;,$
N

s. 
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Table 2. Initial COVID-19 pandemic data and social interaction parameters for various countries 
((Roser et al 2021), case and date data; (Worldometers 2021, population density data) 

  

Date of 
first case 
reported  

Date of 
cases in 
calculation 

Days 
Cases on 
calculation 
date  

Population 
density 
(people/km2) 

KT ln(KT) 
𝑲𝐓(𝟎)
𝑷𝒄(𝟎)

 

South Korea 22 Jan 21 Feb 30 204 527 0.26 −1.3 2.39E-04 

USA 22 Jan 19 Mar 57 13,663 36 0.26 −1.3 3.50E-03 

Sweden 1 Feb 7 Mar 35 179 25 0.26 −1.3 5.04E-03 

Italy 31 Jan 24 Feb 24 229 206 0.26 −1.3 6.11E-04 

Spain 1 Feb 13 Mar 41 5,232 94 0.26 −1.3 1.34E-03 

New Zealand 28 Feb 19 Mar 20 28 18 0.26 −1.3 6.86E-03 

All dates are in 2020. 

 

should be linearly proportional to time with a constant of proportionality or slope equal to −𝐾'. 

As illustrated in Figure 4, the fit of Equation 58, using the population density data from Table 2, 

has an R2 = 0.956 and a slope of −0.26 (the slope is equal to −𝐾'). This excellent correlation 

confirms that 𝐾' can confidently be assumed to be the same for all countries, is a constant in the 

initial stage of the epidemic, and is likely, a property of the disease. 

Viral Load 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


40 

 

The step response structure of the KMES suggests that it should also contain an 

expression for the viral load of the disease.  Equation 37 provides a starting point because it 

describes the evolution of the infectiousness of the initially infected population.  If we set 

𝑃< 	𝑎𝑛𝑑	𝐼(0) = 1 in Equation 37, meaning that if there was only one initial infection and we 

assume that this infected person contacted, on average, only one person during the epidemic, and 

assume for this case, that 𝐾'(𝑡) is a constant, we obtain an expression for the infectiousness of 

the initially infected person, 

 𝐵(𝑡, 𝑡) = 𝑒+(8'1!"+S)+Q*!%      (59) 

However, as we have noted, infectiousness does not equate to the actual viral load. 

Rather, it is a measure of the ability to infect and is dependent on the portion of contacts that 

remain infectable as well as the viral load. Since the available portion of infectable people in 𝑃< 

is equal to 𝑅X;;, we can extract the viral load from the infectiousness by dividing 𝐵(𝑡, 𝑡) by	𝑅X;; 

(dividing Equation 59 by Equation 49), which results in the following expression (keeping 𝑃< =

1), 

 𝑉𝑖𝑟𝑎𝑙	𝐿𝑜𝑎𝑑 = 𝑒+(8'1!"+S)+Q*!%(2 − 𝑒+*!%)     (60) 

When we set 𝐾' = 0.26, as derived from Figure 4, we obtain the plot in Figure 5.   

The interpretation of Equation 60 and its graphical representation in Figure 5 require 

careful consideration.  First, the initially infectious person in the epidemic did not become 
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infected at 𝑡 = 0. Therefore, time in Equation 60 and in Figure 5 must be allowed to be negative 

at the beginning of the infection. Second, Equation 60, as seen graphically in Figure 5, has the  

 

Figure 5. Representation of the average viral load of an infected person in the Covid 19 
pandemic. The plot was generated using the value 𝐾% = 0.26 in Equation 60   

 

expected characteristics of a viral load; that is, it rises quickly, reaches a maximum, and then 

declines at a slower exponential pace.  
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As a measure of the veracity of the curve in Figure 5, we found that it has the same 

overall shape and dynamic change in load from peak to 15 days after the peak as the estimated 

average viral loads estimated by direct measurements of individual Covid-19 patients with 

Covid-19 (Challenger et al 2021 and Jones et al 2022). In these references, using patient data, 

Challenger et al (2021) found that the base 10 exponential decline rate of the viral load was -0.22 

with a credible interval between -0.26 and -0.17 whereas Jones et al (2022) found a credible 

interval of the base 10 exponential decline of -0.17 to -0.16. A least squares base 10 exponential 

curve fit to the data in Figure 5 between day 0 and day 15 has a rate of decline of -0.19 with an 

R2 value of 0.99. This result is another strong indication of the veracity of the KMES and that 𝐾' 

is a parameter of the disease. 

Correlation with Independently Measured Mobility Data 

A fourth illustration of veracity arises from the ability to correlate independently sourced 

Google mobility data (Google 2020) to the RCO. Mobility data, available from Google, are a 

measure of the difference between the amount of time people stayed at home (the Residential 

Mobility Measure or RMM) during the period modelled and a baseline measured for 5 weeks 

starting January 3, 2020. As explained in Supplement 2, and based on the expression for the 

RCO (Equation 52), if the KMES is correct, then the integral of this mobility data should 

correlate linearly with the measured RCO. Figure 6 shows that, as the KMES predicts, for each 

country considered, the integral of the RMM and the RCO are linearly correlated to a high 

degree.   
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Figure 6. Correlations between the daily value of the rate of change operator (RCO) and the 
integral of the Google Residential Mobility Measure (RMM) (Google 2020). A) South Korea (date 
range, February 23 to April 23); B) USA (March 25 to May 31); C) Sweden (March 5 to May 5); D) Italy (March 25 
to May 31); E) Spain (March 25 to May 31); and F) New Zealand (March 21 to April 22). All dates are in 2020. 
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Section 4: Comments on the SIR approximations 

Due to the previous lack of a closed form solution, approximations to the full Kermack 

and McKendrick integro-differential equations appear throughout the literature. Since, by their 

definition, approximations differ from the exact form, it is instructive to analyze these 

approximations with an eye to determining whether they behave even qualitatively like the 

KMES solution; and whether conclusions based on the approximations are then likely to be 

valid.   

The approximations have their roots in Kermack and McKendrick’s 1927 paper where 

they proposed the following approximation, 

 ".(%)
"%

= − a((%).(%)
#$

, (61, S3-1) 

 "((%)
"%

= a((%).(%)
#$

− 𝛾𝐼(𝑡),  (62, S3-2) 

 "L(%)
"%

= 𝛾𝐼(𝑡), and (63, S3-3) 

 𝑁3 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (64, S3-4) 

where β = rate of contact and transmission, γ = rate of recoveries. It should also be noted that the 

basic reproduction number 𝑅- =
a
b
  by definition. 
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These well-known “SIR” equations can be derived from the full Kermack and 

McKendrick equations by assuming that the parameters 𝜑(𝑡, 𝜃) = 2$a
#$

 and 𝜓(𝑡, 𝜃) = 𝛾 are 

constants. The SIR equations and their variants (SEIR, MSEIR, etc.) have been used for decades 

in attempts to quantitatively and qualitatively model epidemics. These models are known as 

compartmental models, and they all share the common characteristic that the term a((%).(%)
#$

 

appears in the equations for ".(%)
"%

 and "((%)
"%

.  

In Section 1 we derived a time-based form of the Kermack and McKendrick equations; 

Equations 19 through 22. Although Equations 61 through 64 are purported to be an 

approximation to these equations, we find that if 𝐾'(𝑡) and µ(𝑡) in Equations 19 through 22 are 

approximated as the constants β and 𝛾 as in the SIR model, the two sets of equations are not even 

approximately equivalent because the term  a((%).(%)
#$

  does not appear in the approximations of 

Equations 19 or 20. Since the SIR equations are putatively an approximation of the full Kermack 

and McKendrick integro-differential equations and Equations 19 through 22 are just a 

restatement of Kermack and McKendrick’s equations; this suggests a potential flaw in the 

methodology used to derive the SIR equations. Therefore, we need to re-examine the logic 

Kermack and McKendrick used in developing the SIR equations. In the following subsections, 

we focus in particular on the reasons why 𝜑(𝑡, 𝜃) and 𝜓(𝑡, 𝜃) should not be approximated as 

constants.  

Why 𝝋 should not be approximated as a constant 
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The argument against approximating 𝜑 as a constant originates with a key statement put 

forth early in the derivation of Kermack and McKendrick’s integro-differential equations. On 

page 703 Kermack and McKendrick state (1927), “Now v(𝑡) denotes the number of persons in 

unit area who become infected at the interval 𝑡, and this must be equal to x(𝑡)∑ 𝜑(𝜃)𝑣(𝑡, 𝜃)%
S  

where x(𝑡) denotes the people per unit area still unaffected (the density of the susceptibles), and 

𝜑(𝜃) is the rate of infectivity at age 𝜃.” In equation form, using our notation of 𝜑(𝑡, 𝜃), this 

statement reads, 

 c(%)
∆%

= x(𝑡)∑ 𝜑(𝑡, 𝜃)𝑣(𝑡, 𝜃)%
Id∆%     (65) 

Later in their manuscript, Kermack and McKendrick used Equation 65 as the basis for deriving 

Equations 60 and 61 by assuming that 𝜑(𝑡, 𝜃) equals the constant a2$
#$

. 

Although Kermack and McKendrick labeled 𝜑(𝑡, 𝜃) as a “rate”; a proper balancing of the 

dimensions in Equation 65 demonstrates that 𝜑(𝑡, 𝜃) cannot merely be a rate with the units of 

𝑡𝑖𝑚𝑒+S. Because v(𝑡, 𝜃) and v(𝑡) have the same units, :7;8<%8"
@A8@

, and  𝑥(𝑡) has the units of  

>B><83%:CD8
@A8@

, we must conclude that 𝜑(𝑡, 𝜃) has the units of  @A8@
>B><83%:CD8	?	%:E8

. Hence, from the 

description given, it is clear that 𝜑(𝑡, 𝜃) should be defined in the following form using the actual 

rate, 

 𝜑(𝑡, 𝜃) = P>(%,I)
?(%)

,      (66) 
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where 𝜑A(𝑡, 𝜃) is a rate of new infections. Using Equation 66, Equation 65 can now be rewritten 

as, 

 c(%)
∆%

= ∑ 𝜑A(𝑡, 𝜃)𝑣(𝑡, 𝜃)%
Id∆% .      (67) 

In an epidemic, as the number of total infections increases, the density of the 

susceptibles, 𝑥(𝑡), is an ever-decreasing quantity; and therefore, from Equation 66 we can see 

that 𝜑(𝑡, 𝜃) cannot itself be considered a constant as the epidemic progresses; especially as the 

affected population grows very large.  Rather, the quantity, 𝜑A(𝑡, 𝜃) (which is equivalent to 

𝐾'(𝑡)) is a better choice to be considered a constant when seeking to simplify the equations 

without losing their essence. 

