Body physique and sarcopenia in Japanese first-university student

1	Cross-sectional association of skeletal muscle mass and strength with dietary habits and
2	physical activity among first-year university students in Japan: Results from KEIJI-U study
3	
4	Toru Kusakabe1*, Hiroshi Arai2, Yuji Yamamoto3, Kazuwa Nakao4, Yasunori Akamatsu1, Yuki
5	Ishihara ^{1,5} , Tetsuya Tagami ^{1,5} , Akihiro Yasoda ⁶ , Noriko Satoh-Asahara ¹
6	
7	¹ Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research
8	Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
9	² Health Administration Center, Kyoto Institute of Technology, Kyoto, Japan
10	³ Health and Medical Services Center, Shiga University, Shiga, Japan
11	⁴ Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
12	⁵ Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical
13	Center, Kyoto, Japan.
14	⁶ Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
15	
16	* Corresponding author
17	E-mail: kusakabe@kuhp.kyoto-u.ac.jp
18	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Body physique and sarcopenia in Japanese first-university student

19 Abstract

20	Background: Recently, the high prevalence of young Japanese people who are underweight has
21	received attention because of its potential impact on healthy life expectancy. Sarcopenia, defined
22	as the presence of low muscle mass and function, is often observed in the underweight. However,
23	few reports have described the prevalence and characteristics of sarcopenia in youth.
24	Methods: In this cross-sectional study, we measured skeletal muscle mass using a multifrequency
25	bioelectrical impedance analysis device and handgrip strength (HGS) and administered
26	questionnaires on dietary habits and physical activity to 1,264 first-year university students aged
27	18-20 years (838 males and 426 females). Sarcopenia was diagnosed based on the presence of
28	both low skeletal muscle mass (SMI) and weak HGS according to the Asian Working Group for
29	Sarcopenia.
30	Results: A total of 145 males (17.3%) and 69 females (16.2%) were diagnosed as underweight.
31	Low SMI was diagnosed in 75 males (8.9%) and 18 females (4.2%), and weak HGS was
32	diagnosed in 28 males (3.3%) and 10 females (2.3%). Then, sarcopenia was diagnosed in 8 males
33	(1.0%) and 5 females $(1.2%)$. There was a significantly higher prevalence of low SMI and/or
34	weak HGS in underweight individuals compared with individuals in the other BMI ranges. The
35	multivariate analyses indicated that SMI and HGS were significantly associated with BMI in both
36	sexes. Furthermore, after adjusting for BMI, both SMI and HGS were significantly associated

Body physique and sarcopenia in Japanese first-university student

- 37 with physical activity in males, and SMI was significantly associated with energy intake and
- 38 frequency of breakfast intake in females.
- 39 Conclusions: First-year university students showed a high incidence of being underweight with
- 40 low SMI and/or weak HGS, but the prevalence of sarcopenia was low in both sexes. BMI, energy
- 41 intake, frequency of breakfast intake, and physical activity were independently associated with
- 42 skeletal muscle mass and strength in youth.
- 43
- 44 Keywords
- 45 sarcopenia; skeletal muscle mass; muscle strength; dietary habit; physical activity

Body physique and sarcopenia in Japanese first-university student

47 Introduction

48	According to the 2019 National Health and Nutrition Survey in Japan, 3.9% of males and
49	11.5% of females are underweight (BMI < 18.5 kg/m ²) [1]. Notably, this percentage is almost
50	double (20.7%) among females in their twenties. There is concern not only about the loss of body
51	fat but also regarding the loss of muscle mass in underweight individuals. Loss of muscle mass at
52	a youthful age can lead to the development of sarcopenia and frailty in the future. Furthermore,
53	the loss of muscle mass is considered a risk factor for type 2 diabetes later in life because skeletal
54	muscle is the largest glucose-processing organ in the body [2, 3]. Being underweight in young
55	females is also associated with a risk of osteoporosis, fractures, and giving birth to low-birth-
56	weight infants with a high risk of developing cardiovascular and metabolic diseases [4-6].
57	Sarcopenia was proposed in 1989 to describe the age-related decrease of muscle mass [7].
58	According to the revised European Working Group on Sarcopenia in Older People (EWGSOP)
59	guideline, probable sarcopenia is identified by low muscle strength, and diagnosis of sarcopenia
60	is confirmed by additional documentation of low muscle quantity or quality. Furthermore, when
61	low muscle strength, low muscle quantity/quality and low physical performance are all detected,
62	sarcopenia is considered severe [8]. In 2014, the Asian Working Group for Sarcopenia (AWGS)
63	published a consensus report describing the original cutoff values for Asian populations [9] and
64	updated it in 2019 [10]. Muscle loss when no other cause is evident but aging itself is called

