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Abstract 

In this manuscript, we derive a closed form solution to the full Kermack and McKendrick 

integro-differential equations (Kermack and McKendrick 1927) which we call the KMES. The 

KMES can be cast in the form of a step function response to the input of new infections; and that 

response is the time series of the total infections. We demonstrate the veracity of the KMES 

using independent data from the Covid 19 pandemic and derive many previously unknown and 

useful analytical expressions for diagnosing and managing an epidemic. These include new 

expressions for the viral load, the final size, the effective reproduction number, and the time to 

the peak in infections. 

Since the publication of Kermack and McKendrick’s seminal paper (1927), thousands of authors 

have utilized the Susceptible, Infected, and Recovered (SIR) approximations; expressions which 

are putatively derived from the integro-differential equations, to model epidemic dynamics. 

Implicit in the use of the SIR approximation are the beliefs that there is no closed form solution 

to the more complex integro-differential equations, that the approximation adequately reproduces 

the dynamics of the integro-differential equations, and that herd immunity always exists. 

However, as we explicate in this manuscript, the KMES demonstrates that the SIR models are 

not adequate representations of the integro-differential equations, and herd immunity is not 

guaranteed. Our conclusion is that the KMES obsoletes the need for the SIR approximations; and 

provides a new level of understanding of epidemic dynamics. 
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Introduction 

Modern epidemiological modeling has its roots in the Kermack and McKendrick epidemic model 

presented in their 1927 paper (Kermack and McKendrick 1927). Since its publication, well over 

10,000 authors have referenced this paper and used it as a foundational starting point. 

Throughout this vast literature, three basic tenets are held to be true: 1) There are no published 

closed-form solutions to the full set of Kermack and McKendrick’s integro-differential 

equations; 2) An approximation to the full equations, known as the SIR (Susceptible, Infected, 

Recovered) model and its variants, are accepted as reasonable representatives of the full 

equations; and 3) the final number of uninfected individuals, 𝑆∞, is greater than zero (ie, it is not 

possible for everyone to become infected). This latter property is referred to as “herd immunity”.  

Despite the durability of these associations, in this manuscript, we explicate that a closed-form 

solution to the equations can be derived; and based on this solution, we demonstrate that the 

arguments and mathematics used to justify the use of the SIR model, as well as those advanced 

to prove that herd immunity exists, rest upon flawed logic. As a preview to our approach, in this 

introduction, we present an outline for this solution and use this to illustrate the illogical 

reasoning that supports the existence of herd immunity. In the main body of this manuscript, we 

derive the entire solution in detail.  

We begin by defining I(𝑡) as the number of infected individuals at a time, t; and then write the 

following relationship, 

𝑑𝐼(𝑡)

𝑑𝑡
= (𝐾𝑇(𝑡) − 𝜓(𝑡))𝐼(𝑡),         (1) 
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where 𝐾𝑇(t) is a function describing the transmissibility of the disease and 𝜓(𝑡) is a function 

describing the recovered state of the infected people.  

Equation 1 is easily solved to find an expression for I(𝑡), 

𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑡)−𝜓(𝑡))𝑑𝑡
𝑡
0 ,         (2)  

where the initial number of infected individuals is I(0), 

Since we are interested in determining the epidemic’s final size, we first use Equations 1 and 2 to 

determine the running total of infected people.  We define the running total as N(𝑡) and the 

initial number of susceptible (or infectable individuals) as S(0). We then note that if the 

condition 𝑁(𝑡) = S(0) can occur, 𝑆∞ = 0 is possible; and herd immunity is not guaranteed.  

The expression, 𝐾𝑇(𝑡)𝐼(𝑡), on the right side of Equation 1 is the change in new cases, therefore, 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡),          (3) 

and, 

𝑁(𝑡) = ∫ 𝐾𝑇(t)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑡)−𝜓(𝑡))𝑑𝑡

𝑡
0 𝑑𝑡       (4) 

We see from Equation 4 that regardless of the size of S(0), there are finite values of 𝐾𝑇(t) and 

𝜓(𝑡), which allow 𝑁(𝑡) = S(0). Therefore, under that range of conditions, it is possible for 

𝑆∞ = 0; and herd immunity is not guaranteed. This finding is provocative and suggests that we 

carefully examine the logic used to reach the conclusion that herd immunity, a sine qua non of 

conventional epidemiological modeling, always exists.  
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The conventional approach to deriving an expression for the final size of an epidemic begins 

with the summarized Kermack and McKendrick equations, 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝜑(𝑡)𝑆(𝑡)I(t)

𝐴𝑝
         (5) 

𝑑𝐼(𝑡)

𝑑𝑡
=

𝜑(𝑡)𝑆(𝑡)I(t)

𝐴𝑝
− ψ(𝑡)𝐼(𝑡)        (6) 

where 𝑆(𝑡) is the number of people in the population that remain susceptible, 𝐼(𝑡) is the number 

of people infected, φ(𝑡) and ψ(𝑡) are the time varying versions of the parameters that Kermack 

and McKendrick define respectively as the “rate of infectivity” and “the rate of recovery”, and 

𝐴𝑝 is the area that encompasses the population. (We also note here that if 𝐾𝑇(𝑡) is assumed to 

equal  
𝜑(𝑡)𝑆(𝑡)

𝐴𝑝
 and since 

𝑑𝑁(𝑡)

𝑑𝑡
= −

𝑑𝑆(𝑡)

𝑑𝑡
, Equations 1 and 3 are equivalent to Equations 6 and 5, 

respectively.  Therefore, Equation 4 could also be derived from Equations 5 and 6.) 

The conventional derivation proceeds by dividing both sides of Equation 5 by 𝑆(𝑡); and within 

this early step a fundamental problem arises: Equation 5 cannot be divided by S(𝑡) without first 

assuming S(𝑡), and therefore, 𝑆∞ is > 0 for all time. Thus, at its very beginning, the 

demonstration that 𝑆∞ > 0, the essence of herd immunity, begins with the assumption that the 

conclusion is true. 

Adherents of the analysis justify this assumption by either explicitly or implicitly assuming and 

accepting that φ(𝑡) (or its equivalent) is finite.  Using the further assumption that 𝜑(𝑡) and ψ(𝑡) 

are constants, and employing Equation 6, they then arrive at the following implicit expression for 

determining the final size, 
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log(
𝑆0

𝑆∞
) = 𝑅0(1 −

𝑆∞

𝐾
),         (7) 

where 𝐾 = 𝑆0 + 𝐼(0), I(0) is the initial number of infected people, 𝑆∞ is the final size of the 

uninfected population, 𝑆0 is the initial size of the uninfected (or susceptible) population, and 

𝑅0 =
𝜑(0)

ψ(0)
. When presented in these analyses, Equation 7 is also accompanied by the statement 

𝜑(𝑡) < ∞ and therefore 𝑆∞ > 0. There are variations on this theme, but in all cases the 

conclusion that 𝑆∞ > 0 rests on the assumption that 𝜑(𝑡) < ∞. 

The critical assumption, that 𝜑(𝑡) < ∞, is supported in these analyses by making one or the 

other of two physical assertions. One assertion is that 𝜑(𝑡) is the contact rate between the 

susceptible and infected populations (Brauer 2005) and therefore can never be infinite.  In the 

second assertion, the quantity I(t)𝜑(𝑡) is referred to as the “force of infection” (Breda, et al, 

2021, Diekmann, et al, 2021) which, by its very nature, is assumed to be finite.  

A simple dimensional analysis of Equation 5 contravenes these assertions. In Equation 5, the 

units of  φ(𝑡) must be: 𝑛𝑒𝑤𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑥𝑎𝑟𝑒𝑎𝑥(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑𝑥𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒𝑥𝑡𝑖𝑚𝑒)−1 and 

I(t)𝜑(𝑡) has the units of 𝑛𝑒𝑤𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑥𝑎𝑟𝑒𝑎𝑥(𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒𝑥𝑡𝑖𝑚𝑒)−1. Clearly, the units 

of φ(𝑡) are not a simple contact rate and I(t)𝜑(𝑡) is not a force because it simplifies to units of 

inverse time. Furthermore, based on its units, as S(𝑡) approaches zero, the quantity 𝜑(𝑡) should 

be expected to become increasingly large because each new infection occurs in proportion to an 

ever-decreasing value of S(𝑡). Therefore, 𝜑(𝑡) will surely not be a constant as S(𝑡) approaches 

zero; but rather will approach infinity by its very definition. Similarly, the quantity, I(t)𝜑(𝑡), 

with its units of inverse time, will also approach infinity as S(𝑡) approaches zero because 

I(t)𝜑(𝑡) is the inverse of the time until S(𝑡) reaches zero. Beyond these dimensional problems, 
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questions such as upper limits and functionality are simply unaddressed and unanswered in these 

analyses. They are, therefore, unconvincing. 

In contrast to the conventional approach, in the first part of this introduction, we re-posed the 

problem, derived Equation 4, and arrived at the conclusion that herd immunity is not guaranteed. 

Significantly, we deduced this result without relying on any a priori assumptions about the 

parameters or the allowable final size. We need now only to define 𝐾𝑇(t) and 𝜓(𝑡) in Equations 

2 and 4 to arrive at a solution describing epidemic dynamics.  

It is also instructive to note that when Equation 2 is rewritten as, 

𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 𝐼(0)𝑒∫ −𝜓(𝑡)𝑑𝑡

𝑡
0 ,        (8) 

the righthand side of this expression can be interpreted as the decaying step input of the initial 

infections, 𝐼(0)𝑒∫ −𝜓(𝑡)𝑑𝑡
𝑡
0 , times the response function, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 , to this input. That the 

response function is an exponential function, is an expected result because if there were no 

recovery (i.e., if 𝜓(𝑡) = 0 for all time), then the number of infections would, and should grow 

exponentially. Therefore, at the outset, we see that our approach yields a logical form of the 

solution. 

In this manuscript, we use the full Kermack and McKendrick equations and basic principles to 

first define 𝐾𝑇(t) and 𝜓(𝑡), then find analytical expressions for both N(𝑡) and N(∞). Building 

on this, we develop a complete solution to the full Kermack and McKendrick equations, which 

we refer to as the KMES (Kermack and McKendrick Equation Solution). We validate the KMES 

by correctly projecting data obtained from the Covid-19 pandemic, and we derive many useful, 

new analytical formulas for diagnosing and managing an epidemic.   
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Lastly, the availability of a closed form solution enables us to closely examine the assumptions 

behind the SIR epidemiological compartmental models. In that examination, we find that there 

are implicit, implausible assumptions, which have not been previously appreciated. We also 

demonstrate the forced conclusion that the conventional image of people travelling irreversibly 

from one compartment to the next, even under the assumption of perfect immunity in recovery, 

has significant flaws.  

Section 1: Derivation of the final size 

(Note: We use the following equation notation, (X, SY-Z), where X is the equation number in 

the body, Y is the supplement number and Z is the number of the equation in the supplement) 

We begin our analysis by stating two of the integro-differential equations from Kermack and 

McKendrick in the following form: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝜃)𝑉(𝑡 − 𝜃)𝑑𝜃 + 𝐴(𝑡)𝐼(0))

𝑡

0
, (9, S1-1) 

𝐼(𝑡) = ∫ 𝐵(𝜃)𝑉(𝑡 − 𝜃)𝑑𝜃 + 𝐵(𝑡)𝐼(0))
𝑡

0
,  (10, S1-2) 

Where 𝑆(𝑡) is the susceptible population, 𝐼(𝑡) is the infected population, 𝑉(𝑡 − 𝜃) is the new 

infections, 𝐵(𝜃) = 𝑒−∫ 𝜓(𝑎)𝑑𝑎
𝜃
0 , and 𝐴(𝜃) = 𝜑(𝜃)𝐵(𝜃).Kermack and McKendrick (1927, p. 

703) defined 𝜑(𝜃) as “the rate of infectivity at age 𝜃”, and 𝜓(𝜃) as “the rate of removal” (page 

703) of the infected population to the recovered population. 𝐴𝑝 is the area that contains the 

population. Equation 9 is the equivalent of Equation 5 from which we have reverted to Kermack 

and McKendrick’s original notation. 
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Using the prior definition that 𝑁(𝑡) is the total number of people that have been infected, and 

defining 𝑅(𝑡) as the portion of 𝑁(𝑡) that have recovered and are therefore immune we write the 

sum: 

𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡)  (11, S1-3) 

and, 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑑𝑁(𝑡)

𝑑𝑡
  (12) 

If we divide Equation 9 by Equation 10, we can define a new function, 𝐾𝑇(𝑡) as the negative of 

the change in the susceptible population per infected person: 

𝐾𝑇(𝑡) = −
𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

S(t)(∫ 𝐴(𝜃)𝑉(𝑡−𝜃)𝑑𝜃+𝐴(𝑡)𝐼(0))
𝑡
0

𝐴𝑃(∫ 𝐵(𝜃)𝑉(𝑡−𝜃)𝑑𝜃)+𝐵(𝑡)𝐼(0)
𝑡
0

= 𝑆(𝑡)𝜑(𝑡)   (13) 

Using Equation 12 in Equation 13 and rearranging the terms, we arrive at a fundamental 

statement of the epidemic: 

−
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡) (14, S1-8) 

Equation 14 describes a direct relationship between the cause of the epidemic, namely, 

infections, 𝐼(𝑡), and the change in the susceptible population. We can also see from Equation 14 

that the units of 𝐾𝑇(𝑡) must be: 
𝑁𝑒𝑤𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑𝑝𝑒𝑟𝑠𝑜𝑛𝑥𝑇𝑖𝑚𝑒
.  Since the righthand side of Equation 14 

has no specific reference to susceptibles, it is plausible that 𝐾𝑇(𝑡) could be a parameter of the 

disease alone.  

A solution to Equation 14 can be found by employing a parameter describing the contacts 

between the people within the affected population. We call this parameter 𝑃𝑐(𝑡) and define it as: 
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𝑃𝑐(𝑡) = lim
∆𝑡→0

∫ 𝑃𝑐𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,  (15) 

where 𝑃𝑐𝑟(𝑡) is the contact rate for the subpopulation 𝑁(𝑡). 

Using 𝑃𝑐(𝑡) and 𝑁(𝑡) in the righthand side of Equation 14, we now rewrite it as the following, 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑁(𝑡)𝑃𝑐(𝑡)

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝐼(𝑡)

𝑁(𝑡)
  (16) 

Equation 16 states that the change in the number of people infected is fully determined by the 

number of interactions of people within the already infected community (𝑁(𝑡)𝑃𝑐(𝑡)), times the 

effectiveness of the disease transmission per contacted person (
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
), times the fraction of the 

people still infected within the already infected population (
𝐼(𝑡)

𝑁(𝑡)
). This is a sensible statement in 

that the interactions, 𝑁(𝑡)𝑃𝑐(𝑡), are discounted by the fraction of 𝑁(𝑡) that is still infected and 

the effectiveness of the transmission per contact, 
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
.  The latter portion of this statement 

sharpens the assumption that 𝐾𝑇(𝑡) is a function of the disease transmission alone. 