Other authors too, have misinterpreted and misused 𝜑(𝑡, 𝜃). For example, in Hethcote 

(2000, pg 602), the term, a((%).(%)
#$

 is derived using the argument that “If 𝛽	is the average number 

of adequate contacts (i.e., contacts sufficient for transmission) of a person per unit time, then 

aJ(1)0(1)
#$

= 𝛽𝑁3𝑠(𝑡)𝑖(𝑡) is the number of new cases per unit time due to 𝑆(𝑡) = 𝑁e𝑠(𝑡) 

susceptibles.” Notable in the statement is that 𝛽 is defined as, “…the average number of 

adequate contacts (i.e., contacts sufficient for transmission) of a person per unit time …”. 

Because 𝛽 is defined as the average number of adequate contacts per unit time, and per person, 

this statement also implies that 𝛽 is not merely a contact rate with the units of  <=7%@<%>
%:E8

. Since 

Heathcote goes on to imply that the “person” is a susceptible, 𝛽 must have the units 
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<=7%@<%>
%:E8	?	>B><83%:CD8>

 and the conclusions that  a((%).(%)
#$

= 𝐾'(t)I(𝑡) and 𝛽 = *!(1)#$
.(%)

  immediately 

follow.  

Early in an epidemic, when 𝑆(𝑡) ≈ 𝑁3, we see that 𝜑(𝑡, 𝜃) ≈ 𝜑A(𝑡, 𝜃) = 𝐾'(𝑡). 

Therefore, 𝜑(𝑡, 𝜃) can only be approximated as a constant early in an epidemic and if 𝐾'(𝑡) can 

be approximated as a constant at that point. 

Why 𝝍 should not be approximated as a constant 

The time early in an epidemic, when 𝑆(𝑡) ≈ 𝑁3, also illustrates why 𝜓 should not be 

approximated as the constant γ in the SIR formulation. When 𝑆(𝑡) ≈ 𝑁3, Equations 60 through 

63 become, 

 ".(%)
"%

= −𝛽𝐼(𝑡),  (68) 

 "((%)
"%

= 𝛽𝐼(𝑡) − γ𝐼(𝑡),   (69) 

 "L(%)
"%

= γ𝐼(𝑡), and  (70) 

 𝑁3 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),   (71) 

Since peaks are observed in epidemics even when 𝑆(𝑡) ≈ 𝑁3 and  𝛽 = 𝜑(𝑡, 𝜃) ≈ 𝐾'(𝑡) 

early in an epidemic; and, as explained earlier, 𝐾' is a parameter of the disease which is likely to 

be a constant early on, inspection of Equation 69 makes it immediately clear that this set of 
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equations will not adequately model epidemics. Equation 69 predicts a continual exponential 

increase in 𝐼(𝑡) at a constant rate of 𝛽 − γ if 𝛽 > γ. Therefore, in contradiction to observed 

phenomenon, Equation 69 predicts a peak will never occur while 𝑆(𝑡) ≈ 𝑁3. Since 𝛽 can be 

approximated as a constant under these conditions, we are forced to conclude that 𝜓 cannot be 

adequately modelled as a constant while 𝑆(𝑡) ≈ 𝑁3. This conclusion is supported by Equation 38 

which shows that ψ(𝑡), and therefore 𝛾, cannot be a constant because the term, 𝑒+∫
1!(2)
%4(2)
"
# "@, 

decays exponentially with time.  

From the preceding observations and since we have the KMES, we conclude that all SIR 

constructs are inappropriate and unnecessary approximations. In Supplement 3, we support this 

conclusion by detailing the mathematically implausible assumptions that underlie the SIR 

approximations and make the case that these assumptions are not even qualitatively correct. We 

also analyze the inherent flaws within the SIR formulation that led to the erroneous “flatten-the-

curve” projection by explicitly demonstrating that the flatten-the-curve projection illustrated 

throughout the literature (see, for example, Di Lauro et al 2021) is caused by hidden, inherent 

and implausible assumptions in the SIR models about both the populace and the disease.  

Discussion 

The derivation of a solution to the Kermack and McKendrick integro-differential 

equations obviates the need for an approximation to these same equations. Rather than use an 

approximation, such as the SIR models, we can instead use the solutions for 𝑁(𝑡), 𝐼(𝑡), and 
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𝑅(𝑡), illustrated in Equations 33 through 39, to predict the dynamics of an epidemic, determine 

whether the societal controls in place are adequately managing the epidemic, and develop 

quantitative measures for guiding the behavior of the populace, all goals of epidemic 

management. We also illustrate that the phenomena predicted using the SIR approximation are 

not, in fact, properties of the Kermack and McKendrick equations.   

We began this manuscript with three observations:  

1. A fundamental tenet of modern epidemiology, the presumed existence of herd 

immunity, is premised on a circular argument; 

2. The phenomenon of the peak in new cases moving out in time with declining values of 

𝛽 in the SIR model, actually stems from less efficient transmission among a highly 

interactive population, and; 

3. The observation that the peak in infections in the SIR model precedes the peak in new 

cases is an indication that unknown assumptions about the population behavior lie 

hidden within the SIR model.  

Using the KMES we fully explicate the mathematical bridges between the KMES and the SIR 

models and demonstrate why the SIR approximation is a poor substitute for a closed form 

solution to the full integro-differential equations.  

 The KMES accurately projects phenomena which arose in the Covid epidemic, even 

under the simplifying assumption that 𝐾'(𝑡) and 𝑃<(𝑡) are constants for periods of time. These 
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successful projections contrast sharply with SIR model projections which must violate the 

assumption that 𝛽 is constant to produce even approximately consonant results. Also, the high 

degree of correlation between the proxy of the population behavior in the KMES and the 

independently measured actual population mobility in the Google data contrasts with the weak 

correlations of the SIR construct to mobile phone mobility data found by prior authors 

(Wesolowski 2015). These accurate projections and the contrasts with the SIR approximations, 

strongly suggest that the KMES should replace the SIR models. 

Our expression for final epidemic size, an important finding, disproves another of the 

accepted tenets of epidemiology. Equations 46 through 48, mathematical expressions for that 

final size, the time to reach it and the associated contact required, in their mathematical 

simplicity, state what is an intuitive conclusion: if the people contact each other infectiously at a 

high enough level for a long enough time, herd immunity is not guaranteed, and an epidemic can 

spread to an entire population. This conclusion must become a new tenet of epidemiology. 

The KMES does have the intuitive form, exemplified by the systems view encapsulated 

in Equation 40: 

 𝐼(𝑡) = 𝑒∫ *!(%)"%
"
# 𝐵(𝑡, 𝑡)𝐼(0) (40) 

This equation states that the input of infections, 𝐵(𝑡, 𝑡)𝐼(0), is transformed into the time varying 

output of infectiousness, 𝐼(𝑡), through an exponential step response function, 𝑒∫ *!(%)"%
"
# . Our 

analysis here has led us to affirm this practical mathematical statement of the epidemic 

dynamics. 
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As further support to the veracity of our solution, we note that expressions for the number 

of total cases, 𝑁(𝑡), Equations 29 and 42, are both Gompertz equations. This form is supported 

by Onishi et al (2021) who demonstrate that the Covid-19 epidemic time course in many 

countries was well fit by a Gompertz model. These authors do not offer a basic principles 

argument as to why this is so, but they demonstrate a strong correlation to this aspect of our 

model structure. 

With the availability of an analytical solution, we derived previously unknown, 

pragmatically useful expressions of important epidemiological relationships: Time course of the 

epidemic size, Final epidemic size, Time to peak infections, Effective Reproduction number, 

Viral load, and targets for reducing the epidemic along a planned path. In addition, in the 

supplements, we explain how to detect and model outbreaks. These relationships form an 

important new toolbox for public health officials to use in accurately guiding the public to 

control an epidemic. 

These analytical expressions are intuitive and sensible. For instance, the expression for 

time to maximum new cases, in Equations 50 or 51, passes smoothly through the epidemic peak. 

This contrasts with the expression for the time to the peak derived from the SIR models (Koger 

and Schlickeiser, 2020). In this reference, the expressions for the SIR models are only valid 

when 𝑅X;; > 1. While we do not doubt that they have been correctly derived from the SIR 

equations, they do show that the SIR model has the peculiar property that the estimated time to 

the peak in new infections becomes increasingly larger as 𝑅X;; approaches one before suddenly 

plunging to negative infinity just as 𝑅X;; reaches one. This mathematically summarizes the 
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claimed phenomena behind the concept of “flattening the curve”, but it is unsettling and 

nonintuitive. How can the peak in new infections actually move away from attainment as people 

interact less frequently? 

Our expressions for the time to the peak, Equations 50 and 51, have none of this peculiar 

behavior and their forms are supported by data from different countries which imposed very 

different containment strategies. As we explain in Supplement 3, when social containment is 

increased, the peak number of infections is much lower, and it occurs earlier. The KMES shows 

that strong containment actions shorten the epidemic, as one would intuit; and the data from 

several countries clearly demonstrate. This finding is also supported by the data presented in 

Figure 4 in Harris (2023). 

The fundamental reason conventional SIR models project epidemic phenomenon 

incorrectly is that beginning with Kermack and McKendrick, numerous authors have 

misunderstood the units of 𝜑 on the way to deriving the SIR equations. Even authors (Hethcote 

2000), who derived the SIR equations without the use of Kermack and McKendrick’s equations, 

replicate this mistake. Furthermore, 𝜓(𝑡) cannot be assumed constant early in the epidemic; and 

𝜑(𝑡) cannot be assumed constant as the epidemic becomes large relative to the total population 

without imposing subtle, implausible assumptions on the model. Analytic expressions for these 

quantities, Equations S3-8 and S3-9, derived in Supplement 3, make this clear.  

It should not be surprising that a closed form, complete solution to the epidemic 

equations produces an expression for the viral load. The curve in Figure 5, wholly derived from 

the Covid-19 data from several countries, has the characteristics many authors have expected a 
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viral load to have (Challenger et al 2022, Jones et al 2021). While these authors reached their 

conclusions through direct measurement of the viral load of thousands of patients, the same form 

has emerged from the KMES by only using country case data.  

Equations 34 and 35 clearly show that both 𝐼(𝑡) and 𝑅(𝑡) depend on both 𝐾'(𝑡), a 

property of the disease and 𝑃O(𝑡), a function of the population behavior. It is natural to assume 

that both 𝐼(𝑡) and 𝑅(𝑡) will depend on properties of the disease, but the form of the KMES 

shows directly that their values also depend on the behavior of the population.  

We explain this dependency in Section 1 and Supplement 1 by showing that 𝐼(𝑡) is best 

interpreted as the total infectiousness within the infected population 𝑁(𝑡). As a complementary 

interpretation, 𝑅(𝑡) is best thought of as the degree of recovery from infectiousness within 𝑁(𝑡).  

Therefore, a previously infected individual is simultaneously a part of both the infected and 

recovered populations with the degree of membership determined by the parameter ψ(𝑡).  