Body physique and sarcopenia in Japanese first-university student

65	"primary sarcopenia", and muscle loss when one or more other causes are evident (i.e., activity-
66	related, disease-related, or nutrition-related) is called "secondary sarcopenia" [8, 11]. Therefore,
67	secondary sarcopenia can be observed even in young people.
68	Skeletal muscle mass and strength increase with growth throughout youth and young adulthood,
69	reaching maximal levels up to ~40 years of age before declining [12, 13]. Young people are more
70	likely to increase their muscle mass under the influence of diet and exercise than would the elderly
71	[14, 15]. Therefore, it is desirable to increase muscle mass as much as possible from a youthful
72	age to avoid developing sarcopenia in the future. However, extreme calorie restriction due to a
73	desire to lose weight is often observed among young people. Furthermore, according to the 2019
74	National Health and Nutrition Survey in Japan, only 28.4% of men and 12.9% of women in their
75	twenties have a habit of exercising; these proportions are both lower than the overall rate [1].
76	These facts are undesirable for young people to increase muscle mass.
77	Thus far, there have been few studies on sarcopenia in large groups of young subjects. In this
78	study, we conducted a survey on skeletal muscle mass and strength, dietary habits, and physical
79	activity to investigate the prevalence of sarcopenia and examine factors associated with skeletal
80	muscle mass and strength among first-year university students in Japan.
81	

Body physique and sarcopenia in Japanese first-university student

83 Methods

84 Study participants

- A total of 1,287 first-year university students (850 males and 437 females) aged 18-20 years who
- 86 underwent the health examination at either the Kyoto Institute of Technology or Shiga University
- in April 2019 were enrolled in this study (KEIJI-U study). Twenty-three subjects (12 males and
- 88 11 females) were excluded because of incomplete data, and finally 1,264 subjects (838 males and
- 426 females) were analyzed (Fig 1). Consent to participate was obtained from all participants
- 90 before study inclusion. This study was reviewed and approved by the Ethics Committee of
- 91 National Hospital Organization Kyoto Medical Center (approval number: 18-106) and was
- 92 conducted in compliance with the ethical principles stated in the Declaration of Helsinki.

93

94 Fig 1. Flow chart of study subjects.

95

96 Measurement of body composition and muscle strength

97 Body weight, total fat mass, body fat percentage, total muscle mass, appendicular skeletal 98 muscle mass (ASM), total bone mass, and body water content were measured using a 99 multifrequency bioelectrical impedance analysis (BIA) device (MC-780A-N, TANITA, Tokyo, 100 Japan). An estimation formula for ASM in this model has been published, and a previous

Body physique and sarcopenia in Japanese first-university student

101	validation study demonstrated that body composition measured using this device was highly
102	correlated with that measured using dual-energy X-ray absorptiometry measurements [16].
103	Muscle strength was measured as handgrip strength (HGS) using the Smedley grip force system
104	(Grip-D, Takei Scientific Instruments Co, Ltd., Niigata, Japan) while the subject was in a standing
105	position. Maximum isometric grip strength was assessed from two attempts for each hand.
106	
107	Assessment of dietary habits
108	The brief-type self-administered diet history questionnaire (BDHQ) was used to assess dietary
109	habits [17, 18]. Briefly, the intake of 58 food and beverage items was evaluated to estimate energy
110	intake (kcal/day), total/animal/vegetable protein intake (g/day), total/animal/vegetable fat intake
111	(g/day), and carbohydrate intake (g/day) using a computer algorithm based on the Standard Tables
112	of Food Composition in Japan [19]. Frequency of breakfast intake was scored as follows (1-9
113	points); 1: no breakfast, 2: less than 1 time/week, 3: 1 time/week, 4: 2 times/week, 5: 3 times/week,
114	6: 4 times/week, 7: 5 times/week, 8: 6 times/week, and 9: every morning.
115	
116	Assessment of physical activity
117	The International Physical Activity Questionnaire (IPAQ) short version was used to assess

118 physical activity [20, 21]. Briefly, physical activity was calculated based on the time spent