We now need to find an expression for 
𝐼(𝑡)

𝑁(𝑡)
 in terms of 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡). In a first step, we define 

𝐹𝑖(𝑡) =
𝐼(𝑡)

𝑁(𝑡)
 as the fraction infected and we rewrite Equation 16 as the following difference 

equation at time 𝑡 = 0, 

𝑁(∆𝑡) = 𝑁(0) + 𝑁(0)𝑃𝑐(0)(𝐹𝑖(0) − 𝐹𝑖(0)(1 −
𝐾T(0)

𝑃𝑐(0)
∆𝑡))     (17) 

In Equation 17, since 𝑁(0) is a given and 𝑃𝑐(0) is only a function of people’s behavior, the 

quantity 𝐹𝑖(0) − 𝐹𝑖(0)(1 −
𝐾T(0)

𝑃𝑐(0)
∆𝑡) must be the change in 𝐹𝑖(0) during the period ∆𝑡. That is, 

the difference between 𝐹𝑖(0) and 𝐹𝑖(∆𝑡) can be written as 
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𝐹𝑖(0) − 𝐹𝑖(∆𝑡) = 𝐹𝑖(0) − 𝐹𝑖(0)(1 −
𝐾T(0)

𝑃𝑐(0)
∆𝑡).  (18) 

Rewritten, this is, 

𝐹𝑖(∆𝑡) = 𝐹𝑖(0)(1 −
𝐾T(0)

𝑃𝑐(0)
∆𝑡)  (19) 

and for any time (n + 1)∆𝑡, Equation 19 can be written as 

𝐹𝑖((𝑛 + 1)∆𝑡) = 𝐹𝑖(𝑛∆𝑡)(1 −
𝐾T(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
∆𝑡).  (20) 

We solve Equation 20 for 𝐹𝑖(𝑡) by forcing ∆𝑡 → 0 to find that, 

𝐹𝑖(𝑡) =
𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(𝑡0)𝑒

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0  (21, S1-38) 

Substituting Equation 21 into Equation 16, we have the following expression for 
𝑑𝑁(𝑡)

𝑑𝑡
, 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑁(𝑡)𝐹𝑖(𝑡0)𝐾𝑇(𝑡)𝑒

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0        (22, S1-9) 

This equation can then be solved for 𝑁(𝑡) in terms of 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡), 

𝑁(𝑡) = 𝑁(𝑡0)𝑒
𝐹𝑖(𝑡0) ∫ 𝐾𝑇(𝑡)𝑒

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 𝑑𝑡

𝑡
0       (23, S1-10) 

and, by combining Equations 14, 22, and 23, we obtain an expression for 𝐼(𝑡), 

𝐼(𝑡) = 𝐼(𝑡0)𝑒
𝐹𝑖(𝑡0) ∫ 𝐾𝑇(𝑡)𝑒

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0      (24, S1-11) 

If  𝐾𝑇(𝑡) truly is solely a function of the disease, it is likely to be a constant, at least in the initial 

stages of an epidemic.  Using this inferred property and assuming 𝐹𝑖(𝑡0) = 1, we can find an 
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expression for the potential final size, 𝑁(∞), by also assuming the population does not change 

its behavior (i.e., 𝑃𝑐  is a constant) during the pandemic, 

𝑁(∞) = 𝑁(𝑡0)𝑒
𝑃𝑐          (25) 

Using Equation 23, we can see that it is possible for 𝑁(∞) to equal 𝑆(0) and, therefore, herd 

immunity is not guaranteed. If this occurs, the time it would take is given by the following 

expression, 

𝑡 = −
𝑃𝑐

𝐾𝑇
𝑙𝑛(1 −

ln(
𝑆(𝑡0)

𝑁(𝑡0)
)

𝑃𝑐
)         (26) 

and the criteria that must be true for the entire population to become infected is, 

𝑃𝑐 > ln (
𝑆(𝑡0)

𝑁(𝑡0)
)           (27) 

Equations 25 through 27 enable the estimation of the level of social interaction that will cause 

the total population to be infected and they demonstrate very clearly that the existence of herd 

immunity is not an inherent property of the Kermack and McKendrick model. 

Section 2: Solution to the Kermack and McKendrick full equations 

From the definition of 𝑁(𝑡) and using Equations 23 and 24 we find the expression for 𝑅(𝑡), 

𝑅(𝑡) = (1 − 𝐹𝑖(𝑡0)𝑒
−∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑁(𝑡0)𝑒

𝐹𝑖(𝑡0) ∫ 𝐾𝑇(𝑡)𝑒
−∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 𝑑𝑡

𝑡
0     (28) 

If we then assume that both 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) are constant for a period, we arrive at simplified 

expressions for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡), 
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𝑁(𝑡) = 𝑁(𝑡0)𝑒
−𝐹𝑖(𝑡0)𝑃𝑐(𝑒

−
𝐾T
𝑃𝑐

𝑡
−1)        (29) 

𝐼(𝑡) = 𝐼(𝑡0)𝑒
−𝐹𝑖(𝑡0)𝑃𝑐(𝑒

−
𝐾T
𝑃𝑐

𝑡
−1)−

𝐾T
𝑃𝑐
𝑡

        (30) 

𝑅(𝑡) = (1 − 𝐹𝑖(𝑡0)𝑒
−
𝐾T
𝑃𝑐
𝑡
)𝑁(𝑡0)𝑒

−𝐹𝑖(𝑡0)𝑃𝑐(𝑒
−
𝐾T
𝑃𝑐

𝑡
−1)      (31) 

In their 1927 paper, Kermack and McKendrick parameterized their equations with the functions 

𝐵(𝑡), 𝐵(𝜃), 𝜑(𝑡), 𝜑(𝜃), 𝜓(𝑡), and 𝜓(𝜃). In Supplement 1, we use a vector and matrix approach 

to show that these parameters can be put in terms of 𝐾𝑇(𝑡), 𝑃𝑐(𝑡): 

𝐵(𝑡) = 𝑒−∫ 𝜓(𝑡)𝑑𝑡
𝑡
0 = 𝑒

−∫ 𝐾𝑇(𝑡)
𝑡
0 𝑑𝑡+∫ 𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

𝑑𝑡
𝑡
0 −∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

   (32, S1-23) 

𝐵(𝜃) = 𝑒
−(𝐾𝑇(𝑡)−𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑎)
𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝜃

      (33, S1-22) 

𝜓(𝑡) = 𝜓(𝜃) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
= 𝐾𝑇(𝑡) − 𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)

𝑡
0 𝑑𝑎

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
    (34, S1-21) 

𝜑(𝑡) = 𝜑(𝜃) =
𝐾𝑇(𝑡)𝐴𝑝

𝑆(𝑡)
        (35, S1-28) 

Equations 32 through 35 along with Equations 23, 24, and 28 form the complete solution of the 

full Kermack and McKendrick equations with time varying disease transmissibility, 𝐾𝑇(𝑡), and 

contact behavior, 𝑃𝑐(𝑡).  As previously stated, we refer to these as the KMES.  

Using Equation 32, and as anticipated in the introduction, we can rewrite Equations 23, 24, and 

28 as,  

𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 𝐵(𝑡)𝐼(0) (36, S1-34) 
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𝑁(𝑡) = 𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝐵(𝑡)𝐼(0) (37, S1-35) 

𝑅(𝑡) = (𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 − 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 )𝐵(𝑡)𝐼(0) (38, S1-36) 

Since 𝐵(𝑡) is the time varying infectiousness input of the original infected group, 𝐼(0), the 

exponential expressions, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 , 𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 , and 𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 − 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 , are the 

step response functions to this input. These step response functions also show that if 𝐵(𝑡)𝐼(0) =

1, that is, if there were no recovery, then, based on Equation 37, the epidemic would proceed 

exponentially until the entire population was infected. This result is both intuitive and sensible.  

Section 3: Veracity of the solution 

We can test the KMES projections using data from the Covid-19 pandemic. To do this, we must 

first determine the appropriate values of 𝐾𝑇 and 𝑃𝑐.  

By rearranging the terms of Equation 22 and taking the natural log of both sides we obtain the 

following expression, 

𝑅𝐶𝑂 = 𝑙𝑛 (
𝑑𝑁(𝑡)

𝑑𝑡

𝑁(𝑡)
) = ln(𝐹𝑖(𝑡0)𝐾𝑇(𝑡)) − ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡

0
      (39) 

We labelled this as the “RCO” which stands for Rate of Change Operator because it is a measure 

of the rate of change of the population, 𝑁(𝑡), per person within the group 𝑁(𝑡). 

If we again assume that both 𝐾𝑇 and 𝑃𝑐 are at least piece-wise constant for substantial periods of 

time, Equation 39 becomes the linear equation in time, 
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Figure 1. Rate of change operator (RCO) curves for COVID-19 cases in various countries.  An 

epidemic can be described by a piecewise linear model using the RCO (Equation 40). A short segment of orange 

dots in each graph is a linear fit to the corresponding points (blue/white circles) in the observed data. The slopes and 

initial points of these dotted-line segments are the values of 𝐾1 and 𝐾2 respectively which are tabulated in Table1.  

In some countries, RCO curves changed markedly soon after the date containment measures were implemented 

(arrows): A) South Korea, February 21; (the oval highlights a departure of the observed data from the RCO slope, 

indicating failures in, or relaxations of, social distancing); B) USA, March 16; C) Sweden did not implement any 

specific containment measures, so the model calibration was begun on April 1, the date when the slope of the RCO 

curve first became steady. D) Italy, March 8; E) Spain, March 14; F) New Zealand, March 25. All dates are in 2020. 
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Table 1. Social containment parameters used to model total cases and new daily cases of infection 

for different countries (Roser et al 2021). 

 𝑲𝐓

𝑷𝒄
 

𝒍𝒏(𝑭𝒊(𝒕𝟎)𝑲𝑻) N(to) Date range for RCO fit 

South Korea 0.24 −1.58 3,736 March 1–March 9 

USA 0.076 −1.39 46,136 March 23–March 31 

Sweden 0.036 −2.47 5,320 April 1–April 9 

Italy 0.080 −1.93 31,506 March 17–March 25 

Spain 0.09 −2.11 65,719 March 27–April 4 

New Zealand 0.17 −2.06 708 April 1–April 9 

Parameters from linear fit of rate of change operator (RCO) data in Figure 1. 
𝐾T

𝑃𝑐
, slope; 𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇), intercept; 

N(t0), number of cases at time (t0), first day of time range used. All dates are in 2020.the data falls in a straight 

line.   

 

𝑅𝐶𝑂 = 𝑙𝑛 (
𝑑𝑁(𝑡)

𝑑𝑡

𝑁(𝑡)
) = ln(𝐹𝑖(𝑡0)𝐾𝑇) −

𝐾T

𝑃𝑐
𝑡       (40) 

By applying Equation 40 to data (Roser, et al. 2021) from six different countries during the 

initial stages of the Covid-19 pandemic, we obtained the curves in Figure 1. As can be seen in 

the figure, before and shortly after the date (indicated by the arrows in the figures) of the 

imposition of containment actions in the six countries these RCO curves become straight lines. 

This is a strong indication that it is reasonable to assume 𝐾𝑇 and 𝑃𝑐 were constants before and 

after the imposition of the containment actions.  

To project the course of the epidemic in the individual countries, we used a small portion of the 

data immediately after the imposition of the containment measures to determine the values of 

𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇) and 
𝐾T

𝑃𝑐
 by fitting Equation 40 to short, early portions of the straight segments of the 

RCO time series. These early portions comprised nine data points each and Table 1 displays the 

values derived for each country.  
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Using these values in Equation 29, we then predicted the course of daily total cases (Figure 2) for 

the six countries.  These predictions matched the actual time series of the daily total cases with 

an R2 > 0.97 in each of the six countries for the 45 days following the date containment measures 

were introduced. We then used Equation 22 to plot the predicted time series of the daily new 

cases in Figure 3 for the six countries for the same 45 days. These predictions have an R2 range 

of 0.29 to 0.90; and as seen in the figure; the predicted peak of new cases was close to the 

observed peak for all countries.  

It is important to emphasize that the predictions in Figures 2 and 3 are not fits to the full-length 

of the data shown. Rather, the two constants, 𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇) and 
𝐾T

𝑃𝑐
 were estimated using only a 

short, linear, nine-point portion of the epidemic data starting between 7 to 14 days after the 

imposition of containment measures. These constants were then used to project the data 

following the nine points.  

In an additional demonstration of the veracity of the KMES, we tested the assumption that 

𝐾𝑇(𝑡)is a property of the disease, and therefore, should be the same constant for each country. 

Equation S2-5, derived in Supplement 2, shows that the model parameters, expressed in a 

purposefully constructed function, 𝐹(𝑁(𝑡)), should be linearly proportional to time with a 

constant of proportionality or slope equal to −𝐾𝑇(𝑡). As illustrated in Figure 4, the fit of 

Equation S2-5, using the population density data from Table 2, has an R2 = 0.956 and a slope of 

−0.26 (the slope is equal to −𝐾𝑇(𝑡)). This excellent correlation confirms that 𝐾𝑇(𝑡) can 

confidently be assumed to be the same for all countries (=0.26), is a constant in the initial stage 

of the epidemic, and is plausibly, a property of the disease. 
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 Figure 2. Complete KMES model predictions for daily total case counts. A) South Korea; B) USA; C) 

Sweden; D) Italy; E) Spain; and F) New Zealand.  Dots are daily data points observed from (white-center and all 

blue) or calculated (orange) for each country. The KMES model was calibrated using data from the date ranges 

listed in Table 1 (white-center blue dots).  R2 > 0.97 for the model fit for all countries for the 45 days after the 

containment measures were implemented: South Korea, February 21-April 4; USA, March 16-April 30; Italy, March 

8–April 22; Spain, March 14-April 28; New Zealand, March 25-May 9. Sweden did not implement any specific 

containment measures, so the dates used were March 23- May 7. The deviation of the model from the data in the 

USA, panel (B), after April is elucidated in Supplement 5. All dates are in 2020. 
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Figure 3. Complete KMES model predictions for number of new daily cases. A) South Korea, R2 = 0.86; 

B) USA, R2 = 0.83; C) Sweden, R2 = 0.29; D) Italy, R2 = 0.69; E) Spain, R2 = 0.65; and F) New Zealand, R2 = 0.90. 

The orange dotted line is the model in all panels. The all-blue and white-center blue dots are data points, daily 

observations from each country. The white-center blue points are used to determine model parameters. R2 values are 

between the model and the data, across countries for the 45 days after containment measures were instituted. 
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Figure 4. Verification that 𝑲𝑻 is the same for all countries. The data from Table 2 is plotted using Equation 

S2-5 and 𝐴1 = 0.48𝑘𝑚2. Each data point corresponds to a different country. The value of 𝐾𝑇 is the negative of the 

slope of the line, and𝐾𝑇  is closely approximated everywhere by 𝐾𝑇 ≈ 0.26. 

 

Table 2. Initial COVID-19 pandemic data and social interaction parameters for various countries 

((Roser et al 2021), case and date data; (Worldometers 2021, population density data) 

  

Date of 

first case 

reported  

Date of 

cases in 

calculation 

Days 

Cases on 

calculation 

date  

Population 

density 

(people/km2) 

KT ln(KT) 
𝑲𝐓(𝟎)

𝑷𝒄(𝟎)
 

South Korea 22 Jan 21 Feb 30 204 527 0.26 −1.3 2.39E-04 

USA 22 Jan 19 Mar 57 13,663 36 0.26 −1.3 3.50E-03 

Sweden 1 Feb 7 Mar 35 179 25 0.26 −1.3 5.04E-03 

Italy 31 Jan 24 Feb 24 229 206 0.26 −1.3 6.11E-04 

Spain 1 Feb 13 Mar 41 5,232 94 0.26 −1.3 1.34E-03 

New Zealand 28 Feb 19 Mar 20 28 18 0.26 −1.3 6.86E-03 

All dates are in 2020. 
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A third illustration of veracity arises from the ability to correlate independently sourced mobility 

data to the RCO. As explained in Supplement 2, and based on Equation 40, if the KMES is 

correct, then the integral of this mobility data should correlate linearly with the measured RCO.  

Mobility data, available from Google (Google 2020), are a measure of the difference between the 

amount of time people stayed at home (the Residential Mobility Measure or RMM) during the 

period modelled and a baseline measured for 5 weeks starting January 3, 2020. Figure 5 shows 

that, as the KMES predicts, for each country considered, the integral of the RMM and the RCO 

are linearly correlated to a high degree.   

Section 4: Useful expressions derived from the solution 

The derivation of the KMES suggests that we should be able to find an expression for the 

average viral load of the disease.  Equation 32 provides a starting point because it describes the 

evolution of the infectiousness of the initial infected population, 𝐼(𝑡0).  If we set 𝑃𝑐 = 𝐼(𝑡0) = 1 

in Equation 32, meaning that there was only one initial infection, assume that this infected 

person contacted only one person during the epidemic and recall that 𝐾𝑇(𝑡) is a constant, we 

obtain an expression for the viral load, 

𝐵(𝑡) = 𝑒−𝐾𝑇𝑡+(𝑒
−𝐾𝑇−1)−𝐾𝑇𝑡         (41) 

If we set 𝐾𝑇 = 0.26 in Equation 41, as derived from figure 4, we obtain the plot in Figure 6.  