As time goes on, the degree of membership inevitably moves the infected individuals 

towards membership in the recovered community, but during this time, the infectiousness of all 

individuals vary with their viral load and number of contacts. An increase in social contact 

causes an increase in infectiousness, which, in turn, decreases the degree to which the person 

remains in the recovered population and vice versa. Therefore, as an individual’s viral load 

changes, based on time and the disease dynamics, so too, does this individual’s ability to infect 

others change based on their level of social interaction.    
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With this concept of variable membership in mind, then, we see that the idea of a 

compartmental model wherein people move irreversibly from being infected to recovered is an 

inadequate model construct. Rather, assuming immunity exists, the proper compartment 

construct is that there are only two compartments: 1) not yet infected, S(𝑡); and 2) previously 

infected, 𝑁(𝑡); and only from the latter of these is there no escape.  

Concluding remarks  

We recognize that the mathematics and resulting conclusions described in this manuscript 

contradict long-accepted, mathematically derived tenets of epidemiology. However, these 

conclusions have been derived by directly solving the integro-differential Kermack and 

McKendrick equations, the foundation of epidemic models. While the abandonment of long held 

concepts is always a difficult proposition, it is nevertheless necessary given the demonstrations 

here that prior approximations do not even qualitatively approximate important, real world 

phenomenon. The proposed replacement for these concepts, the KMES, is consistent with and 

provides insight into both data gathered from the Covid-19 pandemic and basic epidemiological 

notions such as the Effective Reproduction Number and viral load. The expressions derived 

using the KMES are well behaved under all epidemic conditions and accurately predict 

correlations among a variety of independent data sources. 

We recognize that our analysis can be improved by an exploration of population 

interactions that differ from the ones we assumed. We made the simplifying assumption that the 
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ratio !456(%)
!4(%)

 remains constant as 𝑃< changes. This is a reasonable assumption, but an analysis 

which does not require its use may provide even deeper insights into epidemic behavior and 

management.  The analysis can also be further improved by using the enormous amount of case 

data now available. This additional data can improve the estimate of the key parameter, 𝐾'(𝑡), 

including variations in time (with mutations of the infectious agent) and possibly with local 

genetic variations in the population affected. This will further illuminate the actions people need 

to take to achieve the target values of 𝑃<(𝑡). 

We intend this work as a hopeful message to the epidemiological community. Logical, 

analytical tools are available to characterize the state of an epidemic and provide guidance to 

public health officials. These tools show, unequivocally, that with stronger initial measures, an 

epidemic can be stopped more quickly with much less economic damage than predicted by 

conventional models. Although each disease agent will have its own infectious process, the 

overall epidemic dynamics can ultimately be modified by the behavior of the population; and the 

KMES provides the detailed pathway to modification and perhaps, even control. 
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Supplement 1 Insights developed from the KMES  

As we derived the KMES, we did not stop to discuss insights provided by some of the 

important expressions. In this section, we will provide those insights. 

The first of these expressions is the relationship described by the derivative of Equation 

32: 

 
"f 3("),(")g

"%
= − *!(%)((%)

!4(%)#(%)
  (S1-1) 

This seemingly simple expression is, along with Equation 1, a fundamental statement of 

an infectious epidemic. 

If we write out the derivative, 
"f 3("),(")g

"%
, in Equation S1-1, we obtain:  
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With some rearrangement of the terms, we find the following expression: 
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We highlight equation S1-3, because it brings to light an important insight when we set 

𝑡 = 0, and 𝐼(0) = 𝑁(0). Setting 𝐼(0) = 𝑁(0) and 𝑡 = 0 in Equation S1-3 and recognizing that 

"#(%)
"%

− "((%)
"%

= "L(%)
"%

 we obtain the following: 

 "L(-)
"%

= 𝐼(0) *8(-)
!4(-)

     (S1-4) 

Since all three quantities on the righthand side are positive, Equation S1-4 provides a 

possibly startling result: The recovered population begins to grow the instant the epidemic starts! 

Furthermore, Equation S1-4 tells us that the infectiousness of the individuals in the 

population 𝐼(0) (and by extension 𝐼(𝑡)) is not a constant during the time they are infected.  This 

may be obvious because, the viral load changes as the infectiousness of a person changes.  

However, Equation S1-4 handily provides us with the initial rate at which the infectiousness of 

population 𝐼(0) is changing. That rate is *8(-)
!4(-)

.  

It is not surprising that disease infectiousness is a function of 𝐾Z but it is perhaps less 

obvious that the infectiousness changes directly and inversely to the population behavior, 𝑃Y.  

The infectiousness of a person is not just dependent on the viral load, but also and comparably so 

on the contacts a person has with other, not-yet-infected people.  Semantically, if an infected 

person never contacts another noninfected person, they are never truly infectious in the sense that 

they cannot advance the disease.   
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We can describe 𝑅(𝑡) in an obverse manner, since 𝑅(𝑡) is the reduction in the total 

infectiousness that has occurred in the population, 𝑁(𝑡); and so, it is also a function of the 

disease transmissibility and population behavior. 

We gain further insight into the meaning of the KMES by taking the derivative of 

Equation 44 and dividing by 𝐼(𝑡). Then, using Equation 32 we obtain,  

  S
((%)

"((%)
"%

= 𝐾Z
((%)
#(%)

− *8
!4
	= 𝐾' −

L(%)
#(%)

𝐾' −
*8
!4

. (S1-5) 

The left-hand side of Equation S1-5 is the rate of change of infections per infectious 

person. Since 𝐾' =
"#(%)
"%

S
((%)

, and is the rate at which infectious persons cause new infections, the 

terms − L(%)
#(%)

𝐾' −
*8
!4

 must be the rate of recovery per infectious person, "L(%)
"%

S
((%)

. 

Finally, we can use Equations 33, and 46 to write this simple expression for the solution 

for total cases if 𝐾'(𝑡) and 𝑃<(𝑡) remain constant: 

 𝑁(𝑡) = 𝑁4
(S+R6(%)). (S1-6) 

where 𝐹:(𝑡) =
((%)
#(%)

= 𝑒+
1!
%4
% and is the fraction infected. 

Supplement 2. Verification of the solution 

Demonstration that 𝑲𝑻 is a parameter of the disease and constant early in the epidemic  

To demonstrate that 𝐾'(𝑡) is indeed a constant, we need to first further refine the concept 

of 𝑃<(𝑡). As previously defined, 𝑃<(𝑡) is the average number of specific infectious contacts a 
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member of subpopulation N(t) has across the entire population.  This is obviously a function of 

the population’s behavior. Here, we begin by also assuming that 𝑃<(𝑡) is a function of population 

density, and that people’s mobility extends over a constant average effective area per unit of time 

which we define as the effective area rate, 𝐴SA(𝑡). We can then write an expression for 𝑃<A(𝑡): 

 𝑃<A(t) =
2;>(%)#$

2$
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡	𝑟𝑎𝑡𝑒,  (S2-1) 

where 𝑁3 = the entire population of the region with the infection,	 = the area of the region, and  

#$
2$

 = the population density.  

Analogous to the way we defined 𝑃<(𝑡) using 𝑃<A(𝑡), we now define a quantity, 𝐴S(𝑡), in 

terms of 𝐴SA(𝑡): 

  𝐴S(𝑡) = lim
∆%→-

∫ 𝐴SA(𝑡)𝑑𝑡
%H∆%
% ,  (S2-2) 

where 𝐴S(𝑡) is the effective area traversed by an individual. In specifying the area, we make an 

assumption similar to the assumption that we made for 𝑃(𝑡)< in Section 1; that is, the area that a 

person traverses can change, but we assume that if a change in area changes the ratio of 

contacted persons not infected to total contacts !456(%)
!4(%)

, it does so slowly. We call 𝐴S(𝑡) the 

“effective area” because the population is typically only dispersed within ~1% of the land within 

a given region of a country (Ritchie and Roser 2019). If we take this into account, then 𝐴S(𝑡) =

2A8@	@<%B@DDh	%A@i8A>8"	Ch	@	38A>=7
-.-S

. As defined, neither 𝑃<(𝑡) nor 𝐴S(𝑡) are rates. They are both 

unitless, vary in time, and depend on the population’s behavior. 
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We can now write an expression for *8(%)
!4(%)

: 

 *8(%)
!4(%)

= *!(%)2$
2;(%)#$

. (S2-3) 

and we can check the assumption that 𝐾'(𝑡) is a constant by substituting Equation S2-3 

into Equation 33, 𝑁(𝑡) = 𝑁(0)𝑒R6(-) ∫ *!(%)8
'∫

18(")
%4(")

(""
# "%"

# , assuming that both 𝑁(0) and 𝐹:(0) are 

equal to 1; assuming both 𝐾'(𝑡) and 𝑃<(𝑡) are constants, and solving for 𝐾't. Doing this, we find 

the following expression: 

  2;#$
2
ln r1 + VW_#(%)`

+
N;,$
N

s = −𝐾't. (S2-4) 

If we define 𝐹{𝑁(𝑡)| = 2;#$
2
ln r1 + VW_#(%)`

+
N;,$
N

s, then we can also write this expression as 

 𝐹{𝑁(𝑡)| = −𝐾't. (S2-5, 58) 

If 𝐾' is a constant, then Equation S2-5 predicts that 𝐹{𝑁(𝑡)| is a linear function of time. 

Excepting 𝐴S, all the quantities on the left-hand side of Equation S2-4 can be found for each 

country in the time before containment measures were enacted; and these are listed for the 

sample of countries addressed in this paper, in Table 2. An implicit assumption in this process is 

that the behavior of the population, 𝑃<(𝑡), is constant and therefore 𝐴S is constant at least during 

the initial phase of the epidemic before containment measures were put in place.  
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Because of this linkage, it is necessary to frame the problem as co-determining a value of 

𝐴S which produces a straight line for the country data; and separately determining whether the 

slope of that line is a rational value for 𝐾'. Through a process of iteration, a value was found for  

𝐴S(= 0.48 km2) which created a straight line with a correlation coefficient of 0.96 (Figure 4). 

Using Equation S2-4 (or S2-5) we then determined the slope of the line in Figure 4 indicating the 

value of 𝐾' as 0.26.  This value is completely consistent with the country data; and we take this 

analysis as strong support for the plausibility that 𝐾' is a constant across countries and represents 

the transmissibility of the disease in the early stage of the epidemic. 

Demonstration that 𝑲𝑻 is a measure of population behavior 

Independent evidence that 𝑃<(𝑡) is a measure of the population behavior was developed 

by first using Equation 52 to show that, if 𝐾'(𝑡) is a constant, the RCO measure will be 

proportional to 𝐾' ∫
S

!4(%)
%
%#

𝑑𝑡. We reasoned that if an independent measure of people’s mobility 

during the epidemic could be identified and this was linearly related to the RCO, we could have 

additional confidence in the veracity of the KMES.  