Body physique and sarcopenia in Japanese first-university student

119	performing walking, moderate-, and vigorous-intensity activity. The metabolic equivalent (MET)
120	levels were 3.3 for walking, 4.0 for moderate-intensity activity, and 8.0 for vigorous-intensity
121	activity, respectively. Each physical activity was assessed as follows: each MET level \times minutes
122	of activity/day \times days/week. Then, total physical activity (MET-minutes/week) was calculated as
123	the sum of the walking, moderate-, and vigorous-intensity activities.
124	
125	Definitions of body physique
126	Body mass index (BMI, kg/m ²) was calculated as body weight (kg) divided by height (m)
127	squared. A BMI less than 18.5 kg/m ² was defined as underweight, a BMI of 18.5-24.9 kg/m ² was
128	defined as normal, and a BMI of 25 kg/m ² or greater was defined as obesity based on the definition
129	of obesity recommended by the Japan Society for the Study of Obesity.
130	
131	Definitions of sarcopenia
132	The skeletal muscle mass index (SMI, kg/m ²) was calculated as the ASM divided by height
133	(m) squared. Low skeletal muscle mass was defined as an SMI less than 7.0 kg/m^2 for males and
134	less than 5.7 kg/m ² for females when measured by BIA, and weak grip strength was defined as
135	HGS less than 28 kg for males and less than 18 kg for females based on the criteria of the AWGS
136	2019 [10]. Sarcopenia was diagnosed based on the presence of both low skeletal muscle mass and

Body physique and sarcopenia in Japanese first-university student

137	weak	grip	strength.

138

139 Statistical analyses

150	Results
149	
148	
147	statistically significant.
146	Survey Research Information Co., Ltd., Tokyo, Japan), and a two-sided $P < 0.05$ was considered
145	WSD test. The statistical analyses were performed using BellCurve for Excel version 3.20 (Social
144	using the χ^2 -test. Then, as a post hoc test, multiple comparisons were performed using Tukey's
143	and/or weak HGS was compared among the three groups (underweight, normal, and obesity)
142	regression analysis and then by a multiple linear regression analysis. The prevalence of low SMI
141	correlations between the SMI or HGS and other factors were first analyzed by a simple linear
140	In this cross-sectional study, the data are expressed as the mean \pm standard deviation. The

151 Body physique of Japanese university students

The characteristics of the study subjects are summarized in Table 1. The average BMIs in males and females were 21.2 ± 3.0 and 20.5 ± 2.3 kg/m², respectively, and both values were within the normal ranges. The BMI distributions in males and females are shown in Fig 2A. A total of 145

Body physique and sarcopenia in Japanese first-university student

- males (17.3%) and 69 females (16.2%) were diagnosed as underweight, and obesity was
- diagnosed in 91 males (10.9%) and 18 females (4.2%).
- 157 The average SMIs in the males and females were 7.9 ± 0.7 and 6.4 ± 0.5 kg/m², respectively,
- and both values were above the low SMI cutoff values. Low SMI was diagnosed in 75 males
- 159 (8.9%) and 18 females (4.2%). The average HGS values in the males and females were 38.6 ± 6.0
- and 25.8 ± 4.3 kg, respectively, and both values were above the weak HGS cutoff values. Weak
- 161 HGS was diagnosed in 28 males (3.3%) and 10 females (2.3%). Then, sarcopenia was diagnosed
- 162 in 8 males (1.0%) and 5 females (1.2%). There was a significantly higher prevalence of low SMI
- 163 and/or weak HGS in the underweight individuals (40.0% in males and 17.4% in females)
- 164 compared with individuals in the other BMI ranges in both sexes (Fig 2B).
- 165

166 Fig 2. Body physique of university students.

- 167 (A) Distribution of BMI and (B) prevalence of low SMI and/or weak HGS in each body physique
- 168 in male and female university students. The prevalence was compared among the three groups
- 169 (underweight, normal, and obesity) using the χ^2 -test. Then, as a post hoc test, multiple
- 170 comparisons were performed using Tukey's WSD test. **, P < 0.01.
- 171
- 172 Table 1. Characteristics of study subjects
- 173