The interpretation of Equation 41 and its graphical representation in Figure 6 require careful 

consideration.  First, the initial infected person in the epidemic did not become infected at 𝑡 = 0, 

and therefore, time in Equation 41 must be allowed to be negative.  Second, Equation 41 has the 

appropriate characteristics of a viral load; that is, it grows in an initially exponential fashion,  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


 

  

Figure 5. Correlations between the daily value of the rate of change operator (RCO) and the 

integral of the Google Residential Mobility Measure (RMM) (9). A) South Korea (date range, February 23 

to April 23); B) USA (March 25 to May 31); C) Sweden (March 5 to May 5); D) Italy (March 25 to May 31); E) 

Spain (March 25 to May 31); and F) New Zealand (March 21 to April 22). All dates are in 2020. 

 

reaches a maximum, and then declines at a slower exponential pace. Third, it has the same 

overall shape and dynamic change in load from peak to 15 days after the peak as the estimated 
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average loads obtained by direct measurements of individual Covid-19 patients with Covid-19 

(Challenger et al 2021 and Jones et al 2022). 

However, while it is tempting to label the expression 𝐵(𝑡) in Equation 41 as the viral load, it is 

more appropriately labeled as the effect that the viral load in one person has on the one person 

they contact.  This is related to the true viral load by some factor (not specified here); and its 

dynamic shape reflects the dynamics of the viral load. 

 

Figure 6. Representation of the average viral load of an infected person in the Covid 19 pandemic. 

The plot was generated using the values 𝐾𝑇 = 0.26 and 𝑃𝑐 = 1 in Equation 41   

 

As we illustrate in the following paragraphs, there are many additional useful expressions that 

can be derived from the KMES. For simplicity, we assume that 𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇) and 
𝐾T

𝑃𝑐
 are 
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constants in these derivations. We also assume that 𝐹𝑖(𝑡0) = 𝐼(𝑡0) = 𝑁(𝑡0) = 1 and 𝑡0 = 0. 

These simplifying assumptions allow the nature of the expressions to be more easily seen and 

understood. 

Using these assumptions, differentiating Equation 30, and dividing the result by 𝐼(𝑡), we obtain 

an expression for the number of new infections per infected person, 

𝑑𝐼(𝑡)

𝑑𝑡

𝐼(𝑡)
= 𝐾𝑇𝑒

−
𝐾T
𝑃𝑐
𝑡
−

𝐾T

𝑃𝑐
 .  (42)  

From Equation 42, we can see that the number of infections, I(t), will begin to decrease when,  

𝑒
−
𝐾T
𝑃𝑐
𝑡
−

1

𝑃𝑐
< 0           (43) 

If we subtract 1 from both sides of Equation 43 and divide by the left side, we find an expression 

for the Effective Reproduction Number or 𝑅𝐸𝑓𝑓, and the criteria for when the epidemic will 

begin to decline: 

𝑅𝐸𝑓𝑓 =
1

1−𝑒
−
𝐾T
𝑃𝑐

𝑡
+

1

𝑃c

.  (44) 

This expression for 𝑅𝐸𝑓𝑓 can also be derived by dividing 𝐾𝑇 by 𝜓(𝑡). As seen from Equation 44, 

𝑅𝐸𝑓𝑓 is a function of both the disease and the behavior of the population. When 𝑡 = 0, 𝑅𝐸𝑓𝑓 =

𝐵𝑎𝑠𝑖𝑐𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑅0 = 𝑃c, and an epidemic begins to decline when 𝑅𝐸𝑓𝑓 < 1. 

Using Equation 44, we obtain the following expression for the time when the decline begins: 

𝑡𝑑𝑒𝑐𝑙𝑖𝑛𝑒 =
𝑃𝑐ln(𝑃𝑐)

𝐾𝑇
.   (45) 
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Likewise, if we differentiate both sides of Equation 22, we can obtain an identical expression for 

the time when the change in the new infections is a maximum,  

𝑡𝑚𝑎𝑥 =
𝑃𝑐ln(𝑃𝑐)

𝐾𝑇
,  (46, S3-5) 

where 𝑡𝑚𝑎𝑥 = the time to the peak of new infections. As it should, the time of the peak in new 

cases coincides with the start of the decline of infections.  

Equation 46 demonstrates the relationship between the strength of social intervention measures, 

𝑃c, and the time to the peak of new infections. When social interventions are stronger (smaller 

𝑃c), the time to the peak will always be shorter. 

Another important expression is the rate of acceleration of the epidemic: 

𝑑2𝑁(𝑡)

𝑑2𝑡
= (𝐾T𝑒

−
𝐾𝑇
𝑃𝑐
𝑡
−

𝐾𝑇

𝑃𝑐
)
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(

𝐼(𝑡)

𝑁(𝑡)
−

1

𝑃𝑐
)
𝑑𝑁(𝑡)

𝑑𝑡
=(𝑒𝑅𝐶𝑂(𝑡) −

𝐾𝑇

𝑃𝑐
)
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾T

𝑑𝐼(𝑡)

𝑑𝑡
 . (47) 

Equation 47, with its four equivalent expressions, demonstrates the power that an authentic 

model provides. The leftmost expression allows us to compare the acceleration—the potential to 

change the rate of new infections—at any stage of the epidemic for any two countries, even those 

with different population densities, using only the daily case rate and the defining constants, 𝐾𝑇 

and 𝑃𝑐.  

Equation 47 is also an immediate determinant of whether the control measures in place, 

represented by 𝑃c, are effective enough. If the value of the term 
𝐼(𝑡)

𝑁(𝑡)
−

1

𝑃𝑐
 is positive, then the 

control measures are not strong enough. Conversely, when this term is negative, the epidemic is 

being brought under control.  
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The maximum value of 𝑃𝑐 that will begin to bring down the new cases per day occurs when the 

acceleration is less than zero. If we set the left-hand side of Equation 47 to zero, use the third 

expression from the left and solve for 𝑃𝑐, we arrive at the defining relationship for this critical 

parameter of epidemic management: 

𝑃𝑐 < 𝐾𝑇𝑒
−𝑅𝐶𝑂(𝑡).   (48) 

Since we can easily determine the value of 𝑅𝐶𝑂(𝑡) every day during the epidemic and the value 

of 𝐾𝑇 can be determined using the technique illustrated previously, the maximum allowable 

value of 𝑃𝑐 needed to reduce the number of daily cases can always be determined. This value of 

𝑃𝑐 is the maximum level of infectable social contact allowable if we want the number of new 

daily cases to continue decreasing. Also, as explained in Supplement 5.1, if the value of  
𝐾T(𝑡)

𝑃𝑐(𝑡)
 is 

determined to be less than zero from the graphical analysis, then an outbreak has occurred and 

immediate reductions in social interactions are needed.   

Yet another important relationship can be derived from Equation 22. In that equation, the term 

𝑑𝑁(𝑡)

𝑑𝑡
 is the rate of new cases and, in the figures, this is the new cases per day. If we define a 

desired target for the number of new cases per day at a future time, 𝑡 + 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, then we can 

derive a new quantity, the desired fraction of the current new cases, 𝐷𝑡𝑓, as: 

𝐷𝑡𝑓 =
𝑑𝑁(𝑡)

𝑑𝑡

𝑑𝑁(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

𝑑𝑡

,   (49) 

and using Equations 22 and 29, we arrive at the following expression: 

𝐷𝑡𝑓 = 𝑒−𝑃𝑐(𝑒
−
𝐾𝑇
𝑃𝑐

(𝑡𝑡𝑎𝑟𝑔𝑒𝑡+t)−𝑒
−
𝐾𝑇
𝑃𝑐

𝑡
)𝑒

−
𝐾𝑇
𝑃𝑐
𝑡target

.   (50) 
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If 𝑡 ≫ 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, then 𝑒
−
𝐾𝑇
𝑃𝑐
(𝑡𝑡𝑎𝑟𝑔𝑒𝑡+t) − 𝑒

−
𝐾𝑇
𝑃𝑐
𝑡
≈ 0 and we can obtain the following equation from 

the remaining terms: 

𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = −
𝑃𝑐ln(𝐷𝑡𝑓)

𝐾𝑇
.   (51) 

Equation 51 quantitates the number of days, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, that a level of social containment, 𝑃𝑐, must 

be imposed to achieve a fraction of daily cases, 𝐷𝑡𝑓, compared to the current level.  

In Supplement 5, using quantitative examples, we explain the use of Equations 44 through 51 to 

diagnose and control an epidemic. 

Section 5: Comments on the SIR approximations 

Due to the previous lack of a closed form solution, approximations to the full Kermack and 

McKendrick equations appear throughout the literature. Since, by their definition, 

approximations differ from the exact form, it is instructive to analyze these approximations with 

an eye to determining whether these behave qualitatively like the solution; and whether 

conclusions based on them are valid.  The approximations have their roots in Kermack and 

McKendrick’s 1927 paper where they proposed the following approximation, 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
, (52, S3-1) 

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
− 𝛾𝐼(𝑡),  (53, S3-2) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡), and (54, S3-3) 

𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (55, S3-4) 
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where β = rate of contact and transmission, γ = rate of recoveries. It should also be noted that the 

basic reproduction number is, 𝑅0 =
𝛽

𝛾
  by definition. 

These equations are the well-known “SIR” equations which can be derived from the full 

Kermack and McKendrick equations by assuming that the parameters 𝜑(𝑡) = 𝜑(𝜃) =
𝐴𝑝𝛽

𝑁𝑝
 and 

𝜓(𝑡) = 𝜓(𝜃) = 𝛾 are constants. The SIR equations and their variants (SEIR, MSEIR, etc.) have 

been used for decades in attempts to quantitatively and qualitatively model epidemics. These 

models are known as compartmental models and they all share the common characteristic that 

the term 
𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
, appears in the equations for 𝑆(𝑡) and 𝐼(𝑡).  

The full Kermack and McKendrick can also be written in the following form, 

𝑑𝑆(𝑡)

𝑑𝑡
= −K𝑇(𝑡)𝐼(𝑡),  (56)  

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡) − ψ(𝑡)𝐼(𝑡),  (57) 

𝑑𝑅(𝑡)

𝑑𝑡
= ψ(𝑡)𝐼(𝑡) and  (58) 

𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡),   (59) 

Where 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡); and 𝐾𝑇(𝑡) and 𝜓(𝑡) are defined as: 

𝐾𝑇(𝑡) =
𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

−S(t)(∫ 𝐴(𝜃)𝑣(𝑡−𝜃)𝑑𝜃+𝐴(𝑡)𝐼(0))
𝑡
0

𝐴𝑃(∫ 𝐵(𝜃)𝑣(𝑡−𝜃)𝑑𝜃+𝐵(𝑡)𝐼(0))
𝑡
0

 and   (13) 

ψ(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

𝐴𝑃(∫ 𝐶(𝜃)𝑣(𝑡−𝜃)𝑑𝜃+𝐶(𝑡)𝐼(0))
𝑡
0

𝐴𝑃(∫ 𝐵(𝜃)𝑣(𝑡−𝜃)𝑑𝜃+𝐵(𝑡)𝐼(0))
𝑡
0

,   (60) 
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When we compare equations 52 to 54 to equations 56 through 58, we find that if 𝐾𝑇(𝑡) and ψ(𝑡) 

are approximated as the constants β and 𝛾, the equations are not equivalent because the term  

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
  does not appear in the approximations of equations 57 or 58. Since the SIR equations 

are putatively an approximation of the full Kermack and McKendrick integro-differential 

equations, this demonstrates that the methodology used to derive the SIR equations must be 

flawed. Therefore, we need to re-examine the logic Kermack and McKendrick used in 

developing the SIR equations.  

A key statement comes early in the derivation of their integro-differential equations where 

Kermack and McKendrick write (1927, pg. 703), “Now v(𝑡) denotes the number of persons in 

unit area who become infected at the interval 𝑡, and this must be equal to x(𝑡) ∑ 𝜑(𝜃)𝑣(𝑡, 𝜃)𝑡
1  

where x(𝑡) denotes the people per unit area still unaffected, and 𝜑(𝜃) is the rate of infectivity at 

age 𝜃.” In equation form, this statement reads, 

v(𝑡)

∆𝑡
= x(𝑡) ∑ 𝜑(𝜃)𝑣(𝑡, 𝜃)𝑡

1          (61) 

Later in their manuscript, Kermack and McKendrick used Equation 61 as the basis for deriving 

Equation 43 and 44 by assuming that 𝜑(𝜃) equals the constant 
𝛽𝐴𝑝

𝑁𝑝
. 

Although Kermack and McKendrick labeled 𝜑(𝜃) as a “rate”, 𝜑(𝜃) in Equation 61 cannot 

merely be a rate with the units of 𝑡𝑖𝑚𝑒−1 because v(𝑡, 𝜃) and v(𝑡) have the same units: 

𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑/𝑎𝑟𝑒𝑎 and  𝑥(𝑡) has the units of 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒/𝑎𝑟𝑒𝑎. A proper balancing of the 

dimensions leads to the conclusion that 𝜑(𝜃) has the units of 𝑡𝑖𝑚𝑒−1(
𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒

𝑎𝑟𝑒𝑎
)−1.   
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Hence, from the description given and our analysis in Supplement 1, it is clear that 𝜑(𝜃) can be 

written as, 

𝜑(𝜃) =
𝜑𝑟(𝜃)

𝑥(𝑡)
,           (62) 

where 𝜑𝑟(𝜃) is a rate of new infections, 𝜑(𝜃) is the rate of new infections per susceptible 

density, and Equation 61 can be rewritten as, 

v(𝑡)

∆𝑡
= ∑ 𝜑𝑟(𝜃)𝑣(𝑡, 𝜃)

𝑡
1 .         (63) 

In Supplement 1 we demonstrate that 𝜑(𝜃) = 𝜑(𝑡). Therefore, Equations 61 and 63 are merely 

restatements of Equation 14 and the units of  𝜑(𝑡) are 𝑡𝑖𝑚𝑒−1(
𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒

𝑎𝑟𝑒𝑎
)−1.   

Since the parameter 𝜑(𝜃) is a function of a rate of new infections, 𝜑𝑟(𝜃), divided by the 

susceptible population density, 𝑥(𝑡), and 𝑥(𝑡) is an ever-decreasing quantity as the epidemic 

progresses, 𝜑(𝜃) cannot itself be considered a constant as the epidemic progresses, especially as 

the affected population grows very large.  Rather, the quantity, 𝜑𝑟(𝜃) (which is equivalent to 

𝐾𝑇(𝑡)) is a better choice to be considered a constant when seeking to simplify the equations 

without losing their essence. 

Other authors too, have misinterpreted and misused 𝜑(𝜃). For example, in Hethcote (2000, pg 

602), the term, 
𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
 is derived using the argument that “If 𝛽is the average number of 

adequate contacts (i.e., contacts sufficient for transmission) of a person per unit time, then 

𝛽S(t)I(t)

𝑁𝑝
= 𝛽𝑁𝑝𝑠(𝑡)𝑖(𝑡) is the number of new cases per unit time due to 𝑆(𝑡) = 𝑁P𝑠(𝑡) 

susceptibles.” Notable in the statement is that 𝛽 is defined as, “…the average number of 
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adequate contacts (i.e., contacts sufficient for transmission) of a person per unit time …”. 

Because it defines 𝛽 as the average number of adequate contacts per unit time, and per person, 

this statement also implies that 𝛽 is not merely a contact rate with the units of 

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑥𝑡𝑖𝑚𝑒−1. Since Heathcote goes on to imply that the “person” is a susceptible, 𝛽 must 

have the units 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑥𝑡𝑖𝑚𝑒−1𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒−1 and the conclusions that 
𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
= 𝐾𝑇(t)I(𝑡) 

and 𝛽 =
𝐾𝑇(t)𝑁𝑝

𝑆(𝑡)
  immediately follow.  