Google has compiled different measures, derived from mobile phone data, of people’s 

mobility (Google 2020). One of these measures is termed the Residential Mobility Measure 

(RMM). The RMM is a measure of the percentage change in the degree to which people stayed 

in their residence during the pandemic relative to a baseline measured over 5 weeks starting on 

January 3, 2020. Since S
!4(%)

 and the RMM are both inversely proportional to the population’s 

mobility, we hypothesized that the RMM might be a good proxy for the value of  S
!4(%)

. To test 
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this, we plotted the integral over time of the daily RMM for the six countries whose data we 

analyzed, against the daily RCO. These plots appear in Figure 6; and they clearly support the 

hypothesized linear relationship. 

Supplement 3. An analysis of the SIR model 

The SIR model, with constant parameters 𝛽and 𝛾, is described by the following 

equations: 

 ".(%)
"%

= − a((%).(%)
#$

, (S3-1, 61) 

 "((%)
"%

= a((%).(%)
#$

− 𝛾𝐼(𝑡),  (S3-2, 62) 

 "L(%)
"%

= 𝛾𝐼(𝑡), and (S3-3, 63) 

 𝑁3 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (S3-4, 64) 

where Np = total number of people in the population, β = rate of contact and transmission, and γ 

= rate of recoveries. These equations can be derived from Equations 10 through 13 by assuming 

that the parameters 𝜑(𝑡, 𝜃) = 2$a
#$

 and 𝜓(𝑡, 𝜃) = 𝛾 are constants. 

3.1 “Flattening the Curve” 

Since 𝛽 = P(%,I)#$
2$

, and 𝜑(𝑡, 𝜃) was defined by Kermack and McKendrick (1927) as “the 

rate of infectivity at age 𝜃” (page 703),  𝛽 has generally been interpreted as an inverse measure 
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of social containment in the at-risk population, i.e., modelers have assumed that a lower 𝛽 

indicates higher social containment. Likewise, since 𝛾 = 𝜓(𝑡, 𝜃) and Kermack and McKendrick 

defined 𝜓(𝑡, 𝜃) as “the rate of removal” (page 703) of infected persons to a recovered state or 

death, 𝛾 is generally interpreted as a measure of persistence of infectiousness, a constant 

associated with the agent of the disease; a lower 𝛾 has been assumed to represent longer-lasting 

disease.  

A simulation created using an Euler approximation of Equations S3-1 through S3-4, 

depicted in Figures 7A and B, shows that the SIR model projects an increase in social 

containment (decreasing β) causes a later end to the epidemic and a lower and progressively later 

peak in cases per day. This is the so-called “Flatten the Curve” phenomenon predicted by 

Equations S3-1 through S3-4 which is often referenced in the literature (see Di Lauro, et al, 

2021, as an example). In contrast, a plot of the KMES in Figures 7C and D exhibits the opposite 

phenomenology: an increase in social containment (higher *!
!4

) causes an earlier end to the 

epidemic and a lower and progressively earlier peak in cases per day. As social containment 

measures increase, the positions of the peak in new cases per day move in opposite directions for 

the two models.  

We can also mathematically compare the trends projected by the SIR model with trends 

predicted by the full Kermack and McKendrick equations using the following expression derived 

from the KMES: 

 𝑡E@? =
!4VW	(!4)

*!
     (S3-5, 46) 
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As can be deduced from Equation S3-5, and in contrast to published analytical solutions of the 

SIR equations (Kroeger and Schlickeiser 2020), the KMES mathematically predicts that the time 

of the peak in daily cases will occur earlier with increased social containment (i.e., higher *!
!4

). 

Therefore, SIR projections differ qualitatively from those of the KMES both graphically and 

mathematically. 

The simplest test of the utility of a model is whether it projects the trends actually present 

in real data. If the projected trends emulate those found in reality, then free parameters within the 

model are plausibly of value in achieving a higher degree of fit and utility. It is fortuitous, then, 

that the initial progression of the COVID-19 pandemic was well documented in multiple 

countries which took different paths while attempting to contain the spread of the virus. This 

dataset affords the opportunity to test the veracity of the trends predicted by both the SIR and 

KMES models using real data.  

In plots E to H in Figure 7, we can compare the SIR and KMES projected trends to 

COVID-19 pandemic case data (Roser et al 2021) for total cases and for daily new cases in 

Sweden and New Zealand (Figure 7E and F), and in South Korea and Italy (Figure 7G and H). 

The paired countries have comparable population densities but implemented mitigation measures 

with different intensities (Campbell 2020, Field 2020, Orlowski and Goldsmith 2020, and 

Sanfelici. 2020). New Zealand and South Korea introduced stronger containment measures much 

earlier than Italy and Sweden.  
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. Figure 7. Comparisons of predictions of the approximate SIR and complete KMES models with 

observed data from four countries 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


71 

 

Note: Containment measures increase in all panels from blue to grey to orange dot curves. The arrow on 
each graph indicates the direction of more social distancing. 

SIR model trend predictions: (A) Total cases; (B) Daily new cases. Rate of contact and transmission (β) 
decreases with increasing social distancing (from blue to grey to orange curves). Rate of recoveries (γ) = 0.2 for both 
sets of plots. As β decreases, the daily total of cases increases more slowly and plateaus later (A). Daily new 
infections project to later, but only slightly lower peaks (B).  

KMES model trend projections: (C) Total cases; (D) Daily new cases.  
 
As containment measures increase (higher 

*!
!4

, blue to grey to orange curves), Equation 23 projects that 

total cases will rise to lower levels; and reach these levels earlier (C). Similarly, Equation 22 projects that new daily 
cases will peak earlier to lower values with increasing containment (D). 𝐾M = 0.2 for plots (C) and (D). 

 

Data reported from different countries during the COVID-19 pandemic.  
The remaining graphs contain data from pairs of countries with differing containment measures referenced to a day 
when each member of the pair had nearly equal numbers of new cases. 
(E) Total cases in Sweden (no containment measures, blue) and New Zealand (strict containment, orange).(F) Daily 
new cases in Sweden (blue) and New Zealand (orange).(G) Total cases in Italy (loose containment measures, blue) 
and South Korea (strict containment, orange). 
(H) Daily new cases in Italy (blue) and South Korea (orange). 
The trends in the observed data, panels (E – H), are the opposite of those exhibited by the ASIR model for 
increasing containment (decreasing β) in panels (A, B).  

The SIR model trends in (A) and (B) have completely different shapes; and vary with increasing 
containment in an opposite sense to those in the country data. 

The KMES model trends in (C) and (D) are highly similar to those in the country data (E – H). 

 

In support of the KMES and in contradistinction to the SIR model, the country data in 

Figures 7E–H show that stronger containment measures are associated with an earlier levelling 

off at a lower total number of cases and an earlier and lower peak in new infections. Harris 

(2023) also reported this phenomena. In Figure 4 (Harris 2023), the peak of the Omicron wave at 

the beginning of 2022 in large US counties where the mobility had been highly reduced occurred 

approximately a week earlier than the corresponding peak in counties where the mobility had not 

been so significantly reduced. In Harris’s data and in Figure 7 above, trends in both peak position 

and height demonstrate that SIR models are not merely inaccurate, a tolerable trait in an 
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approximation, but project epidemic data to trend in the opposite direction to the reported data; a 

behavior that no amount of free parameter fitting can correct. Therefore, the SIR model both 

contradicts the KMES and fails the simplest test of model veracity: the projection of qualitative 

trends. 

3.2 Understanding the Implications of the “Flatten the Curve” 

As seen in the preceding section, though both 𝛽 and 𝑃< are posited to represent social 

interaction in their respective models, the trend in the movement of the daily cases peak with 

decreasing social interaction (decreasing 𝛽) in the SIR model is opposite to that with decreasing 

social	interaction	(decreasing	𝑃<)	in	the	KMES. Since the KMES reproduces the observed 

trends and the SIR model does not, it seems likely that the nature and implications of the SIR 

assumptions may not be sufficiently understood.       

To understand these implications, we start by examining the conventional assumption 

that 𝜑(𝑡, 𝜃) and 𝜓(𝑡, 𝜃) can be constants. Using Equations 38 and 39, and the prior definition 

that 𝐹:(𝑡) =
((%)
#(%)

= 𝐹:(0)𝑒
+∫

1!(")
%4(")	

"%"
# , we can find expressions for the time varying 𝐾'(𝑡) and 

𝑃<(𝑡) when 𝜑 and 𝜓 are assumed to be the constants 𝛽 and 𝛾:  

 

 𝐾'(𝑡) =
P.(%)
2$

= a.(%)
#$

, and     (S3-6) 

 𝑃<(𝑡) =
S

N$O
P)(")+(S+R6(%))

= S
Q,$
R)(")+(S+R6(%))

.    (S3-7) 
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From Equation S3-6 we see that 𝜑 can only remain constant if 𝐾'(𝑡) decreases in direct 

proportion to the decreasing size of the susceptible population, 𝑆(𝑡).  This is implausible on its 

face because, as discussed in the derivation of the solution, 𝐾'(𝑡) is solely a function of the 

disease agent and thus, is likely a constant for a substantial time at the beginning of the epidemic; 

at least until the disease agent itself is modified by mutation or selection. Kermack and 

McKendrick (1927) themselves, in their introduction on pp. 702, note that it is implausible to 

assume that disease transmissibility will decrease as the disease spreads. 

Furthermore, even if transmission were to decrease over time within the infected 

population, it is improbable that this decrease would, as required by Equation S3-6, occur in a 

fixed linear proportion to the remaining number of susceptible people. Thus, the assumption 

within the SIR model that 𝜑 can be modelled as a constant requires an implausible additional 

assumption. 

It is not possible to state how 𝑃<(𝑡) must vary to maintain 𝜓 as a constant by merely 

inspecting Equation S3-7. We can, however, extricate the behavior of 𝑃<(𝑡) required by Equation 

S3-7 by plotting the time series of Equation S3-7. To accomplish this, we first simulate the time 

series of both 𝑁(𝑡) and "#(%)
"%

 using an Euler approximation of Equations 16 and 43 and a time 

step of 0.1 day. Using the same values of 𝛽 and 𝛾 employed in Figure 7A and B, Equations S3-6 

and S3-7 were then used to determine the values of 𝐾Z(𝑡) and 𝑃<(𝑡) at each successive time step.  
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The purpose of this simulation was first to demonstrate that imposing the conditions of 

Equations S3-6 and S3-7 on 𝐾Z(𝑡) and 𝑃<(𝑡) will enable the KMES to produce the same results 

as the SIR approximation. The second purpose was to determine and demonstrate the actual 

implausible temporal behavior the SIR approximation imposes on both 𝐾'(𝑡) and 𝑃<(𝑡).  

The time series plots of the simulation of both 𝑁(𝑡) (cases) and "#(%)
"%

 (cases per day) 

appear in Figure 8. The close approximation of the KMES and the SIR curves in Figure 8 

demonstrates that the SIR model is, indeed, a subset of the KMES when the constraints of 

Equations S3-6 and S3-7 are applied to 𝐾Z(𝑡) and 𝑃<(𝑡).  

The values of 𝐾'(𝑡)and 𝑃<(𝑡) that produce the KMES curves in Figure 8, are plotted in 

Figure 9. The figure shows that the constraints on 𝐾'(𝑡)and 𝑃<(𝑡), imposed by the SIR model, 

compel the acceptance of unlikely phenomena; namely, that 𝐾'(𝑡) decreases with time and 𝑃<(𝑡) 

must behave in an unrealistic manner.  

As Figure 9B illustrates, the consequent, implicit assumption of applying the SIR 

approximation is that, early in the epidemic, the population increases its contacts, and then 

suddenly and symmetrically (in time), reverses course and reduces the number of contacts. At 

each value of β, this up and down spike in contacts (Figure 9B) precedes a plunge in the value of  

𝐾'(𝑡) (Figure 9A), and the steep decline is immediately followed by the peak in daily cases 

(seen in Figure 8B), tailing to the eventual end of the epidemic.  
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Just as we previewed in the introduction, these implied consequences of a constant 𝛽 in 

the SIR model make the clear points that a constant 𝛽 does not represent constant social 

interaction; and a higher 𝛽 does not represent a consistently higher level of social interaction. 

Also, a symmetric spike in social interaction (𝑃<(𝑡)), higher and earlier, proportional to the value 

of 𝛽, followed by an immediate collapse in transmissibility (𝐾'(𝑡)), is simply unfathomable.  

The consequences of the approximations in the SIR model become even more clear when 

we make manifest the time varying nature of 𝛽(𝑡) and 𝛾(𝑡) (and therefore of 𝜑(𝑡) and 𝜓(𝑡)) 

required when the quantities 𝐾' and 𝑃< are held constant. Like the preceding analysis, we 

explored these consequences using simulations of the KMES and the SIR model. Since the 

KMES predicts the country data well, we also compared the simulation results to two of the 

country results (Italy and New Zealand).  

As a first step, we used the values of  𝑙𝑛(𝐹:(0)𝐾') and *8
!4

 in Table 1 to derive values of  

*!
!4
	and	𝐾' 	for Italy and New Zealand and used the solution to project the results. We then 

simulated the SIR model with the assumption that the values of 𝛽 and 𝛾	(and therefore 𝜑 and 𝜓) 

were constant and equal to the values of  *!
!4

 and 𝐾' used in the solution. The results of both the 

KMES and SIR simulations are plotted in Figure 10, along with the country data. As can be 

easily seen, the KMES model accurately models the country data, and the SIR model does not.  
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Figure 8. Demonstration that KMES can be modified to produce the SIR model results. Both 
plots contain 6 lines.  For the same β and γ, both the SIR and KMES simulations overlay each other.  The KMES 
simulations were produced by imposing the criteria in Equations S3-6 and S3-7, connecting the SIR and KMES 
constants.  This plot demonstrates that the SIR approximation provides the same result as the KMES provided the 
constraints of these equations are imposed.  Γ is 0.2 for all plots. These plots are the same as the SIR plots in 
figure7A and 7B on a log scale. 
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Figure 9. Time series for creating solution curves.  These graphs show how Pc and KT are forced 

to vary within the KMES simulation shown in Figure 8 when the constraints of Equations S3-6 and S3-7 (constant φ 
and ψ) are imposed.  Γ is 0.2 for all plots. X-axis is days.  
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Figure 10. SIR and solution simulations of the Italy (10A & B) and New Zealand (10C & D) data. 
𝛽 = 𝑒ST(U#(V)J$)	 where 𝑙𝑛(𝐹L(0)𝐾M) is from Table 1 and γ is equal to the 

*!
!4

 constant from Table 1.  
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Figure 11. Time series for γ and β. A) Italy.  B) New Zealand. These are the values of γ and β 

necessary for the SIR approximation to accurately model the country data.  
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Figure 12. Total cases and new cases per day for Italy and New Zealand.  The country data and KMES 
plots are the same as in Figure 10.  The SIR Variable β and γ plot uses the β and γ values from Figure 10 in the SIR 
equations. 
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In a second step, we recast Equations S3-6 and S3-7 in terms of 𝛽(𝑡) and 𝛾(𝑡): 

 𝛽(𝑡) = P(%)#$
2$

= *!#$
.(%)

 and     (S3-8) 

 

 𝛾(𝑡) = 𝜓(𝑡) = 𝐾'
L(%)
#(%)

+ *!
!4

.      

 (S3-9) 

Using Equations S3-8 and S3-9, we then calculated the time series of 𝛽(𝑡) and 𝛾(𝑡) 

necessary to generate the KMES curves in Figure 10. Those time series, plotted in Figure 11, 

show that under the conditions present in the countries, 𝛽(𝑡) is nearly a constant, because, early 

in the epidemic when 𝑆(𝑡) ≈ 𝑁3, 𝛽(𝑡) ≈ 𝐾', and 𝛽(𝑡) can be approximated as a constant, while 

𝛾(𝑡) clearly is not constant. 

As a last step in the analysis, we used the values of 𝛽(𝑡) and 𝛾(𝑡) plotted in Figure 11 in 

the SIR model to generate the curves in Figure 12. This figure shows that when 𝛽 and 𝛾 are 

forced to vary according to Equations S3-8 and S3-9, the SIR model fits the country data quite 

well.  

Figures 8 and 12 provide another validation of the veracity of the solution. In Figure 8, 

we show that the solution can be configured to replicate SIR simulations by embedding the SIR 

approximations within the solution framework. In that setting, the two piecewise and logically 

invariant solution parameters, KT and Pc, are forced to take implausible and unrealistic time 

courses. Figure 12 demonstrates, in counterpoint, that an SIR model can produce results identical 
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to the KMES if β and γ, the approximations of 𝜑(𝑡, 𝜃) and 𝜓(𝑡, 𝜃), are permitted to vary in time 

according to Equations S3-8 and S3-9. The SIR model fits reality only when “coached” to a time 

variation for its two parameters using insight derived from the KMES. The foregoing discussion 

has utilized one of the simplest models of the SIR types; nevertheless, the conclusions apply to 

all the variations of SIR models. 

Supplement 4. Controlling epidemics early 

The quantitative mathematical relationships derived from the KMES in Section 1 

characterize the dynamics of an epidemic and illustrate that strong and early intervention is 

critical. Equation 45 quantifies that the ultimate number of individuals infected in an epidemic, 

N∞, will be exponentially dependent on the number of people with whom each person interacts.  

The real-world country data provide vivid examples of the consequences projected by the 

KMES. Both South Korea and New Zealand enacted strong and early interventions compared to 

other countries (5,6), as reflected by their *!
!4

 values (Table 1). These strong interventions led to 

earlier peaks in new cases and to far fewer total cases than in other countries (Figures 2 and 3) in 

the first few months of the pandemic: the peak number of new cases in both South Korea and 

New Zealand was 90–99% lower than in other countries, a compelling validation of the explicit 

statement in the KMES that strong intervention leads to exponentially more favorable outcomes. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


83 

 

In the USA, interventions initiated on March 16 began to have an effect around March 

23, 2020 (Figure 3B); the number of active cases on March 23, 2020 (Roser et al 2021) was 

46,136 (Table 1). Using the values of ln	(𝐹:(0)𝐾'(t)) and *!
!4

 from Table 1, Equation 45 predicts 

that the ultimate number of cases would have been approximately 1.22 million. If the same 

intervention had been implemented and sustained starting on March 10, when there were 59 

times fewer (782) cases (Roser et al 2021), the model predicts that the ultimate number of cases 

would also have been 59 times lower, or 20,725. Thus, earlier action could have reduced the 

ultimate number of projected cases by more than 98%. Of course, the projected estimate of 

approximately 1.22 million total USA cases would only have occurred if the effectiveness of the 

interventions that were launched on March 16 had been sustained. Unfortunately, a marked 

reduction in effective interventions occurred in many parts of the USA in mid-April, well before 

the official reopening of the economy (Elasser 2020). This caused a second surge in new cases in 

late April and is why the observed data and the model prediction diverge in Figure 3B.  

As shown in the main body of the paper, Section 2, the KMES provides an estimate of 

the time to the peak of new cases, tmax. Using Equation 50 and the values of ln	(𝐹:(0)𝐾'(t)) and 

*!
!4

 from Table 1, the predicted peak in new cases in the USA would have occurred near March 

24 if the intervention had begun on March 10. Instead, a 6-day delay in effective intervention 

shifted the initial peak to April 11, 16 days later, as projected, and that peak was much higher 

(Figure 3B). 
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As shown, too, in Section 2, epidemic acceleration, the instantaneous potential to change 

the pace of the epidemic, can be determined at any point in the epidemic and depends on the 

social containment actions in effect at that time (Equation 53). What is perhaps less apparent, but 

predicted by the KMES, is that two countries with identical numbers of cases on a given day can, 

in fact, have different accelerations on the same day, and will, therefore, exhibit different 

dynamics immediately after that day.  

South Korea and New Zealand (Figure 2A and F) had nearly identical case counts when 

each imposed strong containment measures (204 cases in South Korea on February 21, and 205 

in New Zealand on March 25). Their models suggest that their interventions were about equally 

effective (*!
!4

 = 0.24 in South Korea and 0.17 in New Zealand; see Table 1). However, since 

South Korea has a much higher population density than New Zealand ((Worldometers 2021), 

data in Table 2), it had a much higher number of interactions when the interventions were 

imposed and, therefore, a higher rate of acceleration, as evidenced by its higher RCO at the time 

of intervention. Indeed, the rate of change of new cases was higher in South Korea than in New 

Zealand, and the later number of cases in South Korea was higher than in New Zealand (Figure 

2A and 2F).  

Equation 44 clearly illustrates these lessons. As social distancing is strengthened (lower 

𝑃<), the Effective Replication Number decreases, and the epidemic slows. Early and strong 

interventions, especially in countries with indigenously high levels of social interaction, are 

necessary to stop an epidemic in the initial stages. Reopening, enacted too early, can reignite the 
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epidemic, dramatically increasing the number of cases. The astonishing magnitude of the effects, 

driven by only a few days of delay, derives from the doubly exponential nature of the underlying 

relationships. 

Supplement 5. Ending an Ongoing Epidemic 

We can use the KMES to design measures to end an epidemic in an advanced stage. The 

management plan is built by first using Equation 57 to predict the number of days a given level 

of intervention, *!
!4

, is needed to reduce the new daily cases by a target fraction, 𝐷%;. 