The case when 𝑆(𝑡) ≈ 𝑁𝑝, which is early in an epidemic, further illuminates the fundamental 

flaws in the SIR formulation. When 𝑆(𝑡) ≈ 𝑁𝑝, Equations 52 through 55 become, 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝐼(𝑡),  (64) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝐼(𝑡) − γ𝐼(𝑡),   (65) 

𝑑𝑅(𝑡)

𝑑𝑡
= γ𝐼(𝑡), and  (66) 

𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),   (67) 

Inspection of Equation 65 makes it immediately clear that this set of equations will not 

adequately model epidemics. Equation 65 predicts a continual exponential increase in 𝐼(𝑡) at a 

constant rate of 𝛽 − γ; and therefore, these equations predict a peak will never occur. However, 

since peaks do occur in epidemics while 𝑆(𝑡) ≈ 𝑁𝑝 and since 𝛽 can be approximated as the 

constant 𝐾𝑇 under these conditions, we conclude that 𝛾 cannot be adequately modelled as a 

constant while 𝑆(𝑡) ≈ 𝑁𝑝. This conclusion is supported by Equation 34 which shows that ψ(𝑡), 
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and therefore 𝛾,  cannot be a constant because the term, 𝑒
−∫

𝐾𝑇(𝑎)

𝑃𝑐(𝑎)

𝑡
0 𝑑𝑎

, decays exponentially with 

time.  

From the preceding observations, we conclude that all SIR constructs are inappropriate 

approximations. In Supplement 3, we support this conclusion by detailing the mathematically 

implausible assumptions that underlie the SIR approximations and make the case that these 

assumptions are not even qualitatively correct. We also analyze the inherent flaws within the SIR 

formulation that led to the erroneous “flatten-the-curve” projection by explicitly demonstrating 

that the flatten-the-curve projection illustrated throughout the literature (see, for example, Di 

Lauro et al 2021) is caused by hidden, inherent and implausible assumptions about both the 

populace and the disease.  

Discussion 

We began this manuscript with a simple observation: A fundamental tenet of modern 

epidemiology, the presumed existence of herd immunity, which states that the final size of an 

epidemic is always smaller than the total population, is premised on a circular argument. Prior 

authors (Breda, Brauer, Diekmann) contend that 𝑆(𝑡) cannot ever reach zero in a finite time 

because to do so would require 𝜑(𝑡) to become infinite. Since the assertion that 𝜑(𝑡) must 

remain finite depends on S(𝑡) remaining greater than zero, the resultant conclusion, that S(𝑡) 

must be greater than zero, is based on a circular argument because it essentially rests on the 

initial assertion that the conclusion is true. As we show with a simple dimensional analysis, the 

flaw in the analysis is the assertion that 𝜑(𝑡) must remain finite, because this is a contradiction 

of the definition of φ(𝑡).  
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In a departure from the conventional analyses, we started with the same equations, but took an 

alternative path, used basic principles, and successfully derived a solution to the full Kermack 

and McKendrick equations, the KMES. The KMES accurately projects phenomenon which arose 

in the Covid epidemic, even under the simplifying assumption that 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) are constants 

for periods of time. These successful projections contrast sharply with SIR model projections 

which must violate the assumption that 𝛽 is constant to produce any relevant results. Also, the 

high degree of correlation between the proxy of the population behavior in the KMES and the 

independently measured actual population mobility in the Google data contrasts with the weak 

correlations to the SIR construct of mobile phone mobility data found by prior authors 

(Wesolowski 2015). These accurate projections and the contrasts with the SIR approximations, 

strongly suggest that the KMES should replace the SIR models. 

Our expression for final epidemic size, an important finding, disproves one of the accepted tenets 

of epidemiology. Equations 25 through 27, in their mathematical simplicity, state what is an 

intuitive conclusion: if the people contact each other infectiously at a high enough rate for a long 

enough time, herd immunity is not guaranteed, and an epidemic can spread to an entire 

population. This conclusion must become a new tenet of epidemiology 

The KMES also has an intuitive form, exemplified by Equation 36: 

𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 𝐵(𝑡)𝐼(0) (36, S1-34) 

Equation 36 states that the input of infections, 𝐵(𝑡)𝐼(0), is transformed into the time varying 

output of infections, 𝐼(𝑡), through an exponential step response function, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 . Thus, our 

analysis, leads us to an irrefutable mathematical statement of the epidemic dynamics. 
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As further support to the veracity of our solution, we note that Equations 23 and 29, are both 

Gompertz equations. This form is supported by Onishi et al (2021) who demonstrate that the 

Covid-19 epidemic time course in many countries was well fit by a Gompertz model. These 

authors do not offer a basic principles argument as to why this is so, but they demonstrate a 

strong correlation to our model structure. 

With the availability of an analytical solution, we derived previously unknown, pragmatically 

useful expressions of important epidemiological relationships: Time course of the epidemic size, 

Final epidemic size, Time to peak infections, Effective Reproduction number, Viral load, and 

targets for reducing the epidemic along a planned path. In addition, in the supplements, we 

demonstrate how to detect and model outbreaks. 

The analytical expressions are intuitive and sensible. For instance, the expression for time to 

maximum new cases, in Equations 45 or 46, passes smoothly through the epidemic peak. This 

contrasts with the expression for the time to the peak derived for the SIR models (Koger and 

Schlickeiser, 2020). In this reference, the expressions for the SIR models are only valid when 

𝑅𝐸𝑓𝑓 > 1, and they have the peculiar property that the time to the peak in new infections 

becomes increasingly larger as 𝑅𝐸𝑓𝑓 approaches one before suddenly plunging to negative 

infinity just as 𝑅𝐸𝑓𝑓 reaches one. This mathematically describes the claimed phenomena behind 

the concept of “flattening the curve”, but it is unsettlingly nonintuitive. How can the peak in new 

infections move away from attainment as people interact less infectiously? 

Equations 45 and 46 have none of this peculiar behavior and their behavior is supported by data 

from different countries which imposed very different containment strategies. As we explain in 

Supplement 3, when social containment is increased, the peak number of infections is much 
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lower, and it occurs earlier. The stronger the containment actions, the shorter the epidemic, as 

one would intuit.  

The reason the conventional SIR models project epidemic phenomenon incorrectly is that 

beginning with Kermack and McKendrick, numerous authors have misunderstood the units of 𝜑 

on the way to deriving the SIR equations. Even authors (Hethcote 2000), who derived the SIR 

equations without the use of Kermack and McKendrick’s equations, replicate this mistake. 

Furthermore, 𝜓(𝑡) cannot be assumed constant early in the epidemic and 𝜑(𝑡) cannot be 

assumed constant as the epidemic becomes large relative to the total population without 

imposing subtle, implausible assumptions on the model. Analytic expressions for these 

quantities, Equations S3-8 and S3-9, derived in Supplement 3, make this clear.  

It should not be surprising that a solution to the epidemic equations produces an expression that 

can be interpreted as the viral load. We say that the righthand side of Equation 41, is a proxy to 

the viral load, because it is more accurately defined as a measure of the infectiousness of a 

person who is in infectious contact with only one other person. This expression surely is a 

measure of the viral load modified by some intermediate and unmeasured transmission 

impedance between the two people. With these caveats in mind, the curve in Figure 6, wholly 

derived from the Covid-19 data from several countries, certainly has the characteristics many 

authors have expected a viral load to have (Challenger et al 2022, Jones et al 2021). While these 

authors reached their conclusions through direct measurement of the viral load of thousands of 

patients, we have derived the same form using only the country case data. In retrospect, this is 

remarkable. 

Since Equation 32 clearly shows that 𝐵(𝑡) is dependent on 𝐾𝑇(𝑡), a property of the disease and 

𝑃𝐶(𝑡), a function of the population behavior, this, in turn, means that the time variations of 𝐼(𝑡) 
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and 𝑅(𝑡) also depend on these two parameters. It is natural to assume that both 𝐼(𝑡) and 𝑅(𝑡) 

will depend on properties of the disease, but it may be somewhat surprising to see that their 

values also depend on the behavior of the population.  

In supplement 1.1 we explain this dependency by showing that 𝐼(𝑡) is best interpreted as the 

total infectiousness within the infected population 𝑁(𝑡). As a complementary interpretation, 

𝑅(𝑡) is best thought of as the degree of recovery from infectiousness within 𝑁(𝑡).  Therefore, a 

previously infected individual is simultaneously a part of both the infected and recovered 

populations with the degree of membership determined by the parameter ψ(𝑡).  

As time goes on, the degree of membership inevitably moves the infected individuals towards 

membership in the recovered community, but during this time, the infectiousness of all 

individuals vary as their viral load and number of contacts vary. An increase in social contact 

causes an increase in infectiousness, which, in turn, decreases the degree to which the person 

remains in the recovered population and vice versa. Therefore, as an individual’s viral load 

changes, based on time and the disease dynamics, so too, does this individual’s ability to infect 

others change based on their level of social interaction.    

With this concept of variable membership in mind, then, we see that the idea of a compartmental 

model where people irreversibly move from being infected to recovered is an inadequate model 

construct. Rather, assuming immunity exists, the proper compartment construct is that there are 

only two compartments: 1) not yet infected, S(𝑡); and 2) previously infected, 𝑁(𝑡); and only 

from the latter of these is there no escape.  

Concluding remarks  
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We recognize that the mathematics and resulting conclusions described in this manuscript 

disprove long-accepted tenets of epidemiology, the valid representation of epidemic dynamics by 

SIR models, and the guarantee of herd immunity. While the abandonment of these concepts is a 

difficult proposition, it is nevertheless, a necessary conclusion derived from our analysis. 

Fortunately, the replacement for these concepts, the KMES is consistent with data gathered from 

the Covid-19 pandemic and with basic epidemiological notions such as the Effective 

Reproduction number and viral load. The expressions are well behaved under all epidemic 

conditions and the KMES accurately predicts correlations among a variety of independent data 

sources. 

In sum, this is a hopeful message to the epidemiological community. Logical, analytical tools are 

available to easily diagnose the state of an epidemic and provide guidance to public health 

officials. These tools clearly show that with stronger initial measures, an epidemic can be 

stopped more quickly with much less economic damage than predicted by conventional models. 

Although the disease will have its own dynamics, the overall epidemic dynamics can ultimately 

be controlled by the behavior of the population. 
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Supplement 1. The Solution to the Full Kermack and McKendrick 

Equations 

In this supplement, we demonstrate that Equations 23, 24, 28, and 32 to 35 are a complete 

solution to the full Kermack and McKendrick equations. As a starting point, we write out the full 

Kermack and McKendrick equations as, 

𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝜃)𝑉(𝑡 − 𝜃)𝑑𝜃 + 𝐴(𝑡)𝐼(0))

𝑡

0
, (S1-1, 9) 

𝐼(𝑡) = ∫ 𝐵(𝜃)𝑉(𝑡 − 𝜃)𝑑𝜃 + 𝐵(𝑡)𝐼(0))
𝑡

0
,  (S1-2, 10) 

𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝜃)𝑉(𝑡 − 𝜃)𝑑𝜃 + 𝐶(𝑡)𝐼(0))

𝑡

0
, (S1-3) 

𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡) (S1-4, 11) 

Where 𝑆(𝑡) is the susceptible population, 𝐼(𝑡) is the infected population, 𝑉(𝑡 − 𝜃) is the new 

infections at time = 𝑡 − 𝜃, 𝐵(𝜃) = 𝑒−∫ 𝜓(𝑎)𝑑𝑎
𝜃
0 , 𝐴(𝜃) = 𝜑(𝜃)𝐵(𝜃),and 𝐶(𝜃) = 𝜓(𝜃)𝐵(𝜃). 

Kermack and McKendrick (1927, p. 703) defined 𝜑(𝜃) as “the rate of infectivity at age 𝜃” (page 

703), and 𝜓(𝜃) as “the rate of removal” (page 703) of the infected population. 𝐴𝑝 is the area that 

contains the population.  

In sections 1 and 2 of the manuscript, we derive expressions for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) directly 

from Equations S1-1 and S1-2 employing the parameters 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡). These expressions 

project the progression of an epidemic, but they are not a complete solution to the system of 

Equations S1-1 to S1-4 in terms of the parameters originally defined by Kermack and 

McKendrick. Therefore, in this supplement, we derive expressions for 𝐵(𝑡), 𝐵(𝜃), 𝜑(𝑡), 𝜑(𝜃), 

𝜓(𝑡), and 𝜓(𝜃) in terms of 𝐾𝑇(𝑡), 𝑃𝑐(𝑡) and time.  We accomplish this by first re-deriving the 
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expressions for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡), using the discrete forms of the equations. We do this using 

a vector notation to expand the expressions into the θ dimension, which then enables us to 

determine the proper forms of 𝐵(𝑡), 𝐵(𝜃), 𝜑(𝑡), 𝜑(𝜃), 𝜓(𝑡), and 𝜓(𝜃).  

We begin by first defining our notation. We note that any of the variables 𝐼(𝑡), 𝑁(𝑡), 𝑅(𝑡) and 

their derivatives are the integrals or sums of these variables over 𝜃.  These can be expressed as 

summations of vectors over all θ. For example, 
𝑑𝑁

𝑑𝑡
(𝑡) can be written as, 

𝑑𝑁

𝑑𝑡
(𝑡) = ∑

𝑑𝑁

𝑑𝑡
(𝑡,𝑡

𝜃=0 𝜃)        (S1-5) 

In other words, when the variables are expressed as a function of time only, it is understood that 

this representation implicitly contains the sum of the vector elements in the 𝜃-vector of the 

variable.  The 𝜃-vector of the variable is expressed as 𝐼(𝑡, 𝜃) and is the vector of that variable 

over 𝜃 at a specific time, t. The format for the vector notation is: 𝑁(𝑡, 𝜃) =

{𝑁(𝑡, 0); 𝑁(𝑡, ∆𝑡); 𝑁(𝑡, 2∆𝑡)…𝑁(𝑡, 𝜃 − ∆𝑡); 𝑁(𝑡, 𝜃)}. We also note that ∆𝜃 = ∆𝑡 based on 

Kermack and McKendrick’s definition of 𝜃 (Kermack and MKendrick 1927). 

We now start with 
𝑑𝑁(𝑡)

𝑑𝑡
 in discrete vector form and derive the equations and solutions.  We first 

note that at any time, t, 𝑁(𝑡, 𝜃) = 𝐼(𝑡, 𝜃) + 𝑅(𝑡, 𝜃) and the magnitude, 𝑁, of each 𝜃 group never 

changes size after it is formed. Therefore, ∆𝑁(𝑡, 𝜃) = 0 when 𝜃 > 0; and, using Kermack and 

McKendrick’s concept of 𝜑(𝜃), we can write the vector, 
𝑑𝑁

𝑑𝑡
(𝑡, 𝜃) in discrete form as, 

∆𝑁(𝑡, 𝜃) = {
𝑆(𝑡−∆𝑡)

𝐴𝑝
∑ 𝜑(𝑡 − ∆𝑡, 𝜃)𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡;𝑡−∆𝑡
𝜃=0 0; 0; … 0; 0}   (S1-6) 

With no loss of generality, we can then define a function, 𝐾𝑇(𝑡), where: 
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𝐾𝑇(𝑡 − ∆𝑡)∑ 𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡 =
𝑆(𝑡−∆𝑡)

𝐴𝑝
∑ 𝜑(𝑡 − ∆𝑡, 𝜃)𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡𝑡−∆𝑡
𝜃=0 =𝑡−∆𝑡

𝜃=0   

∆𝑁(𝑡, 0) = ∆𝑁(𝑡) = 𝐾𝑇(𝑡 − ∆𝑡)𝐼(𝑡 − ∆𝑡)∆𝑡     (S1-7) 

Equation S1-7 is the discrete form of Equation 14, 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡)         (S1-8, 14) 

Using the derivation in the body of the manuscript we arrive at the following expressions, 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝑁(𝑡)𝐹𝑖(0)𝑒

−∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

. (S1-9, 22) 

and, 

𝑁(𝑡) = 𝑁(𝑡0)𝑒
𝐹𝑖(𝑡0) ∫ 𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

𝑑𝑡
𝑡
0 . (S1-10, 23) 

Solving Equation S1-8 for I(t) and substituting Equations S1-9 and S1-10 as appropriate, we find 

that: 

𝐼(𝑡) = 𝐼(𝑡0)𝑒
𝐹𝑖(𝑡0) ∫ 𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

𝑑𝑡
𝑡
0 −∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

, (S1-11, 24) 

If we assume 𝑁(0) = 𝐼(0), then 𝐹𝑖(0) = 1, and: 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐼(0)(𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

−
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑒

∫ 𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

𝑑𝑡
𝑡
0 −∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

 (S1-12) 

By combining Equations S1-9 and S1-12, we arrive at this expression for 
𝑑𝑅(𝑡)

𝑑𝑡
, 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝐼(0)(𝐾𝑇(𝑡) − 𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑒

∫ 𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

𝑑𝑡
𝑡
0 −∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

 (S1-13) 
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Using these equations, we can now determine 𝜓(𝜃),𝜓(𝑡), 𝐵(𝜃) and 𝐵(𝑡). 