For example, using Equation 57, we see that a country targeting a 90% reduction of new 

cases per day (e.g., from 50,000 to 5,000 cases per day, 𝐷%; = 0.1), can attain its target in about 

12 days by imposing a containment level of  *!
!4
= 0.2. The South Korea and New Zealand data 

demonstrate that Equation 51 is valid and that *!
!4
= 0.2 is achievable for this duration. Both 

countries achieved a value of  *!
!4

 close to 0.2 for the time necessary to produce a 90% reduction. 

It took 13 days for South Korea (March 3–16) and 15 days for New Zealand (April 2–15), New 

Zealand (6) to reduce their new cases by 90% between the dates shown. 

Returning to the planning example, after achieving the initial 90% reduction, a reasonable 

next step might be to relax social containment to a level that allows the economy to remain 

viable, while preventing the epidemic from erupting again. We can again find the level of  *!
!4
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necessary to achieve a chosen target, using Equation 57. If an additional 90% reduction in new 

cases per day is desired, and a period of 90 days is tolerable for that reduction, then a new level 

of approximately  *!
!4
= 0.026 is needed. This equates to a 90-day period during which each 

person can be in contact with seven specific people, in an infectable way. Note that this is three 

times less stringent than the original USA shutdown level in April 2020 as shown by the level of  

*!
!4

 calculated for the United States in that period (Table1). Thus, with a well-planned approach, a 

country can reduce its new daily cases by 99% in approximately 100 days, enabling the country 

to control, and essentially end the epidemic, while simultaneously maintaining economic 

viability.  

If even 0.025 is too restrictive, we can choose a still lower *!
!4

, but it must be large 

enough to avoid a new outbreak. A lower bound for the new value of  *!
!4

, high enough to prevent 

an outbreak, can be found using Equation 54.  

We can easily monitor the progress of interventions using the RCO, as the curve for 

South Korea illustrates (Figure 1A). Had this country maintained the implemented level of 

distancing measures, the data would have followed the initial slope. However, the actual data 

departed from the slope, heralding failures in (or relaxation of) social distancing, which were 

later documented to have occurred during the indicated time frame (Campbell 2020) (circled 

data, Figure 1A). Because it summarizes epidemic dynamics, we can use the RCO to 
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continuously determine the effectiveness of implemented measures and whether they need 

adjustment.  

Supplement 5.1 Outbreaks 

We can see from Equation 52 that if the social interventions are strengthened (lower 𝑃<) 

the slope of the RCO curve will steepen and if the interventions are relaxed, the slope will 

become shallower. Therefore, if the value of 𝐾'(𝑡) does not change due to a change in the 

disease transmissibility, the RCO is a metric for monitoring the population interactions. It is also 

clear that under the assumptions used to develop the KMES, *!
!4

  must always be greater than 

zero, and the RCO slope can never become positive. However, this only remains true if these 

three conditions remain true: 1) immunity persists, 2) no new infections are introduced from 

outside the area, 3) ∆𝑃<7:(𝑛∆𝑡) is a much smaller order of magnitude than the new infections, 

𝐾'(𝑛∆𝑡)∆𝑡. We call the latter two assumptions the assumption that the epidemic is contiguous. 

If new infections are introduced into a portion of the population that has thus far been 

disconnected from the previously infected area, and therefore, has only susceptible people, then 

the assumption of contiguousness does not hold. This is a common situation when infected 

people travel from an infected area to a previously uninfected area and cause an outbreak. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


88 

 

In this case, we will begin with Equation 27 and assume that the entirety of the change in 

𝑃<(𝑡) during the time ∆𝑡 is with uninfected new contacts. That is, ∆𝑃<(𝑡) = ∆𝑃<7:(𝑡); and 

Equation 27 becomes, 

((7∆%)
#(7∆%)

= `1 − *!(-)∆%+∆!4(-)
!4(-)

a `1 − *!(∆%)∆%+∆!4(∆%)
!4(∆%)

a…`1 − *!(7∆%)∆%+∆!4(7∆%)
!4(7∆%)

a  

        (S5-1) 

and then, since by definition, 𝑛∆𝑡 = 𝑡, as 𝑛 → ∞, ∆𝑡 → 0, Equation 27 becomes, 

 ((%)
#(%)

= 𝐹:(0)𝑒
+∫

1!(")'
(%4(")
("

%4(")	
"%"

# = 𝐹:(0)
!4(%)
!4(-)

𝑒+∫
1!(")
%4(")	

"%"
#    (S5-2) 

The equations for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are then the following: 

 𝑁(𝑡) = 𝑁(0)𝑒R6(-) ∫ *!(%)
%4(")
%4(#)

8
'∫

18(2)
%4(2)

(2"
# "%"

#     (S5-3) 

 𝐼(𝑡) = 𝐼(0) !4(%)
!4(-)

𝑒R6(-) ∫ *!(%)
%4(")
%4(#)

8
'∫

18(2)
%4(2)

(2"
# "%"

# +∫
18(")
%4(")

"%"
#    (S5-4) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0) !4(%)
!4(-)

𝑒+∫
18(")
%4(")

"%"
# )𝑒R6(-) ∫ *!(%)

%4(")
%4(#)

8
'∫

18(2)
%4(2)

(2"
# "%"

#   (S5-5) 

As an alternative to predict the number of cases in an epidemic affected by an outbreak, 

we can modify Equation 43. Assuming that 𝑡- = 0, 𝑁(0) = 1, and introducing the notation 

𝑃<?	where 𝑥 denotes the number of the outbreak, Equation 43 can be written as: 
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 𝑁(𝑡) = 𝑒+!4;(8
'
1!
%4;

	B
+S).      (S5-6) 

If a new outbreak occurs in a previously unaffected area of a country, then Equation S5-6 

can be modified as follows: 

 𝑁(𝑡) = 𝑒+!4;(8
'
1!
%4;

	B
+S) +	𝐼Q𝑒+!4&(8

'
1!
%4&

	(B'"&)+S),   (S5-7) 

where 𝑁Q is the number of infectious people who initiated the new outbreak, 𝑃<Q is the social 

interaction parameter in the new outbreak area, and 𝑡Q is the time the new outbreak occurs. We 

have assumed that the disease transmissibility remains the same throughout this illustration. If 

the transmissibility changes in a subset of the population, then a similar formulation, using the 

notation, 𝐾'? , can be utilized to track the populations with the new transmissibility. 

Equation S5-7 can be written in a general form as 

 𝑁(𝑡) = 𝑒+!4;(8
'
1!
%4;

	B
+S) +	𝐼Q𝑒+!4&(8

'
1!
%4&

	(B'"&)+S)…+ 𝐼k𝑒+!4W(8
'
1!
%4W

	(B'"W)+S),  (S5-8) 

where 𝑥 denotes the outbreak number and t > 𝑡Q > 𝑡l > ⋯ > 𝑡?. For each outbreak 𝑡?, 𝑃<?, and 

𝑁? need to be determined independently. 

While an epidemic is underway, we can detect an outbreak by monitoring the slope of the 

RCO curve. A positive slope detected in an RCO curve indicates that an outbreak has occurred. 

This is an indication that immediate action, within days, is required from policy makers to 
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strengthen intervention measures and prevent the outbreak from overwhelming prior progress in 

controlling the epidemic. 

By monitoring the RCO curve, we can also detect if the disease changes its 

transmissibility through mutation. In this situation, a proper fit of the parameters in Equation 40 

is not possible and a modification of 𝐾' is required to accommodate the change. 

Supplement 6: Understanding the Kermack and McKendrick 

Arrays 

The Kermack and McKendrick model in discrete form can be visually represented as an 

array where the arrays of the variables 𝑁(𝑡, 𝜃), 𝐼(𝑡, 𝜃), 𝑅(𝑡, 𝜃) and their derivatives are defined 

over t and 𝜃 according to this array:  
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Kermack and McKendrick’s concept of 𝜃 imagined that the time history of the epidemic 

was a square t by t array with each row representing an increment of time, ∆𝑡, and each column 

representing the progress of a 𝜃 group through time. In this conceptualization, each 𝜃 group 

starts at time 𝑡 − 𝜃 and progresses diagonally upward and to the right through the array. This 

formulation of the problem also means that 𝜃 has the units of time, 𝑑𝜃 = 𝑑𝑡., and ∆𝑡 = ∆𝜃. 

Therefore, ∆𝑡 and ∆𝜃 are used interchangeably throughout the array. 

Keeping this convention, we can use Equation 16 and the knowledge that ∆𝑁(𝑡, 𝜃) = 0	

when	𝜃 > 0 to write the matrix for ∆𝑁(𝑡, 𝜃), 

(t,0) (t,∆t) (t,2∆t)

⋯

(t,t-∆t) (t,t)

(t-∆t,0) (t-∆t,∆t) (t-∆t,2∆t)

⋯

(t-∆t,t-∆t) (t-∆t,t)
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

(3∆t,0) (3∆t,∆t) (3∆t,2∆t)

⋯

(3∆t,t-∆t) (3∆t,t)

(2∆t,0) (2∆t,∆t) (2∆t,2∆t)

⋯

(2∆t,t-∆t) (2∆t,t)

(∆t,0) (∆t,∆t) (∆t,2∆t)

⋯

(∆t,t-∆t) (∆t,t)

(0,0) (0,∆t) (0,2∆t)

⋯

(0,t-∆t) (0,t)
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The arrays for ∆𝑅(𝑡, 𝜃), ∆𝐼(𝑡, 𝜃), and 𝐼(𝑡, 𝜃) can be written in an identical fashion, 

0 0

⋯

0 0

0 0

⋯

0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆N(t,θ)= 0 0

⋯

0 0

0 0

⋯

0 0

0 0

⋯

0 0

N(0) 0 0

⋯

0 0
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0 ψ(t-∆t,0)I(t-∆t,0)∆t ψ(t-∆t,∆t)I(t-∆t,∆t)∆t

⋯

ψ(t-∆t,t-2∆t)I(t-∆t,t-2∆t)∆t ψ(t-∆t,t-∆t)I(t-∆t,t-∆t)∆t

0 ψ(t-2∆t,0)I(t-2∆t,0)∆t ψ(t-2∆t,∆t)I(t-2∆t,∆t)∆t

⋯

ψ(t-2∆t,t-2∆t)I(t-2∆t,t-2∆t)∆t 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆R(t,θ)=
0 ψ(2∆t,0)I(2∆t,0)∆t ψ(2∆t,∆t)I(2∆t,∆t)∆t

⋯

0 0

0 ψ(∆t,0)I(∆t,0)∆t ψ(∆t,∆t)I(∆t,∆t)∆t

⋯

0 0

0 ψ(0,0)I(0,0)∆t 0

⋯

0 0

0 0 0

⋯

0 0

-ψ(t-∆t,0)I(t-∆t,0)∆t -ψ(t-∆t,∆t)I(t-∆t,∆t)∆t

⋯

-ψ(t-∆t,t-2∆t)I(t-∆t,t-2∆t)∆t -ψ(t-∆t,t-∆t)I(t-∆t,t-∆t)∆t

-ψ(t-2∆t,0)I(t-2∆t,0)∆t -ψ(t-2∆t,∆t)I(t-2∆t,∆t)∆t

⋯

-ψ(t-2∆t,t-2∆t)I(t-2∆t,t-2∆t)∆t 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆I(t,θ)= -ψ(2∆t,0)I(2∆t,0)∆t -ψ(2∆t,∆t)I(2∆t,∆t)∆t

⋯

0 0

-ψ(∆t,0)I(∆t,0)∆t -ψ(∆t,∆t)I(∆t,∆t)∆t

⋯

0 0

-ψ(0,0)I(0,0)∆t 0

⋯

0 0

N(0) 0 0

⋯

0 0
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It is clear from this notation that ∆𝐼(𝑡, 𝜃) = ∆𝑁(𝑡, 𝜃) − ∆𝑅(𝑡, 𝜃); and it is interesting to 

note that ∆#(%,I)	
((%)

 and ∆L(%,I)	
((%)

  are, respectively, impulse and step functions in 𝜃. 

We now use the preceding arrays to rederive Equation 3. We with Equation 11,  

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)%
- ,   (S6-1,11) 

Our goal is to transform Equation S6-1 to Equation 3 to demonstrate that the arrays are a 

formulation of the Kermack and McKendrick equations. 

I(t-∆t,0)(1-ψ(t-∆t,0)∆t) I(t-∆t,∆t)(1-ψ(t-∆t,∆t)∆t)

⋯

I(t-∆t,t-2∆t)(1-ψ(t-∆t,t-2∆t)∆t) I(t-∆t,t-∆t)(1-ψ(t-∆t,t-∆t)∆t)

I(t-2∆t,0)(1-ψ(t-2∆t,0)∆t) I(t-2∆t,∆t)(1-ψ(t-2∆t,∆t)∆t)

⋯

I(t-2∆t,t-2∆t)(1-ψ(t-2∆t,t-2∆t)∆t) 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

I(t,θ)= I(2∆t,0)(1-ψ(2∆t,0)∆t) I(2∆t,∆t)(1-ψ(2∆t,∆t)∆t)

⋯

0 0

I(∆t,0)(1-ψ(∆t,0)∆t) I(∆t,∆t)(1-ψ(∆t,∆t)∆t)

⋯

0 0

I(0,0)(1-ψ(0,0)∆t) 0

⋯

0 0

N(0) 0 0

⋯

0 0
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Referring to the 𝐼(𝑡, 𝜃) array and keeping in mind that the value of 𝐼(𝑡, 0) is the value in 

the (𝑡, 0) place in both the ∆𝑁(𝑡, 𝜃) and 𝐼(𝑡, 𝜃) arrays, 𝐼(0, 0) = 𝑁(0) = 𝐼(0) as shown in the 

array, ∆t = ∆θ, "#(%,-)
"%

= 𝐼(𝑡, 0), 𝐵(𝜃) = 𝐵(𝑡, 𝜃), and 𝐵(𝜃, 𝜃) = 𝐵(𝑡, 𝑡), we know that, 

 𝐼(𝑡) = ∑ 𝐼(𝑡,%
Id- 	𝜃) = ∑ 𝐵(𝑡, 𝜃)𝐼(𝑡%

Id- − 𝜃, 0).   (S6-2) 

Equation S6-2 is merely the summation form of S6-1. We use the reference to the 𝐼(𝑡, 𝜃) 

matrix to show where it comes from in the (𝑡, 𝜃) matrices. 

Keeping in mind that 𝜓 is only a function of t, it is also clear from the 𝐼(𝑡, 𝜃) matrix that, 

𝐼(𝑡) = 𝐾'(𝑡 − ∆𝑡)∆𝑡 ∑ 𝐼(𝑡 − ∆𝑡,%+∆%
Id- 	𝜃) + (1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)∑ 𝐼(𝑡 − ∆𝑡,%+∆%

Id- 	𝜃)  

       (S6-3) 

This operation can be repeated all the way back through the matrix to finally obtain the 

expression, 

 𝐼(𝑡) = (𝐾'(𝑡 − ∆𝑡)∆𝑡 + 1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)(𝐾'(𝑡 − 2∆𝑡)∆𝑡  

 +1 − 𝜓(𝑡 − 2∆𝑡)∆𝑡)… (𝐾'(0)∆𝑡 + 1 − 𝜓(0)∆𝑡)𝐼(0)   (S6-4) 

Equating S6-4 with S6-1 and taking the limit as ∆t = ∆θ go to zero, we arrive at the 

expression, 
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𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐵(𝑡)𝐼(0)%
- = 𝑒∫ _*!(%)+M(%)`"%

"
# 𝐼(0) = 𝑒∫ *!(%)"%

"
# 𝐵(𝑡)𝐼(0) 

       (S6-5) 

which is identical to Equation 3 with 𝜓(𝑡) = 𝜇(𝑡). The same approach can be used on the arrays 

for ∆𝑁(𝑡, 𝜃) and ∆𝑅(𝑡, 𝜃) to find expressions for "#(%)
"%

 and "L(%)
"%

 from which the rest of the 

solution can be determined.   
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Supplement 7: List of Equations 

 "#(%)
"%

= 𝐾'(𝑡)𝐼(𝑡),      (1) 

 "((%)
"%

= (𝐾'(𝑡) − 𝜇(𝑡))𝐼(𝑡),      (2) 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (*!(%)+,(%))"%
"
# .      (3)   

 𝐼(𝑡) = 𝑒∫ *!(%)"%
"
# 𝐼(0)𝑒∫ +,(%)"%"

# .     (4) 

 𝑁(𝑡) = ∫ 𝐾'(t)I(0)
%
- 𝑒∫ (*!(%)+,(%))"%

"
# 𝑑𝑡     (5) 

 ".(%)
"%

= − /(%).(%)0(1)
2$

  (6) 

 "((%)
"%

= /(%).(%)0(1)
2$

− 𝜇(𝑡)𝐼(𝑡)  (7) 

 log	( .(-)
.(4)

) = 𝑅-(1 −
.(4)	
#%	

),  (8) 

 𝑃<(𝑡) = lim
∆%→-

∫ 𝑃<A(𝑡)𝑑𝑡
%H∆%
% ,  (9) 

 ".(%)
"%

= − J(1)
2$
(∫ 𝐴(𝑡, 𝜃) "#(%+I,-)

"%
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))%

- ,  (10) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)%
- ,   (11) 

 "L(%)
"%

= ∫ 𝐶(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)%
- ,  (12) 
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 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡)  (13) 

 𝑁! − 𝑆(𝑡) = 𝑁(𝑡)   (14) 

  ".(%)
"%

= − "#(%)
"%

  (15) 

	 − ".(%)
"%

= "#(%)
"%

= 𝐾'(𝑡)𝐼(𝑡)  (16) 

 𝐾'(𝑡) = −
()(")
("
((%)

=
J(1)(∫ 2(%,I)(,("'-,#)(" "IH2(%,%)((-))"

#

2%(∫ N(%,I)(,("'-,#)(" "IHN(%,%)((-))"
#

  (17) 

 µ(𝑡) 	=
(/(")
("
((%)

=
∫ O(%,I)(,("'-,#)(" "IHO(%,%)((-)"
#

∫ N(%,I)(,("'-,#)(" "IHN(%,%)((-)"
#

.   (18) 

 − ".(%)
"%

= "#(%)
"%

= K'(𝑡)	𝐼(𝑡),  (19)  

 "((%)
"%

= 𝐾'(𝑡)	𝐼(𝑡) − µ(𝑡)	𝐼(𝑡),  (20) 

 "L(%)
"%

= µ(𝑡)𝐼(𝑡) and  (21) 

 𝑆(𝑡) = 𝑁! − 𝑁(𝑡),   (22)  

 𝐼(𝑡) = ∫ 𝑒+∫ M(%,@)"@"
"'𝜃 𝐾'(𝑡 − 𝜃)𝐼(0)𝑒∫ (*!(@)+,(@))"@

"'-
# 𝑑𝜃 + 𝑒+∫ M(%,@)"@"

# 𝐼(0)%
-  (23) 

 1 = ∫ 𝑒+∫ (M(%,@)+,(@))"@"
"'𝜃 𝐾'(𝑡 − 𝜃)𝑒+∫ *!(@)"@

"
"'- 𝑑𝜃 + 𝑒+∫ (M(%,@)+,(@)H*!(@))"@

"
#

%
-   (24) 

𝐾'(𝑡)𝐼(𝑡) =
J(1)
2$
(∫ 𝜑(𝑡, 𝜃)𝑒+∫ M(%,@)"@"

"'𝜃 𝐾'(𝑡 − 𝜃)𝐼(0)𝑒∫ (*!(@)+,(@))"@
"'-
# 𝑑𝜃 +%

-

 𝜑(𝑡, 𝜃)𝑒+∫ M(%,@)"@"
# 𝐼(0))     (25) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 8, 2023. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


99 

 

1 = ∫ J(1)P(%,I)
*!(%)2$

𝐾'(𝑡 − 𝜃)𝑒+∫ *!(@)"@
"
"'- 𝑑𝜃 + J(1)P(%,%)

*!(%)2$
𝑒+∫ *!(@)"@

"
#

%
-    (26) 

 𝑁(𝑡) = 𝑁(0)𝑒∫ *!(%)
3(")
,(")"%

"
#       (27) 

 𝐼(∆𝑡) = 𝑁(∆𝑡) − *!(-)∆%+∆!456(-)
!4(-)

𝑁(∆𝑡)    (28) 

 ((∆%)
#(∆%)

= 1 − *!(-)∆%+∆!456(-)
!4(-)

     (29) 

 ((Q∆%)
#(Q∆%)

= (1 − *!(-)∆%+∆!456(-)
!4(-)

)(1 − *!(∆%)∆%+∆!456(∆%)
!4(∆%)

)   (30) 

((7∆%)
#(7∆%)

= `1 − *!(-)∆%+∆!456(-)
!4(-)

a `1 − *!(∆%)∆%+∆!456(∆%)
!4(∆%)

a…`1 − *!(7∆%)∆%+∆!456(7∆%)
!4(7∆%)

a (31) 

 ((%)
#(%)

= 𝐹:(0)𝑒
+∫

1!(")
%4(")	

"%"
#       (32) 

 𝑁(𝑡) = 𝑁(0)𝑒R6(-) ∫ *!(%)8
'∫

18(2)
%4(2)

(2"
# "%"

#     (33) 

 𝐼(𝑡) = 𝐼(0)𝑒R6(-) ∫ *!(%)8
'∫

18(2)
%4(2)

(2"
# "%"

# +∫
18(")
%4(")

"%"
#    (34) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒+∫
18(")
%4(")