First, we start with a discrete formulation of  
𝑑𝐼(𝑡)

𝑑𝑡
 using Equation S1-12: 

∆𝐼(𝑡 + ∆𝑡) = ∆t(𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

−
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝐼(𝑡)  (S1-14) 

From the prior defined notation, we know that: 

∆𝐼(𝑡 + ∆𝑡) = ∑ ∆𝐼(𝑡 + ∆𝑡,𝑡+∆𝑡
𝜃=0 𝜃) (S1-15) 

We also know from Equation S1-7 that the new infections, ∆𝑁(𝑡 + ∆𝑡, 0) = 𝐾𝑇(𝑡)𝐼(𝑡)∆𝑡 =

∆𝐼(𝑡 + ∆𝑡, 0). Therefore, from Equation S1-15: 

∆𝐼(𝑡 + ∆𝑡) = 𝐾𝑇(𝑡)𝐼(𝑡)∆𝑡 + ∑ ∆𝐼(𝑡 + ∆𝑡,𝑡+∆𝑡
𝜃=1 𝜃) (S1-16) 

Note that 𝜃 begins at 1 in the summation in Equation S1-16 because 𝐾𝑇(𝑡)𝐼(𝑡)∆𝑡 is the term for 

when 𝜃 = 0 

We now write Equation S1-16 using the parameter 𝜓(𝜃), 

∆𝐼(𝑡 + ∆𝑡) = 𝐾𝑇(𝑡)𝐼(𝑡)∆𝑡 − ∑ 𝜓(𝑡, 𝜃)𝐼(𝑡,𝑡
𝜃=0 𝜃)∆𝑡 (S1-17) 

We also note that the vector, ∆𝐼(𝑡 + ∆𝑡, 𝜃), can be written as: 

∆𝐼(𝑡 + ∆𝑡, 𝜃) = {𝐾𝑇(𝑡)𝐼(𝑡)∆𝑡;−𝜓(𝑡, 0)𝐼(𝑡, 0)∆𝑡;−𝜓(𝑡, 1)𝐼(𝑡, 1)∆𝑡;… ;−𝜓(𝑡, 𝑡)𝐼(𝑡, 𝑡)∆𝑡}

 (S1-18) 

If we now write Equation S1-14 in summation notation, it looks like this: 

∆𝐼(𝑡 + ∆𝑡) = ∆t(𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

−
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)∑ 𝐼(𝑡,𝑡

𝜃=0 𝜃) (S1-19) 
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Equating Equation S1-17 to Equation S1-19, applying full summation notation, and some 

algebra, we get: 

(𝐾𝑇(𝑡) − 𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)∑ 𝐼(𝑡,𝑡

𝜃=0 𝜃)∆t = ∑ 𝜓(𝑡, 𝜃)𝐼(𝑡,𝑡
𝜃=0 𝜃)∆𝑡 (S1-20) 

It is clear from Equation S1-20 that 𝜓(𝑡, 𝜃) = (𝐾𝑇(𝑡) − 𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

−
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
) and it is only a 

function of time. In equation form: 

𝜓(𝜃) = 𝜓(𝑡) = 𝐾𝑇(𝑡) − 𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
 (S1-21, 34) 

The forms of 𝐵(𝜃) and 𝐵(𝑡) follow from Equation S1-21,  

𝐵(𝜃) = 𝑒−∫ 𝜓(𝑏)𝑑𝑏
𝜃
0 = 𝑒

−(𝐾𝑇(𝑡)−𝐾𝑇(𝑡)𝑒
−∫

𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝜃

 (S1-22, 33) 

𝐵(𝑡) = 𝑒−∫ 𝜓(𝑏)𝑑𝑏
𝑡
0 = 𝑒

−∫ 𝐾𝑇(𝑡)
𝑡
0 𝑑𝑡+∫ 𝐾𝑇(𝑡)𝑒

−∫
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
𝑡
0 𝑑𝑎

𝑑𝑡
𝑡
0 −∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

   (S1-23, 32) 

It should also be noted that based on the preceding, this is the form of the ∆𝑅(𝑡, 𝜃) vector: 

∆𝑅(𝑡, 𝜃) = {0; 𝜓(𝑡 − ∆𝑡)𝐼(𝑡 − ∆𝑡, 0)∆𝑡; 𝜓(𝑡 − ∆𝑡)𝐼(𝑡 − ∆𝑡, 1)∆𝑡;… ; 𝜓(𝑡 − ∆𝑡)𝐼(𝑡 − ∆𝑡, 𝑡 −

∆𝑡)∆𝑡} (S1-24) 

We will now find the expressions for 𝜑(𝜃) and 𝜑(𝑡) using the first two portions of Equation S1-

7, 

𝐾𝑇(𝑡 − ∆𝑡)∑ 𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡𝑡−∆𝑡
𝜃=0 =

𝑆(𝑡−∆𝑡)

𝐴𝑝
∑ 𝜑(𝑡 − ∆𝑡, 𝜃)𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡𝑡−∆𝑡
𝜃=0  (S1-25) 

Expanding the expression in the righthand side summation, we obtain the following vector, 
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∑ 𝜑(𝑡 − ∆𝑡, 𝜃)𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡𝑡−∆𝑡
𝜃=0 = {𝜑(𝑡 − ∆𝑡, 0)𝐼(𝑡 − ∆𝑡, 0)∆𝑡; 𝜑(𝑡 − ∆𝑡, ∆𝑡)𝐼(𝑡 −

∆𝑡, ∆𝑡)∆𝑡;… ; 𝜑(𝑡 − ∆𝑡, 𝜃)𝐼(𝑡 − ∆𝑡, 𝜃)∆𝑡} (S1-26) 

In Equation S1-26, each 𝜑(𝑡 − ∆𝑡, 𝜃) is the number of new infections caused by the number of 

people infected within each 𝜃 group during the time interval from 𝑡 − ∆𝑡 to t. If we denote the 

inherent disease transmissibility per contact in each 𝜃 group as 
𝐾𝑇(𝑡−∆𝑡)

𝑃𝑐(𝑡−∆𝑡,𝜃)
, then we can write, 

𝜑(𝑡 − ∆𝑡, 𝜃) =
𝐾𝑇(𝑡−∆𝑡)

𝑃𝑐(𝑡−∆𝑡,𝜃)

𝑃𝑐(𝑡−∆𝑡,𝜃)𝐴𝑝

𝑆(𝑡−∆𝑡,𝜃)
 (S1-27) 

where the term 
𝑃𝑐(𝑡−∆𝑡,𝜃)𝐴𝑝

𝑆(𝑡−∆𝑡,𝜃)
  has been inserted into the expression to denote the number of 

infectious contacts that occur per member of the susceptible population density. We assume that 

the disease transmissibility per infectious contact is the same for a given time, and the contact 

parameter 𝑃𝑐(𝑡) is uniform throughout the population. Since time is held constant along the 𝜃 

vectors, all the terms on the righthand side of Equation S1-27 are constant over all 𝜃 at a given 

time. Therefore, the function 𝜑(𝑡 − ∆𝑡, 𝜃) is also constant for all 𝜃 at a given time and its value 

is 
𝐾𝑇(𝑡−∆𝑡)𝐴𝑝

𝑆(𝑡−∆𝑡,𝜃)
. Extending this argument for all time, we arrive at the expression, 

𝜑(𝜃) = 𝜑(𝑡) =
𝐾𝑇(𝑡)𝐴𝑝

S(𝑡)
 (S1-28, 35) 

The Kermack and McKendrick model in discrete form can also be shown using a matrix notation 

where the matrices of the variables 𝑁(𝑡, 𝜃), 𝐼(𝑡, 𝜃), 𝑅(𝑡, 𝜃) and their derivatives are defined over 

t and 𝜃 according to this map, 
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This notation uses the vector notation previously defined for vectors in 𝜃 where each row of the 

matrix is a vector in 𝜃 at a different time. 

Keeping this convention, we can use Equation S1-7 and the knowledge that ∆𝑁(𝑡, 𝜃) = 0 when 

𝜃 > 0 to write the matrix for ∆𝑁(𝑡, 𝜃), 

 

 

 

 

 

 

 

 

 

 

 

 

(t,0) (t,∆t) (t,2∆t) ⋯ (t,θ-∆t) (t,θ)

(t-∆t,0) (t-∆t,∆t) (t-∆t,2∆t) ⋯ (t-∆t,θ-∆t) (t-∆t,θ)

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

(3∆t,0) (3∆t,∆t) (3∆t,2∆t) ⋯ (3∆t,θ-∆t) (3∆t,θ)

(2∆t,0) (2∆t,∆t) (2∆t,2∆t) ⋯ (2∆t,θ-∆t) (2∆t,θ)

(∆t,0) (∆t,∆t) (∆t,2∆t) ⋯ (∆t,θ-∆t) (∆t,θ)

(0,0) (0,∆t) (0,2∆t) ⋯ (0,θ-∆t) (0,θ)

0 0 ⋯ 0 0

0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆N(t,θ)= 0 0 ⋯ 0 0

0 0 ⋯ 0 0

0 0 ⋯ 0 0

N(0) 0 0 ⋯ 0 0
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We can also write the following matrices for ∆𝑅(𝑡, 𝜃), ∆𝐼(𝑡, 𝜃), and 𝐼(𝑡, 𝜃) 

 

 

 

 

0 ψ(t-∆t)I(t-∆t,0)∆t ψ(t-∆t)I(t-∆t,∆t)∆t ⋯ ψ(t-∆t)I(t-∆t,θ-2∆t)∆t ψ(t-∆t)I(t-∆t,θ-∆t)∆t

0 ψ(t-2∆t)I(t-2∆t,0)∆t ψ(t-2∆t)I(t-2∆t,∆t)∆t ⋯ ψ(t-2∆t)I(t-2∆t,θ-2∆t)∆t 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆R(t,θ)=

0 ψ(2∆t)I(2∆t,0)∆t ψ(2∆t)I(2∆t,∆t)∆t ⋯ 0 0

0 ψ(∆t)I(∆t,0)∆t ψ(∆t)I(∆t,∆t)∆t ⋯ 0 0

0 ψ(0)I(0,0)∆t 0 ⋯ 0 0

0 0 0 ⋯ 0 0

-ψ(t-∆t)I(t-∆t,0)∆t -ψ(t-∆t)I(t-∆t,∆t)∆t ⋯ -ψ(t-∆t)I(t-∆t,θ-2∆t)∆t -ψ(t-∆t)I(t-∆t,θ-∆t)∆t

-ψ(t-2∆t)I(t-2∆t,0)∆t -ψ(t-2∆t)I(t-2∆t,∆t)∆t ⋯ -ψ(t-2∆t)I(t-2∆t,θ-2∆t)∆t 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆I(t,θ)= -ψ(2∆t)I(2∆t,0)∆t -ψ(2∆t)I(2∆t,∆t)∆t ⋯ 0 0

-ψ(∆t)I(∆t,0)∆t -ψ(∆t)I(∆t,∆t)∆t ⋯ 0 0

-ψ(0)I(0,0)∆t 0 ⋯ 0 0

N(0) 0 0 ⋯ 0 0
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It is clear from this notation that ∆𝐼(𝑡, 𝜃) = ∆𝑁(𝑡, 𝜃) − ∆𝑅(𝑡, 𝜃). It is also interesting to note that 

∆𝑁(𝑡,𝜃)

𝐼(𝑡)
 and 

∆𝑅(𝑡,𝜃)

𝐼(𝑡)
  are, respectively, impulse and step functions in 𝜃. 

We now use the preceding to demonstrate that Equations S1-10 and S1-11, along with 

expressions S1-21, S1-22, S1-23 and S1-28 form a complete solution to the Kermack and 

McKendirck Equations S1-1 to S1-4. We first note that in Kermack and McKendrick’s 

formulation, they separated the initial infections from the consequent infections using the time 

varying terms, 𝐴(𝑡)𝐼(0)), 𝐵(𝑡)𝐼(0), and 𝐶(𝑡)𝐼(0) and we see from the preceding matrices that 

these terms are merely the terms along the diagonal of the matrices. Therefore, with no loss of 

generality, we recast Equation S1-2 in the following form, 
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𝐼(𝑡) = ∫ 𝐵(𝜃)𝐼(𝑡 − 𝜃)𝑑𝜃
𝑡

0
, (S1-29) 

noting that the term 𝐼(𝑡 − 𝜃) is the value in the (𝑡 − 𝜃, 0) place in the 𝐼(𝑡, 𝜃) matrix and 

𝐼(0, 0) = 𝑁(0) = 𝐼(0) as shown in the matrix. Our goal is to now find the solution to S1-29. 

Referring to the 𝐼(𝑡, 𝜃) matrix and keeping in mind that ∆t = ∆θ, we know that  

𝐼(𝑡) = ∑ 𝐼(𝑡,𝑡
𝜃=0 𝜃) = ∑ 𝐵(𝜃)𝐼(𝑡𝑡

𝜃=0 − 𝜃, 0) (S1-30) 

Equation S1-30 is merely the summation form of S1-29. We use the reference to the 𝐼(𝑡, 𝜃) 

matrix to show where it comes from in the (𝑡, 𝜃) matrices. 

It is also clear from the 𝐼(𝑡, 𝜃) matrix that, 

𝐼(𝑡) = 𝐾𝑇(𝑡 − ∆𝑡)∆𝑡 ∑ 𝐼(𝑡 − ∆𝑡,𝑡−∆𝑡
𝜃=0 𝜃) + (1 − 𝜓(𝑡 − ∆𝑡)∆𝑡) ∑ 𝐼(𝑡 − ∆𝑡,𝑡−∆𝑡

𝜃=0 𝜃) (S1-31) 

This operation can be repeated all the way back through the matrix to finally obtain the 

expression, 

𝐼(𝑡) = (𝐾𝑇(𝑡 − ∆𝑡)∆𝑡 + 1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)(𝐾𝑇(𝑡 − 2∆𝑡)∆𝑡 + 1 − 𝜓(𝑡 −

2∆𝑡)∆𝑡)… (𝐾𝑇(0)∆𝑡 + 1 − 𝜓(0)∆𝑡)𝐼(0) (S1-32) 

Equating S1-32 with S1-30 and taking the limit as ∆t = ∆θ go to zero, we arrive at the 

expression, 

𝐼(𝑡) = ∫ 𝐵(𝜃)𝐼(𝑡 − 𝜃)𝑑𝜃
𝑡

0
= 𝑒∫ (𝐾𝑇(𝑡)−𝜓(𝑡))𝑑𝑡

𝑡
0 𝐼(0) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 𝐵(𝑡)𝐼(0) (S1-33) 

Since the right-hand terms of Equation S1-33 are all known from expressions S1-21 and S1-28, 

Equation S1-33 is a solution to Equation S1-2, and Equations S1-1 and S1-3 can be easily solved 

using Equation 33 to obtain the solutions depicted in equations S1-10 and S1-13. Because 

Equation S1-33 was derived directly from the Kermack and McKendrick equations, this 
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demonstrates that Equations S1-10, S1-11, and S1-13 along with the expressions in Equations 

S1-21, S1-22, S1-23, and S1-28 are a solution to the Kermack and McKendrick equations.  

Equation S1-33 also provides a convenient shorthand for writing the entire solution as, 

𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 𝐵(𝑡)𝐼(0) (S1-34, 36) 

𝑁(𝑡) = 𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝐵(𝑡)𝐼(0) (S1-35, 37) 

𝑅(𝑡) = (𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 − 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 )𝐵(𝑡)𝐼(0) (S1-36, 38) 

These expressions also give us intuitive insight into the epidemic dynamics. Since 𝐵(𝑡) is the 

time varying infectiousness of the original infected group, 𝐼(0), the exponential expressions, 

𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡
0 , 𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 , and 𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 − 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 , are the step response functions 

to the input 𝐵(𝑡)𝐼(0). If the function 𝐵(𝑡)𝐼(0) equaled 1 for all time, that is, if there was no 

recovery, these expressions demonstrate that the epidemic would proceed exponentially until the 

entire population was infected, an intuitive result. Also, since 𝐵(𝑡) can only equal 1 if 𝑃𝐶 = ∞, 

this case implies that 𝐼(𝑡) = 𝑁(𝑡), which is an additional intuitive result; and provides a check 

on the formulation. 