"%"
# )𝑒R6(-) ∫ *!(%)8

'∫
18(2)
%4(2)

(2"
# "%"

#    (35) 

 𝐵(𝑡, 𝜃) = 𝑒+∫ M(%,@)"@"
"'- = 𝑒+∫ (*!(@)+R6(-)*!(@)8

'∫
1!(9)
%4(9)

(2
# 9

H1!
(2)

%4(2)
)"@"

"'-   (36)		

	 𝐵(𝑡, 𝑡) = 𝑒+∫ M(%,@)"@"
# = 𝑒+∫ (*!(@)+R6(-)*!(@)8

'∫
1!(9)
%4(9)

(2
# 9

H1!
(2)

%4(2)
)"@"

#   (37) 
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	 	𝜇(𝑡) = 𝜓(𝑡, 𝜃) =
(/(")
("
((%)

= 𝐾'(𝑡)−𝐹:(0)𝐾'(𝑡)𝑒
+∫

1!(")
%4(")
"
# "% + *!(%)

!4(%)
  (38) 

 𝜑(𝑡, 𝜃) = *!(%)2$
.(%)

     (39) 

 𝐼(𝑡) = 𝑒∫ *!(%)"%
"
# 𝐵(𝑡, 𝑡)𝐼(0)  (40) 

 𝑁(𝑡) = 𝑒∫ (*!(%)H
1!(")
%4(")

)"%"
# 𝐵(𝑡, 𝑡) ((-)

R6(-)
  (41) 

 𝑅(𝑡) = (8
∫ (1!("):

1!(")
%4(")

)(""
#

R6(-)
− 𝑒∫ *!(%)"%

"
# )𝐵(𝑡, 𝑡)𝐼(0)  (42) 

 𝑁(𝑡) = 𝑁(0)𝑒+!4(8
'	
18
%4

"
+S)     (43) 

 𝐼(𝑡) = 𝐼(0)𝑒
+!4T8

'	
18
%4

"
+SU+18%4

%
     (44) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒+
18
%4
%)𝑒+!4(8

'
18
%4

"
+S)    (45)  

 𝑁(∞) = 𝑒!4       (46) 

 𝑡 = − !4
*!
𝑙𝑛(1 − VW	(.(-))

!4
)      (47) 

 𝑃< > ln	(𝑆(0))       (48) 

 𝑅X;; =
S

S+8
'
18
%4

	"
H ;
%<	

.  (49) 
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 𝑡"8<D:78 =
!4VW	(!4)

*!
.   (50) 

 𝑡E@? =
!4VW	(!4)

*!
,  (51, S3-5) 

 𝑅𝐶𝑂 = 𝑙𝑛 r
(,(")
("
#(%)

s = ln(𝐹:(0)𝐾') −
*8
!4
𝑡     (52) 

"&#(%)
"&%

= t𝐾Z𝑒
+1!%4

% − *!
!4
u "#(%)

"%
= 𝐾'(

((%)
#(%)

− S
!4
) "#(%)

"%
=	`𝑒LO[(%) − *!

!4
a "#(%)

"%
= 𝐾Z

"((%)
"%

 .  (53) 

 𝑃< < 𝐾'𝑒+LO[(%).   (54) 

 𝐷%; =
(,=":""2>?@"A

("
(,(")
("

= #89	O@>8	'@A\8%	L@%8
OBAA87%	#89	O@>8	L@%8

,   (55) 

 𝐷%; = 𝑒+!4	(8
'
1!
%4

":""2>?@"+8
'
1!
%4

(")
)𝑒+

1!
%4
%BCDEFB.   (56) 

 𝑡%@A\8% = − !4VW	(]"G)
*!

.   (57) 

 𝐹{𝑁(𝑡)| = −𝐾'𝑡,     (58, S2-5) 

 𝐵(𝑡, 𝑡) = 𝑒+(8'1!"+S)+Q*!%      (59) 

 𝑉𝑖𝑟𝑎𝑙	𝐿𝑜𝑎𝑑 = 𝑒+(8'1!"+S)+Q*!%(2 − 𝑒+*!%)     (60) 

 ".(%)
"%

= − a((%).(%)
#$

, (61, S3-1) 

 "((%)
"%

= a((%).(%)
#$

− 𝛾𝐼(𝑡),  (62, S3-2) 
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 "L(%)
"%

= 𝛾𝐼(𝑡), and (63, S3-3) 

 𝑁3 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (64, S3-4) 

 c(%)
∆%

= x(𝑡)∑ 𝜑(𝑡, 𝜃)𝑣(𝑡, 𝜃)%
Id∆%     (65) 

 𝜑(𝑡, 𝜃) = P>(%,I)
?(%)

,      (66) 

 c(%)
∆%

= ∑ 𝜑A(𝑡, 𝜃)𝑣(𝑡, 𝜃)%
Id∆% .      (67) 

 ".(%)
"%

= −𝛽𝐼(𝑡),  (68) 

 "((%)
"%

= 𝛽𝐼(𝑡) − γ𝐼(𝑡),   (69) 

 "L(%)
"%

= γ𝐼(𝑡), and  (70) 

 𝑁3 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),   (71) 

 
"f 3("),(")g

"%
= − *!(%)((%)

!4(%)#(%)
  (S1-1) 

 
"f 3("),(")g

"%
= "(((%)

"%
S

#(%)
− "#(%)

"%
((%)
#(%)&

= − ((%)
#(%)

*8(%)
!4(%)

      (S1-2) 

 
"f 3("),(")g

"%
=

(3(")
(" +

(,(")
("

3(")
,(")

#(%)
=

+((%)
18(B)
%4(")

#(%)
    (S1-3) 

 "L(-)
"%

= 𝐼(0) *8(-)
!4(-)

     (S1-4) 
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  S
((%)

"((%)
"%

= 𝐾Z
((%)
#(%)

− *8
!4
	= 𝐾' −

L(%)
#(%)

𝐾' −
*8
!4

. (S1-5) 

 𝑁(𝑡) = 𝑁4
(S+R6(%)). (S1-6) 

 𝑃<A(t) =
2;>(%)#$

2$
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡	𝑟𝑎𝑡𝑒,  (S2-1) 

  𝐴S(𝑡) = lim
∆%→-

∫ 𝐴SA(𝑡)𝑑𝑡
%H∆%
% ,  (S2-2) 

 *8(%)
!4(%)

= *!(%)2$
2;(%)#$

. (S2-3) 

  2;#$
2
ln r1 + VW_#(%)`

+
N;,$
N

s = −𝐾't. (S2-4) 

 𝐹{𝑁(𝑡)| = −𝐾't. (S2-5, 58) 

 ".(%)
"%

= − a((%).(%)
#$

, (S3-1, 61) 

 "((%)
"%

= a((%).(%)
#$

− 𝛾𝐼(𝑡),  (S3-2, 62) 

 "L(%)
"%

= 𝛾𝐼(𝑡), and (S3-3, 63) 

 𝑁3 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (S3-4, 64) 

 𝑡E@? =
!4VW	(!4)

*!
     (S3-5, 46) 

 𝐾'(𝑡) =
P.(%)
2$

= a.(%)
#$

, and    (S3-6) 
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 𝑃<(𝑡) =
S

N$O
P)(")+(S+R6(%))

= S
Q,$
R)(")+(S+R6(%))

.    (S3-7) 

 𝛽(𝑡) = P(%)#$
2$

= *!#$
.(%)

 and     (S3-8) 

 𝛾(𝑡) = 𝜓(𝑡) = 𝐾'
L(%)
#(%)

+ *!
!4

.     (S3-9) 

((7∆%)
#(7∆%)

= `1 − *!(-)∆%+∆!4(-)
!4(-)

a `1 − *!(∆%)∆%+∆!4(∆%)
!4(∆%)

a…`1 − *!(7∆%)∆%+∆!4(7∆%)
!4(7∆%)

a  

        (S5-1) 

 ((%)
#(%)

= 𝐹:(0)𝑒
+∫

1!(")'
(%4(")
("

%4(")	
"%"

# = 𝐹:(0)
!4(%)
!4(-)

𝑒+∫
1!(")
%4(")	

"%"
#    (S5-2) 

 𝑁(𝑡) = 𝑁(0)𝑒R6(-) ∫ *!(%)
%4(")
%4(#)

8
'∫

18(2)
%4(2)

(2"
# "%"

#     (S5-3) 

 𝐼(𝑡) = 𝐼(0) !4(%)
!4(-)

𝑒R6(-) ∫ *!(%)
%4(")
%4(#)

8
'∫

18(2)
%4(2)

(2"
# "%"

# +∫
18(")
%4(")

"%"
#    (S5-4) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0) !4(%)
!4(-)

𝑒+∫
18(")
%4(")

"%"
# )𝑒R6(-) ∫ *!(%)

%4(")
%4(#)

8
'∫

18(2)
%4(2)

(2"
# "%"

#   (S5-5) 

 𝑁(𝑡) = 𝑒+!4;(8
'
1!
%4;

	B
+S).      (S5-6) 

 𝑁(𝑡) = 𝑒+!4;(8
'
1!
%4;

	B
+S) +	𝐼Q𝑒+!4&(8

'
1!
%4&

	(B'"&)+S),   (S5-7) 
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 𝑁(𝑡) = 𝑒+!4;(8
'
1!
%4;

	B
+S) +	𝐼Q𝑒+!4&(8

'
1!
%4&

	(B'"&)+S)…+ 𝐼k𝑒+!4W(8
'
1!
%4W

	(B'"W)+S),  (S5-8) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)%
- ,   (S6-1,11) 

 𝐼(𝑡) = ∑ 𝐼(𝑡,%
Id- 	𝜃) = ∑ 𝐵(𝑡, 𝜃)𝐼(𝑡%

Id- − 𝜃, 0).   (S6-2) 

𝐼(𝑡) = 𝐾'(𝑡 − ∆𝑡)∆𝑡 ∑ 𝐼(𝑡 − ∆𝑡,%+∆%
Id- 	𝜃) + (1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)∑ 𝐼(𝑡 − ∆𝑡,%+∆%

Id- 	𝜃)  

       (S6-3) 

 𝐼(𝑡) = (𝐾'(𝑡 − ∆𝑡)∆𝑡 + 1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)(𝐾'(𝑡 − 2∆𝑡)∆𝑡  

 +1 − 𝜓(𝑡 − 2∆𝑡)∆𝑡)… (𝐾'(0)∆𝑡 + 1 − 𝜓(0)∆𝑡)𝐼(0)   (S6-4) 

𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃) "#(%+I,-)
"%

𝑑𝜃 + 𝐵(𝑡)𝐼(0)%
- = 𝑒∫ _*!(%)+M(%)`"%

"
# 𝐼(0) = 𝑒∫ *!(%)"%

"
# 𝐵(𝑡)𝐼(0) 

       (S6-5) 
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