Lastly, since 𝐵(𝑡)𝐼(0) = 𝐼(0) is the upper limit of the function and it implies that the entire 

population would become infected, it stands to reason that there is a value of 𝐵(𝑡)𝐼(0) below 

which entire population will not become infected. This limit is defined by the expression, 

 𝐵(𝑡)I(0) = 𝑒
−∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝑆(0) (S1-37) 
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As Equation S1-37 clearly shows, preventing the entire population from becoming infected 

depends upon both the transmission characteristics of the disease, 𝐾𝑇, and the behavior of the 

population, 𝑃𝐶. The final size is not an inherent property of the disease alone. 

Supplement 1.1 Insights developed during the solution derivation 

As we derived the KMES, we did not stop to discuss insights provided by some of the important 

expressions. In this section, we will provide those insights. 

The first expression to understand is the relationship described by the derivative of Equation 21: 

 
𝑑𝐹𝑖(𝑡)

𝑑𝑡
=

𝑑(
𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
= −𝐹𝑖(𝑡)

𝐾T(t)

𝑃𝑐(𝑡)
. (S1-38) 

This seemingly simple expression is a fundamental statement of an infectious epidemic. 

If we evaluate the derivative 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
 in Equation S1-38, we obtain:  

𝑑(
𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑(𝐼(𝑡)

𝑑𝑡

1

𝑁(𝑡)
−

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)2
= −

𝐼(𝑡)

𝑁(𝑡)

𝐾T(𝑡)

𝑃𝑐(𝑡)
        (S1-39) 

With some rearrangement of the terms, we find the following expression: 

𝑑(
𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
−
𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)

𝑁(𝑡)
=

−𝐼(𝑡)
𝐾T(t)

𝑃𝑐(𝑡)

𝑁(𝑡)
       (S1-40) 

In Equation S1-40, the expression 
𝑑(𝐼(𝑡)

𝑑𝑡
−

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)
 describes how the ratio 

𝐼(𝑡)

𝑁(𝑡)
 changes with 

time as a function of the changes in 𝐼(𝑡) and 𝑁(𝑡). This expression also makes intuitive sense 

because if  
𝑑(𝐼(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
  then 

𝑑(
𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
(1−

𝐼(𝑡)

𝑁(𝑡)
)

𝑁(𝑡)
=

𝑑(𝐼(𝑡)

𝑑𝑡

𝑅(𝑡)

𝑁(𝑡)

𝑁(𝑡)
. This means that the size of the 
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infected populations, 𝐼(𝑡), in the ratio 
𝐼(𝑡)

𝑁(𝑡)
 only changes to the extent that the change in 

infections affects the ratio 
𝑅(𝑡)

𝑁(𝑡)
.   

The more interesting case is when 𝐼(𝑡) = 𝑁(𝑡) and 
𝑑(𝐼(𝑡)

𝑑𝑡
<

𝑑𝑁(𝑡)

𝑑𝑡
. This case, of course, occurs 

when 𝑡 = 0. Setting 𝐼(𝑡) = 𝑁(𝑡) and 𝑡 = 0 in Equation S1-40 and recognizing that 
𝑑𝑁(𝑡)

𝑑𝑡
−

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
 we obtain the following: 

𝑑𝑅(0)

𝑑𝑡
= 𝐼(0)

𝐾T(0)

𝑃𝑐(0)
         (S1-41) 

Equation S1-41 forces us to reach a startling conclusion: The recovered population begins to 

grow the instant the epidemic starts! 

Further reflection on Equation S1-41 offers deeper insight.  What Equation S1-41 is telling us is 

that the infectiousness of the individuals in the population 𝐼(0) (and by extension 𝐼(𝑡)) is not a 

constant while they are infected.  This is immediately obvious in retrospect because, as the viral 

load changes, the infectiousness of a person changes.  What Equation S1-40 is telling us is that 

the infectiousness of population 𝐼(0) is changing at the rate 
𝐾T(0)

𝑃𝑐(0)
. We have already seen that 𝐾T 

is a measure of the disease infectiousness, but a reasonable question to ask is: Why should the 

infectiousness change be a function of the population behavior, 𝑃c? 

The answer to this question is quite straightforward.  The infectiousness of a person is not just 

dependent on the viral load, it is also dependent on the contacts a person has with other, not-yet-

infected people.  After all, if an infected person never contacts another noninfected person, they 

are never truly infectious in the sense that they cannot advance the disease.  Thus, Equation S1-
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40 casts an important light on the meaning of 𝐼(𝑡): 𝐼(𝑡) is the infectiousness of the infected 

subpopulation within the larger population, 𝑁(𝑡), subject to the disease transmissibility, 𝐾𝑇, and 

the population behavior, 𝑃c.  We can describe 𝑅(𝑡) in a similar manner: 𝑅(𝑡) is the reduction in 

the total viral load that has occurred in the population, 𝑁(𝑡), and this is also subject to the 

disease transmissibility and the population behavior. 

We gain further insight into the meaning of the KMES by also looking at Equation S1-12 in 

more detail. Equation S1-11 can be used to rewrite Equation S1-12 as 

 
1

𝐼(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾T(𝑡)

𝐼(𝑡)

𝑁(𝑡)
−

𝐾T(𝑡)

𝑃𝑐(𝑡)
= 𝐾𝑇(𝑡) −

𝑅(𝑡)

𝑁(𝑡)
𝐾𝑇(𝑡) −

𝐾T(𝑡)

𝑃𝑐(𝑡)
. (S1-42) 

The left-hand side of Equation S1-42 is the rate of change in the number of new infections per 

person currently infected. The first two terms on the furthest right-hand side of Equation S1-42, 

𝐾𝑇(𝑡) −
𝑅(𝑡)

𝑁(𝑡)
𝐾𝑇(𝑡), describe the net rate of successful infection. Since 𝐾𝑇(𝑡) is the rate at which 

an infected person causes infections per infectable contact, the terms −
𝑅(𝑡)

𝑁(𝑡)
𝐾𝑇(𝑡) −

𝐾T(𝑡)

𝑃𝑐(𝑡)
 must 

represent the rate of recovery per infected person.  

We gain an additional intuitive insight about the solution from the following relationship, 

derived from Equations 22 and 29: 

𝑑𝑁

𝑑𝑡
= 𝑁∞𝑁∞

−𝑒
−
𝐾𝑇
𝑃𝑐

t

𝐾𝑇𝑒
−
𝐾𝑇
𝑃𝑐
𝑡
. (S1-43) 

In words, the form of Equation S1-43 is 

𝑅𝑎𝑡𝑒𝑜𝑓𝑐ℎ𝑎𝑛𝑔𝑒𝑖𝑛𝑐𝑎𝑠𝑒𝑠 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡ℎ𝑎𝑡𝑤𝑖𝑙𝑙𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑙𝑦𝑏𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 ×

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 × 𝑅𝑎𝑡𝑒𝑜𝑓𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 × 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑐𝑎𝑠𝑒𝑠𝑠𝑡𝑖𝑙𝑙𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑  

 (S1-44) 
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or 

𝑅𝑎𝑡𝑒𝑜𝑓𝑐ℎ𝑎𝑛𝑔𝑒𝑖𝑛𝑐𝑎𝑠𝑒𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑎𝑠𝑒𝑠 × 𝑅𝑎𝑡𝑒𝑜𝑓𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ×

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑐𝑎𝑠𝑒𝑠𝑠𝑡𝑖𝑙𝑙𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑  (S1-45) 

Equations S1-44 and S1-45 illustrate the logic of the solution in terms of probabilities. 

Finally, we can use Equation 21 to write this simple expression for the solution for total cases if 

𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) remain constant: 

𝑁(𝑡) = 𝑁∞
(1−𝐹𝑖(𝑡)). (S1-46) 

Supplement 2. Verification of the solution 

To demonstrate that 𝐾𝑇(𝑡) is indeed a constant, we need to first further refine the concept of 

𝑃𝑐(𝑡). As previously defined, 𝑃𝑐(𝑡) is the number of specific infectious contacts a member of 

subpopulation N(t) has across the entire population.  This is a function of the population’s 

behavior. Initially, we assume this is a function of population density and further, that people’s 

mobility extends over a constant average effective area per unit of time. We define this area as 

the effective area rate, 𝐴1𝑟(𝑡). Using these definitions, we can write an expression for 𝑃𝑐𝑟(𝑡): 

𝑃𝑐𝑟(t) =
𝐴1𝑟(𝑡)𝑁𝑝

𝐴𝑝
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑟𝑎𝑡𝑒,  (S2-1) 

where 𝑁𝑝 = the entire population of the region with the infection, = the area of the region, and  

𝑁𝑝

𝐴𝑝
 = the population density. From Equation S2-1, we can see that 𝑃𝑐𝑟(𝑡) is proportional to both 

the population’s behavior, 𝐴1𝑟(𝑡), and the population density, 
𝑁𝑝

𝐴𝑝
.  
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Similar to the way we defined 𝑃𝑐(𝑡) using 𝑃𝑐𝑟(𝑡), we now define a quantity, 𝐴1(𝑡), in terms of 

𝐴1𝑟(𝑡): 

 𝐴1(𝑡) = lim
∆𝑡→0

∫ 𝐴1𝑟(𝑡)𝑑𝑡
∆𝑡

𝑡
,  (S2-2) 

where 𝐴1(𝑡) is the effective specific area traversed by an individual. In this case, “specific” has 

the same meaning as it has for 𝑃(𝑡)𝑐; that is, each person traverses the same area for the duration 

of the time under consideration. We also call 𝐴1(𝑡) the “effective area” because the population is 

typically only dispersed within ~1% of the land within a given region of a country (Ritchie and 

Roser 2019). If we take this into account, then 𝐴1(𝑡) =
𝐴𝑟𝑒𝑎𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑𝑏𝑦𝑎𝑝𝑒𝑟𝑠𝑜𝑛

0.01
. 

From the preceding discussion, we can now write an expression for 
𝐾T(𝑡)

𝑃𝑐(𝑡)
: 

𝐾T(𝑡)

𝑃𝑐(𝑡)
=

𝐾𝑇(𝑡)𝐴𝑝

𝐴1(𝑡)𝑁𝑝
. (S2-3) 

As defined, neither 𝑃𝑐(𝑡) nor 𝐴1(𝑡) are rates, but they can both vary in time and their values 

depend on the population’s behavior. They are, respectively, the number of specific infectious 

people who have been contacted and the specific effective area traversed by any index person 

within a given time interval. 𝑃𝑐(𝑡) and 𝐴1(𝑡)  are constant when the number of specific 

infectious people or the traversed area remain constant. However, if different people are 

contacted within a given time interval, the rates they depend on change, and therefore, 𝑃𝑐(𝑡) and 

𝐴1(𝑡) may change even if the total number of people contacted or area covered did not change 

during that time interval.  

We can now check the assumption that 𝐾𝑇(𝑡) is a constant by substituting Equation S2-3 

 into Equation 29 and solving for 𝐾𝑇(𝑡)t. Doing this, we find the following expression: 
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𝐴1𝑁𝑝

𝐴
ln (1 +

ln(𝑁(𝑡))

−
𝐴1𝑁𝑝

𝐴

) = −𝐾𝑇(𝑡)t. (S2-4) 

If we define 𝐹(𝑁(𝑡)) =
𝐴1𝑁𝑝

𝐴
ln (1 +

ln(𝑁(𝑡))

−
𝐴1𝑁𝑝

𝐴

), then we can also write this expression as 

𝐹(𝑁(𝑡)) = −𝐾𝑇(𝑡)t. (S2-5) 

If 𝐾𝑇(𝑡) is a constant, then Equation S2-5 predicts that 𝐹(𝑁(𝑡)) is a linear function of time. 

Excepting 𝐴1, all the quantities on the left-hand side of Equation S2-4 can be found for each 

country in the time before containment measures were enacted; and these are listed for the 

sample of countries addressed in this paper, in Table 2. An implicit assumption in this process is 

that the behavior of the population, 𝑃𝑐(𝑡), is constant and therefore 𝐴1 is constant at least during 

the initial phase of the epidemic before containment measures were put in place. Because of this 

linkage, it is necessary to frame the problem as co-determining a value of 𝐴1 which produces a 

straight line for the country data; and separately determining whether the slope of that line is a 

rational value for 𝐾𝑇(𝑡). Through a process of iteration, a value was found for  𝐴1(= 0.48 km2) 

which created a straight line with a correlation coefficient of 0.96 (Figure 4). Using Equation S2-

4 (or S2-5) we then determined the slope of the line in Figure 4 indicating the value of 𝐾𝑇(𝑡) as 

0.26.  This value is completely consistent with the country data; and we take this analysis as 

strong support for the plausibility that 𝐾𝑇(𝑡) is a constant and represents the transmissibility of 

the disease in the early stage of the epidemic. 

Independent evidence that 𝑃𝑐(𝑡) is a measure of the population behavior was developed by first 

using Equation 39 to show that, if 𝐾𝑇(𝑡) is a constant, the RCO measure will be proportional to 

𝐾𝑇 ∫
1

𝑃𝑐(𝑡)

𝑡

𝑡0
𝑑𝑡. We reasoned that if an independent measure of people’s mobility during the 
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epidemic could be found and was linearly related to the RCO, we could have additional 

confidence in the veracity of the KMES.  

Google has compiled different measures, derived from mobile phone data, of people’s mobility 

(Google 2020). One of these measures is termed the Residential Mobility Measure (RMM). The 

RMM is a measure of the percentage change in the degree to which people stayed in their 

residence during the pandemic relative to a baseline measured over 5 weeks starting on January 

3, 2020. Since 
1

𝑃𝑐(𝑡)
 and the RMM are both inversely proportional to the population’s mobility, 

we hypothesized that the RMM would be a good proxy for the value of  
1

𝑃𝑐(𝑡)
. To test this, we 

plotted the integral over time of the daily RMM for the six countries whose data we analyzed, 

against the daily RCO. These plots appear in Figure 5, which clearly validates the hypothesized 

linear relationship.  

Supplement 3. An analysis of the SIR model 

The SIR model, with non-time-varying parameters 𝛽and 𝛾, is described by the following 

equations: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
, (S3-1, 52) 

𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
− 𝛾𝐼(𝑡),  (S3-2, 53) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡), and (S3-3, 54) 

𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (S3-4, 55) 
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where Np = total number of people in the population, β = rate of contact and transmission, and γ 

= rate of recoveries. These equations can be derived from Equations S1-1 to S1-4 by assuming 

that the parameters 𝜑(𝑡) = 𝜑(𝜃) =
𝐴𝑝𝛽

𝑁𝑝
 and 𝜓(𝑡) = 𝜓(𝜃) = 𝛾 are constants. 

3.1 “Flattening the Curve” 

Since 𝛽 =
𝜑𝑁𝑝

𝐴𝑝
, and 𝜑 was defined by Kermack and McKendrick (1927) as “the rate of 

infectivity at age 𝜃” (page 703),  𝛽 has generally been interpreted as an inverse measure of social 

containment in the at-risk population, i.e., modelers have assumed that a lower 𝛽 indicates higher 

social containment. Likewise, since 𝛾 = 𝜓 and Kermack and McKendrick defined 𝜓 as “the rate 

of removal” (page 703) of infected persons to a recovered state or death, 𝛾 is generally 

interpreted as a measure of persistence of infectiousness, a constant associated with the agent of 

the disease; a lower 𝛾 has been assumed to represent longer-lasting disease.  

A simulation, depicted in Figures 7A and B, shows that the SIR model projects that an increase 

in social containment (decreasing β) causes a later end to the epidemic and a lower and 

progressively later peak in cases per day. This is the so-called “Flatten the Curve” phenomenon 

predicted by Equations S3-1 through S3-4 which is oft referenced in the literature (see Di Lauro, 

et al, 2021, as a recent example). In contrast, a plot of the KMES in Figures 7C and D exhibits 

the opposite phenomenology: an increase in social containment (higher 
𝐾𝑇

𝑃𝑐
) causes an earlier end 

to the epidemic and a lower and progressively earlier peak in cases per day. As social 

containment measures increase, the positions of the peak in new cases per day move in opposite 

directions for the two models.  
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We can also mathematically compare the trends projected by the SIR model with trends 

predicted by the full Kermack and McKendrick equations using the following expression derived 

from the KMES: 

𝑡𝑚𝑎𝑥 =
𝑃𝑐ln(𝑃𝑐)

𝐾𝑇
         (S3-5, 46) 

As can be deduced from Equation S3-5, and in contrast to published analytical solutions of the 

SIR equations (Kroeger and Schlickeiser 2020), the KMES mathematically predicts that the time 

of the peak in daily cases will occur earlier with increased social containment (i.e., higher 
𝐾𝑇

𝑃𝑐
). 

Therefore, SIR projections differ qualitatively from those of the KMES both graphically and 

mathematically. 

The simplest test of the utility of a model is whether it projects the same trends present in actual 

data. If the projected trends are similar to those found in reality, then free parameters within the 

model are plausibly of value in achieving a higher degree of fit and utility. It is fortuitous, then, 

that the progression of the COVID-19 pandemic has been well documented in multiple countries 

which took different paths while attempting to contain the spread of the virus. This dataset 

affords the opportunity to test the veracity of the trends predicted by both the SIR and KMES 

models against actual data.  

In plots E to H in Figure 7, we can compare the SIR and KMES projected trends to COVID-19 

pandemic case data (Roser et al 2021) for total cases and for daily new cases in Sweden and New 

Zealand (Figure 7E and F), and in South Korea and Italy (Figure 7G and H). The paired 

countries have comparable population densities but implemented mitigation measures with 

different intensities (Campbell 2020, Field 2020, Orlowski and Goldsmith 2020, and Sanfelici. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


2020). New Zealand and South Korea introduced stronger containment measures much earlier 

than Italy and Sweden.  

In support of the KMES and in contradistinction to the SIR model, the country data in Figures 

7E–H show that stronger containment measures are associated with an earlier levelling off at a 

lower total number of cases and an earlier and lower peak in new infections. Other authors 

(Schlickeiser and Kroeger 2020), too, have noted that the peak of cases in countries with stronger 

containment measures occurred earlier than in countries with weaker measures.  

Trends in both peak position and height demonstrate that SIR models are not merely inaccurate, 

a tolerable trait in an approximation, but project epidemic data to trend in the opposite direction 

to the reported data; a behavior that no amount of free parameter fitting can correct. Therefore, 

the SIR model both contradicts the KMES and fails the simplest test of model veracity: the 

projection of qualitative trends 

3.2 Understanding the Implications of the “Flatten the Curve” 

As seen in the preceding section, though both 𝛽 and 𝑃𝑐 are posited to represent social interaction 

in their respective models, the trend in the movement of the daily cases peak with decreasing 

social interaction (decreasing 𝛽) in the SIR model is opposite to that with decreasing 

socialinteraction(decreasing𝑃𝑐)intheKMES. Since the KMES reproduces the observed 

trends and the SIR model does not, it seems likely that the nature and implications of the SIR 

assumptions may not be sufficiently understood. 
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Figure 7. Comparisons of predictions of the approximate SIR (ASIR) and complete SIR (CSIR) 

models with observed data from four countries 

Note: Containment measures increase in all panels from blue to grey to orange dot curves. The arrow on each 

graph indicates the direction of more social distancing. 

SIR model trend predictions: (A) Total cases; (B) Daily new cases. Rate of contact and transmission (β) decreases 

with increasing social distancing (from blue to grey to orange curves). Rate of recoveries (γ) = 0.2 for both sets of 

plots. As β decreases, the daily total of cases increases more slowly and plateaus later (A). Daily new infections 

project to later, but only slightly lower peaks (B).  
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KMES model trend projections: (C) Total cases; (D) Daily new cases.  

As containment measures increase (higher 
𝐾𝑇

𝑃𝑐
, blue to grey to orange curves), Equation 23 projects that total cases 

will rise to lower levels; and reach these levels earlier (C). Similarly, Equation 22 projects that new daily cases will 

peak earlier to lower values with increasing containment (D). 𝐾𝑇 = 0.2 for plots (C) and (D). 

 

Data reported from different countries during the COVID-19 pandemic.  

The remaining graphs contain data from pairs of countries with differing containment measures referenced to a day 

when each member of the pair had nearly equal numbers of new cases. 

(E) Total cases in Sweden (no containment measures, blue) and New Zealand (strict containment, orange).(F) Daily 

new cases in Sweden (blue) and New Zealand (orange).(G) Total cases in Italy (loose containment measures, blue) 

and South Korea (strict containment, orange). 

(H) Daily new cases in Italy (blue) and South Korea (orange). 

The trends in the observed data, panels (E – H), are the opposite of those exhibited by the ASIR model for 

increasing containment (decreasing β) in panels (A, B).  

The ASIR model trends in (A) and (B) have completely different shapes; and vary with increasing containment in an 

opposite sense to those in the country data. 

The CSIR model trends in (C) and (D) are highly similar to those in the country data (E – H). 

 

To understand these implications, we start by examining the conventional assumption that 𝜑(𝑡) 

and 𝜓(𝑡) can be constants. Using Equations S1-21 and S1-28, and the prior definition that 

𝐹𝑖(𝑡) =
𝐼(𝑡)

𝑁(𝑡)
, we can find expressions for the time varying 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) when 𝜑(𝑡) and 𝜓(𝑡) 

are assumed to be the constants 𝜑 and 𝜓:  

𝐾𝑇(𝑡) =
𝜑𝑆(𝑡)

𝐴𝑝
=

𝛽𝑆(𝑡)

𝑁𝑝
, and         (S3-6) 

𝑃𝑐(𝑡) =
1

𝐴𝑝𝜓

𝜑𝑆(𝑡)
−(1−𝐹𝑖(𝑡))

=
1

𝛾𝑁𝑝

𝛽𝑆(𝑡)
−(1−𝐹𝑖(𝑡))

.       (S3-7) 

From Equation S3-6 we see that 𝜑(𝑡) can only remain constant if 𝐾𝑇(𝑡) decreases in direct 

proportion to the decreasing size of the susceptible population, 𝑆(𝑡).  This is implausible on its 

face because, as discussed in the derivation of the solution, 𝐾𝑇(𝑡) is solely a function of the 

disease agent and thus, is likely a constant for a substantial time at the beginning of the epidemic; 

at least until the disease agent itself is modified by mutation or selection.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


Kermack and McKendrick (1927) themselves, in their introduction on pp. 702, note that it is 

implausible to assume that disease transmissibility will decrease as the disease spreads. 

Furthermore, even if transmission were to decrease over time within the infected population, it is 

improbable that this decrease would, as required by Equation 21, occur in a fixed linear 

proportion to the remaining number of susceptible people. Thus, the assumption within the SIR 

model that 𝜑 can be modelled as a constant requires an implausible additional assumption. 

It is not possible to state how 𝑃𝑐(𝑡) must vary to maintain 𝜓 as a constant by merely inspecting 

Equation S3-7. We can, however, elucidate the behavior of 𝑃𝑐(𝑡) required by Equation S3-7 by 

plotting the time series of Equation S3-7. The time series of both 𝑁(𝑡) and 
𝑑𝑁(𝑡)

𝑑𝑡
 were simulated 

using an Euler approximation of Equations 22 and 23 with a time step of 0.1 day. Using the same 

values of 𝛽 and 𝛾 employed in Figure 6A and B, Equations S3-6 and S3-7 were then used to 

determine the values of 𝐾T(𝑡) and 𝑃𝑐(𝑡) employed in the simulation.  

The purpose of this simulation was first to demonstrate that imposing the conditions of Equations 

S3-6 and S3-7 on 𝐾T(𝑡) and 𝑃𝑐(𝑡) will cause the KMES to produce the same results as the SIR 

approximation. The second purpose was to determine and demonstrate the actual temporal 

behavior the SIR approximation imposes on both 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡).  

The time series plots of the simulation of both 𝑁(𝑡) (cases) and 
𝑑𝑁(𝑡)

𝑑𝑡
 (cases per day) appear in 

Figure 8. The close approximation of the solution and the SIR curves in Figure 8 demonstrates 

that the SIR model is, indeed, a subset of the KMES when the constraints of Equations S3-6 and 

S3-7 are applied to 𝐾T(𝑡) and 𝑃𝑐(𝑡).  

To elucidate the behavior of 𝐾𝑇(𝑡)and 𝑃𝑐(𝑡) required to create the KMES curves in Figure 8, we 

plotted the values of 𝐾𝑇(𝑡)and 𝑃𝑐(𝑡) in Figure 9. The figure shows that the constraints on 
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𝐾𝑇(𝑡)and 𝑃𝑐(𝑡), imposed by the SIR model, compel the acceptance of unlikely phenomena; 

namely, that 𝐾𝑇(𝑡) decreases with time and 𝑃𝑐(𝑡) must behave in an unrealistic manner.  

As Figure 9B illustrates, the consequent, implicit assumption of applying the SIR approximation 

is that, early in the epidemic, the population increases its contacts, and then suddenly and 

symmetrically (in time), reverses course and reduces the number of contacts. At each value of β, 

this up and down spike in contacts (Figure 9B) precedes a plunge in the value of 𝐾𝑇(𝑡) (Figure 

9A), and the steep decline is immediately followed by the peak in daily cases (seen in Figure 

8B), tailing to the eventual end of the epidemic.  

These implied consequences of a constant 𝛽 in the SIR model make the clear points that a 

constant 𝛽 does not represent constant social interaction; and a higher 𝛽 does not represent a 

consistently higher level of social interaction. Also, a symmetric spike in social interaction 

(𝑃𝑐(𝑡)), higher and earlier, proportional to the value of 𝛽, followed by an immediate collapse in 

transmissibility (𝐾𝑇(𝑡)), is simply unfathomable. 

The consequences of the approximations in the SIR model become even more clear when we 

make manifest the time varying nature of 𝛽(𝑡) and 𝛾(𝑡) (and therefore of 𝜑(𝑡) and 𝜓(𝑡)) 

required when the quantities 𝐾𝑇 and 𝑃𝑐 are held constant. Like the preceding analysis, we 

explored these consequences using simulations of the KMES and the SIR model. Since the 

KMES predicts the country data well, we also compared the simulation results to two of the 

country results (Italy and New Zealand).  
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Figure 8. Demonstration that KMES can be modified to produce the SIR model results. Both plots 

contain 6 lines.  For the same β and γ, both the SIR and KMES simulations overlay each other.  The KMES 

simulations were produced by imposing the criteria in Equations S3-6 and S3-7, connecting the SIR and KMES 

constants.  This plot demonstrates that the SIR approximation provides the same result as the KMES provided the 

constraints of these equations are imposed.  γ is 0.2 for all plots. These plots are the same as the SIR plots in 

figure7A and 7B on a log scale.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


 

Figure 9. Time series for creating solution curves.  These graphs show how Pc and KT are forced to vary 

within the KMES simulation shown in Figure 8 when the constraints of Equations S3-6 and S3-7 (constant φ and ψ) 

are imposed.  γ is 0.2 for all plots. X-axis is days.  

 

As a first step, we used the values of  𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇) and 
𝐾T

𝑃𝑐
 in Table 1 to derive values of  

𝐾𝑇

𝑃𝑐
and𝐾𝑇for Italy and New Zealand and used the solution to project the results. We then 

simulated the SIR model with the assumption that the values of 𝛽 and 𝛾(and therefore 𝜑 and 𝜓) 

were constant and equal to the values of  
𝐾𝑇

𝑃𝑐
 and 𝐾𝑇 used in the solution. The results of both the 

KMES and SIR simulations are plotted in Figure 10, along with the country data. As can be 

easily seen, the KMES model accurately models the country data, and the SIR model does not.  
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In a second step, we recast Equations S1-21 and S1-28 in terms of 𝛽(𝑡) and 𝛾(𝑡): 

𝛽(𝑡) =
𝜑(𝑡)𝑁𝑝

𝐴𝑝
=

𝐾𝑇𝑁𝑝

𝑆(𝑡)
 and        (S3-8) 

𝛾(𝑡) = 𝜓(𝑡) = 𝐾𝑇
𝑅(𝑡)

𝑁(𝑡)
+

𝐾𝑇

𝑃𝑐
.        (S3-9) 

Using Equations S3-8 and S3-9, we then calculated the time series of 𝛽(𝑡) and 𝛾(𝑡) necessary to 

generate the KMES curves in Figure 10. Those time series, plotted in Figure 11, show that under 

the conditions present in the countries, 𝛽(𝑡) is nearly a constant, while 𝛾(𝑡) clearly is not. This is  

because, early in the epidemic when 𝑆(𝑡) ≈ 𝑁𝑝, 𝛽(𝑡) ≈ 𝐾𝑇, and 𝛽(𝑡) can be approximated as a 

constant.  

As a last step in the analysis, we used the values of 𝛽(𝑡) and 𝛾(𝑡) plotted in Figure 11 in the SIR 

model to generate the curves in Figure 12. This figure shows that when 𝛽 and 𝛾 are forced to 

vary according to Equations S3-8 and S3-9, the SIR model fits the country data quite well. 

Equations S3-8 and S3-9 themselves elucidate why the SIR model, with constant 𝛽 and 𝛾, is not 

an accurate or appropriate approximation. Equation S3-8 makes it clear that when 𝑆(𝑡) decreases 

by a significant percentage, neither 𝛽 nor 𝜑 can be appropriately modelled as constants. Also, as 

can be seen in Equation S3-9, the assumption that 𝛾, and therefore 𝜓, is a constant ignores the  

effect of the growing recovered (and therefore resistant) fraction, 
𝑅(𝑡)

𝑁(𝑡)
, of the subpopulation, 

𝑁(𝑡), on the epidemic dynamics.  

Figures 8 and 12 provide another validation of the veracity of the solution. In Figure 8, we show 

that the solution can be configured to replicate SIR simulations by embedding the SIR 

approximations within the solution framework. In that setting, the two piecewise and logically  
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Figure 10. SIR and solution simulations of the Italy (10A & B) and New Zealand (10C & D) data. 

𝛽 = 𝑒𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇) where 𝑙𝑛(𝐹𝑖(𝑡0)𝐾𝑇) is from Table 1 and γ is equal to the 
𝐾𝑇

𝑃𝑐
 constant from Table 1.  

 

invariant solution parameters, KT and Pc, are forced to take implausible and unrealistic time 

courses. Figure 12 demonstrates, in counterpoint, that an SIR model can produce results identical 

to the KMES if β and γ, the analogs of 𝜑(𝑡) and 𝜓(𝑡), are permitted to vary in time according to 

Equations S3-8 and S3-9. The SIR model fits reality only when “coached” to a time variation for 

its two parameters using insight derived from the KMES.  
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Figure 11. Time series for γ and β. A) Italy.  B) New Zealand. These are the values of γ and β necessary for the 

SIR approximation to accurately model the country data.  

 

The foregoing discussion has utilized one of the simplest models of the SIR types; nevertheless, 

the conclusions apply to all the variations of SIR models.  
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Figure 12. Total cases and new cases per day for Italy and New Zealand.  The country data and KMES 

plots are the same as in Figure 10.  The SIR Variable β and γ plot uses the β and γ values from Figure 10 in the SIR 

equations. 

 

Supplement 4. Controlling epidemics early 

The quantitative mathematical relationships derived from the KMES in Supplements 2 and 4 

characterize the dynamics of an epidemic and illustrate that strong and early intervention is 

critical. Equation 25 quantifies that the ultimate number of individuals infected in an epidemic, 

N∞, will be exponentially dependent on the number of people with whom each person interacts.  
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The real-world country data provide vivid examples. Both South Korea and New Zealand 

enacted strong and early interventions compared to other countries (5,6), as reflected by their 
𝐾𝑇

𝑃𝑐
 

values (Table 1). These strong interventions led to earlier peaks in new cases and to far fewer 

total cases than in other countries (Figures 2 and 3): the peak number of new cases in both South 

Korea and New Zealand was 90–99% lower than in other countries, a compelling validation of 

the explicit statement in the KMES that strong intervention leads to exponentially more favorable 

outcomes. 

In the USA, interventions initiated on March 16 began to have an effect around March 23, 2020 

(Figure 3B); the number of active cases on March 23, 2020 (Roser et al 2021) was 46,136 (Table 

1). Using the values of ln(𝐾𝑇(t)) and 
𝐾𝑇

𝑃𝑐
 from Table 1, Equation 25 predicts that the ultimate 

number of cases would have been approximately 1.22 million. If the same intervention had been 

implemented and sustained starting on March 10, when there were 59 times fewer (782) cases 

(Roser et al 2021), the model predicts that the ultimate number of cases would also have been 59 

times lower, or 20,725. Thus, earlier action could have reduced the ultimate number of projected 

cases by more than 98%. Of course, the projected estimate of approximately 1.22 million total 

USA cases would only have occurred if the effectiveness of the interventions that were launched 

on March 16 had been sustained. Unfortunately, a marked reduction in effective interventions 

occurred in many parts of the USA in mid-April, well before the official reopening of the 

economy (Elasser 2020). This caused a second surge in new cases in late April and is why the 

observed data and the model prediction diverge in Figure 3B.  

As shown in the main body of the paper, Section 4, the KMES provides an estimate of the time 

to the peak of new cases, tmax. Using Equation 46 and the values of ln(𝐾𝑇(t)) and 
𝐾𝑇

𝑃𝑐
 from Table 
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1, the predicted peak in new cases in the USA would have occurred near March 24 if the 

intervention had begun on March 10. Instead, a 6-day delay in effective intervention shifted the 

initial peak to April 11, 16 days later, as projected, and that peak was much higher (Figure 3B). 

As shown, too, in Section 4, epidemic acceleration, the instantaneous potential to change the 

pace of the epidemic, can be determined at any point in the epidemic and depends on the social 

containment actions in effect at that time (Equation 47). What is perhaps less apparent, but 

predicted by the KMES, is that two countries with identical numbers of cases on a given day can, 

in fact, have different accelerations on the same day, and will, therefore, exhibit different 

dynamics immediately after that day.  

South Korea and New Zealand (Figure 2A and F) had nearly identical case counts when each 

imposed strong containment measures (204 cases in South Korea on February 21, and 205 in 

New Zealand on March 25). Their models suggest that their interventions were about equally 

effective (
𝐾𝑇

𝑃𝑐
 = 0.24 in South Korea and 0.17 in New Zealand; see Table 1). However, since 

South Korea has a much higher population density than New Zealand ((Worldometers 2021), 

data in Table 2), it had a much higher number of interactions when the interventions were 

imposed and, therefore, a higher rate of acceleration, as evidenced by its higher RCO at the time 

of intervention. Indeed, the rate of change of new cases was higher in South Korea than in New 

Zealand, and the later number of cases in South Korea was higher than in New Zealand (Figure 

2A and 2F).  

Equation 44 clearly illustrates these lessons. As social distancing is strengthened (lower 𝑃𝑐), the 

Effective Replication Number decreases, and the epidemic slows. Early and strong interventions, 

especially in countries with indigenously high levels of social interaction, are necessary to stop 
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an epidemic in the initial stages. Reopening, enacted too early, can reignite the epidemic, 

dramatically increasing the number of cases. The astonishing magnitude of the effects, driven by 

only a few days of delay, derives from the doubly exponential nature of the underlying 

relationships. 

Supplement 5. Ending an ongoing epidemic 

We can use the KMES to design measures to end an epidemic in an advanced stage. The 

management plan is built by first using Equation 51 to predict the number of days a given level 

of intervention, 
𝐾𝑇

𝑃𝑐
, is needed to reduce the new daily cases by a target fraction. 

For example, using Equation 51, we see that a country targeting a 90% reduction of new cases 

per day (e.g., from 50,000 to 5,000 cases per day, 𝐷𝑡𝑓 = 0.1), can attain its target in about 12 

days by imposing a containment level of  
𝐾𝑇

𝑃𝑐
= 0.2. The South Korea and New Zealand data 

demonstrate that Equation 51 is valid and that
𝐾𝑇

𝑃𝑐
= 0.2 is achievable for this duration. Both 

countries achieved a value of 
𝐾𝑇

𝑃𝑐
close to 0.2 for the time necessary to produce a 90% reduction. It 

took 13 days in South Korea (March 3–16) and 15 days in New Zealand (April 2–15), New 

Zealand (6). 

The criteria,  
𝐾𝑇

𝑃𝑐
= 0.2, characterizes a lockdown in which people in a country can each have 

only one plausibly infectious contact with a little over one specific person for the containment 

duration. This does not mean they cannot contact anyone other than the one person; but they 

must use care, masks, and proper distancing, to ensure there is no plausibly infectious contact 

with anyone other than the one person.  
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Returning to the planning example, after achieving the initial 90% reduction, a reasonable next 

step might be to relax social containment to a level that allows the economy to remain viable, 

while preventing the epidemic from erupting again. We can again find the level of  
𝐾𝑇

𝑃𝑐
 necessary 

to achieve a chosen target, using Equation 51. If an additional 90% reduction in new cases per 

day is desired, and a period of 90 days is tolerable for that reduction, then a new level of 

approximately  
𝐾𝑇

𝑃𝑐
= 0.025 is needed. This equates to a 90-day period during which each person 

can be in contact with seven specific people, in an infectable way. Note that this is three times 

less stringent than the original USA shutdown level in April 2020 as shown by the level of  
𝐾𝑇

𝑃𝑐
 

calculated for the United States in that period (Table1). Thus, with a well-planned approach, a 

country can reduce its new daily cases by 99% in approximately 100 days, enabling the country 

to control, and essentially end the epidemic, while simultaneously maintaining economic 

viability.  

If even 0.025 is too restrictive, we can choose a still lower 
𝐾𝑇

𝑃𝑐
, but it must be large enough to 

avoid a new outbreak. A lower bound for the new value of  
𝐾𝑇

𝑃𝑐
, high enough to prevent an 

outbreak, can be found using Equation 48.  

We can easily monitor the progress of interventions using the RCO, as the curve for South Korea 

illustrates (Figure 1A). Had this country maintained the implemented level of distancing 

measures, the data would have followed the initial slope. However, the actual data departed from 

the slope, heralding failures in (or relaxation of) social distancing, which were later documented 

to have occurred during the indicated time frame (Campbell 2020) (circled data, Figure 1A). 
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Because it summarizes epidemic dynamics, we can use the RCO to continuously determine the 

effectiveness of implemented measures and whether they need adjustment.  

Supplement 5.1 Outbreaks 

We can see from Equations 39 and 40 that if the social interventions are strengthened (lower 𝑃𝑐) 

the slope of the RCO curve will steepen and if the interventions are relaxed, the slope will 

become shallower. Therefore, if the value of 𝐾𝑇(𝑡) does not change due to a change in the 

disease transmissibility, the RCO is a metric for monitoring the population interactions. It is also 

clear that the slope can never become positive, because  
𝐾𝑇

𝑃𝑐
  must always be greater than zero. 

However, this only remains true if these three conditions remain true: 1) immunity persists, 2) no 

new infections are introduced from outside the area, and 3) the epidemic remains contiguous (see 

Supplement 6). 

If new infections are introduced into a portion of the population that has thus far been 

disconnected from the previously infected area, then the condition of contiguity is violated. This 

is a common situation when infected people travel from an infected area to a previously 

uninfected area and cause an outbreak. 

Equation S1-29 must be modified to predict the number of cases in an epidemic affected by an 

outbreak. Assuming that 𝑡0 = 0, 𝑁(𝑡0) = 1, and introducing the notation 𝑃𝑐𝑥where 𝑥 denotes 

the number of the outbreak, Equation 29 can be written as: 

𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−
𝐾𝑇
𝑃𝑐1

t
−1).  (S5-1) 

If a new outbreak occurs in a previously unaffected area of a country, then Equation S5-1 can be 

modified as follows: 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274442doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274442


𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−
𝐾𝑇
𝑃𝑐1

t
−1) +𝑁2𝑒

−𝑃𝑐2(𝑒
−
𝐾𝑇
𝑃𝑐2

(t−𝑡2)
−1), (S5-2) 

where 𝑁2 is the number of infectious people who initiated the new outbreak, 𝑃𝑐2 is the social 

interaction parameter in the new outbreak area, and 𝑡2 is the time the new outbreak occurs. We 

have assumed that the disease transmissibility remains the same throughout this illustration. If 

the transmissibility changes in a subset of the population, then a similar formulation, using the 

notation, 𝐾𝑇𝑥, can be utilized to track the populations with the new transmissibility. 

Equation S5-2 can be written in a general form as 

𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−
𝐾𝑇
𝑃𝑐1

t
−1) +𝑁2𝑒

−𝑃𝑐2(𝑒
−
𝐾𝑇
𝑃𝑐2

(t−𝑡2)
−1)…+ 𝑁x𝑒

−𝑃𝑐𝑥(𝑒
−
𝐾𝑇
𝑃𝑐𝑥

(t−𝑡𝑥)
−1),  (S5-3) 

where 𝑥 denotes the outbreak number and t > 𝑡2 > 𝑡3 > ⋯ > 𝑡𝑥. For each outbreak 𝑡𝑥, 𝑃𝑐𝑥, and 

𝑁𝑥 need to be determined independently. 

While an epidemic is underway, we can detect an outbreak by monitoring the slope of the RCO 

curve. A positive slope detected in an RCO curve indicates that an outbreak has occurred. This is 

an indication that immediate action, within days, is required from policy makers to strengthen 

intervention measures and prevent the outbreak from overwhelming prior progress in controlling 

the epidemic. 

By monitoring the RCO curve, we can also detect if the disease changes its transmissibility 

through mutation. In this situation, a proper fit of the parameters in Equation 40 is not possible 

and a modification of 𝐾𝑇 is required to accommodate the change. 
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Supplement 6: Understanding contiguousness 

To enhance the understanding of the KMES and explain what it means for an epidemic to be 

contiguous, we applied a new perspective to Equations S1-1 to S1-5. Rather than look at the 

epidemic as affecting the total population, 𝑁𝑝, from the outset, this perspective focuses on only 

that portion of the population that will eventually become infected in the epidemic, the 

subpopulation 𝑁∞. We also introduce a subpopulation of 𝑁∞ called 𝑁𝑆(𝑡), which we define as 

the sub-population at time 𝑡 that is in contact with the epidemic and under threat of infection. 

This change in perspective views the epidemic mathematically from inside the bounds of the 

ever expanding, already infected population, rather than describing what is happening within a 

fixed total population. 

The reinterpretation begins by first recognizing that in Equations S1-1 to S1-3, the initial number 

of infections introduced to the population—which we designate 𝐼𝑖—is merely the starting value 

of the epidemic and can be any value at all. The second step is to imagine that at every increment 

in time, ∆𝑡, the epidemic starts again, and the number of initial infections introduced into the 

population, 𝐼𝑖(𝑡), is equal to the then-current number of infected. The third step is to recognize 

that the values of the integrals in Equations S1-1 to S1-3 are equal to zero and 𝐵(𝑡) = 1 

whenever the epidemic starts. This can be seen by also recognizing that the diagonals in the 

matrices in Supplement 1 are the time history of the initial infections, therefore, when these 

values are subtracted from the matrices, the first rows of every matrix are zero and therefore, 

their sums are equal to zero.  

With these perspectives in mind, Equations S1-1 to S1-3 can be rewritten as,  

𝑑𝑆𝑢(𝑡)

𝑑𝑡
= −Su(t)

σ(𝑡)

𝑁𝑆(𝑡)
𝐼𝑖(𝑡), (S6-1)  
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𝑑𝐼(𝑡)

𝑑𝑡
= Su(t)

σ(𝑡)

𝑁𝑆(𝑡)
𝐼𝑖(𝑡) − 𝜔(𝑡)𝐼𝑖(𝑡), and (S6-2) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜔(𝑡)𝐼𝑖(𝑡). (S6-3) 

where 𝜎(𝑡) = 
𝜑(𝑡)𝑁𝑆(𝑡)

𝐴𝑝
 and 𝜔(𝑡) = 𝜓(𝑡),  

𝑆𝑢(𝑡) is the remaining portion of the population that will become infected, and since there are 

only susceptible people in 𝑁𝑆(𝑡) when new infections are introduced, 

𝑁𝑆(t) = 𝑆𝑢(𝑡), (S6-4) 

and of course,  
𝑑𝑆𝑢(𝑡)

𝑑𝑡
=

𝑑𝑆(𝑡)

𝑑𝑡
. 

If we also now define a quantity, 𝑅𝑖(𝑡), as the number of recovered persons introduced to the 

population at the same time as 𝐼𝑖(𝑡), we can write an equation for 𝑁∞ and define a new quantity, 

𝑁(𝑡), as the number of people either currently infected or recovered:  

𝑁∞ = 𝑆𝑢(𝑡) + 𝐼𝑖 + 𝑅𝑖, (S6-5) 

𝑁(𝑡)=𝐼𝑖(t) + 𝑅𝑖(𝑡), and (S6-6) 

𝑁∞ − 𝑁(𝑡) = 𝑁𝑆(𝑡) = 𝑆𝑢(𝑡). (S6-7) 

We have not assumed that any of the quantities are constant; therefore, we can now explicate the 

time-varying nature of these quantities. We begin by considering what happens to Equations S6-

1 to S6-3 during the time interval ∆𝑡 from a time 𝑡 to 𝑡 + ∆𝑡, and by rewriting these equations as 

difference equations: 

Su(t + ∆𝑡) = Su(t) − σ(𝑡 + ∆𝑡)𝐼𝑖(𝑡 + ∆𝑡)∆𝑡, (S6-8) 

𝐼𝑖(𝑡 + ∆𝑡) = 𝐼𝑖(𝑡) + (σ(𝑡 + ∆𝑡)𝐼𝑖(𝑡 + ∆𝑡) − 𝜔(𝑡 + ∆𝑡)𝐼𝑖(𝑡 + ∆𝑡))∆𝑡), and (S6-9) 
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𝑅𝑖(𝑡 + ∆𝑡) = 𝑅𝑖(𝑡) + 𝜔(𝑡 + ∆𝑡)𝐼𝑖(𝑡 + ∆𝑡)∆𝑡. (S6-10) 

Taking the limit as ∆𝑡 → 0, we obtain the following differential equations: 

𝑑𝑆𝑢(𝑡)

𝑑𝑡
= −σ(𝑡)𝐼𝑖(𝑡), (S6-11) 

𝑑𝐼𝑖(𝑡)

𝑑𝑡
= σ(𝑡)𝐼𝑖(𝑡) − 𝜔(𝑡)𝐼𝑖(𝑡), (S6-12) 

𝑑𝑅𝑖(𝑡)

𝑑𝑡
= 𝜔(𝑡)𝐼𝑖(𝑡) and (S6-13) 

𝑆𝑢(𝑡) = 𝑁∞ − 𝑁(𝑡). (S6-14) 

From the preceding, it can be easily seen that 𝐼𝑖(𝑡) = 𝐼(𝑡) and 𝑅𝑖(𝑡) = 𝑅(𝑡). Note that 𝑆𝑢(∞), 

unlike 𝑆(∞), is always equal to zero. 

The perspective in the immediately preceding part of the analysis is that the epidemic can be 

considered to start over again at each instant in time. In this perspective, the susceptible 

population 𝑆𝑢(𝑡) is not fixed by initial conditions, but rather is the population that will 

eventually become infected. Embedded in this concept is the assumption that during each ∆𝑡, the 

susceptible population is always in contact with those people who have been previously infected 

or who will become infected. That is, the epidemic remains contiguous.  

We have recast the equations by defining the susceptible portion of the population during the 

epidemic as those who will eventually become infected under the conditions in place at each 

instance in time. This shift in perspective retains the mathematical equivalence to the equations 

derived by Kermack and McKendrick (1927) because the portion of 𝑁𝑝 that is not a part of 𝑁∞ 

never becomes infected. Therefore, the solutions to equations S6-11 to S6-14 are identical to the 

KMES and the KMES assumes the epidemic is contiguous. 
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