Body physique and sarcopenia in Japanese first-university student

Male Female				le			
	(n=838)			(n	(n=426)		
Age (year)	18.5	±	0.6	18.3	±	0.5	
Height (m)	1.71	±	0.06	1.58	±	0.05	
Body weight (kg)	62.2	±	9.8	51.4	±	6.8	
BMI (kg/m ²)	21.2	±	3.0	20.5	±	2.3	
Total fat mass (kg)	11.2	±	5.3	14.9	±	4.5	
Body fat percentage (%)	17.3	±	5.6	28.4	±	4.9	
Total muscle mass (kg)	48.4	±	5.3	34.5	±	3.0	
ASM (kg)	23.3	±	2.9	16.1	±	1.7	
SMI (kg/m ²)	7.9	±	0.7	6.4	±	0.5	
Total bone mass (kg)	2.7	±	0.3	2.0	±	0.3	
Body water content (kg)	34.5	±	4.2	25.6	±	2.5	
HGS (kg)	38.6	±	6.0	25.8	±	4.3	
Energy intake (kcal/day)	2,045	±	695	1,562	±	489	
Total protein intake (g/day)	76.8	±	31.2	60.3	±	22.6	
Animal protein intake (g/day)	44.7	±	24.4	35.4	±	16.9	
Vegetable protein intake (g/day)	32.1	±	11.7	24.9	±	8.6	
Total fat intake (g/day)	61.6	±	23.3	50.5	±	18.3	
Animal fat intake (g/day)	29.7	±	14.5	23.5	±	10.5	
Vegetable fat intake (g/day)	32.0	±	11.5	27.0	±	10.0	
Carbohydrate intake (g/day)	286.6	±	109.1	210.8	±	71.9	
Frequency of breakfast intake	7.2	±	2.5	7.4	±	2.4	
Physical activity (MET-minutes/week)	2,091	±	2351	1,371	±	1638	

174 BMI, body mass index; ASM, appendicular skeletal muscle mass; SMI, skeletal muscle mass

175 index; HGS, handgrip strength; MET, metabolic equivalent. Data are expressed as mean \pm

176 standard deviation.

177

178 Simple linear regression analyses of the factors associated with SMI and HGS

179 The simple linear regression analyses indicated that SMI and HGS were positively associated

180 with one another in both sexes (males, r = 0.53, P < 0.001; females, r = 0.53, P < 0.001) (Table

181 2). Furthermore, height, body weight, BMI, total fat mass, body fat percentage, total muscle mass,

Body physique and sarcopenia in Japanese first-university student

182	ASM, total bone mass, body water content, and physical activity were significantly associated
183	with SMI and HGS in males (Table 2). Conversely, height, body weight, BMI, total fat mass, total
184	muscle mass, ASM, total bone mass, and body water content were significantly associated with
185	SMI and HGS in females (Table 2). In particular, SMI was positively correlated with energy
186	intake and all nutrients, total/animal/vegetable protein, total/animal/vegetable fat, and
187	carbohydrates, in females (Table 2).

188

189 Table 2. Simple linear regression analyses of the factors associated with SMI and HGS

	SMI			
	Ν	Male Female		
	r	<i>r P</i> value		P value
Age (year)	0.01	0.774	0.00	0.930
Height (m)	0.19	< 0.001	0.15	0.003
Body weight (kg)	0.70	< 0.001	0.56	< 0.001
BMI (kg/m ²)	0.68	< 0.001	0.56	< 0.001
Total fat mass (kg)	0.37	< 0.001	0.30	< 0.001
Body fat percentage (%)	0.19	< 0.001	0.07	0.143
Total muscle mass (kg)	0.88	< 0.001	0.76	< 0.001
ASM (kg)	0.86	< 0.001	0.77	< 0.001
SMI (kg)	-	-	-	-
Total bone mass (kg)	0.87	< 0.001	0.76	< 0.001
Body water content (kg)	0.95	< 0.001	0.86	< 0.001
HGS (kg)	0.53	< 0.001	0.53	< 0.001
Energy intake (kcal/day)	0.06	0.064	0.15	0.002
Total protein intake (g/day)	0.06	0.111	0.14	0.003
Animal protein intake (g/day)	0.04	0.228	0.12	0.017
Vegetable protein intake (g/day)	0.06	0.082	0.15	0.002
Total fat intake (g/day)	0.06	0.102	0.15	0.002
Animal fat intake (g/day)	0.07	0.037	0.14	0.003

Body physique and sarcopenia in Japanese first-university student

Vegetable fat intake (g/day)	0.02	0.489	0.12	0.011
Carbohydrate intake (g/day)	0.06	0.103	0.12	0.013
Frequency of breakfast (9 levels)	0.05	0.153	0.09	0.068
Physical activity (MET-minutes/week)	0.17	< 0.001	0.07	0.174

190

191 **Table 2. (continued)**

		HG	S	
	Ν	ſale	Fe	male
	r	P value	r	P value
Age (year)	0.04	0.231	-0.04	0.412
Height (m)	0.36	< 0.001	0.33	< 0.001
Body weight (kg)	0.42	< 0.001	0.41	< 0.001
BMI (kg/m ²)	0.29	< 0.001	0.28	< 0.001
Total fat mass (kg)	0.19	< 0.001	0.21	< 0.001
Body fat percentage (%)	0.07	0.030	0.06	0.189
Total muscle mass (kg)	0.56	< 0.001	0.57	< 0.001
ASM (kg)	0.59	< 0.001	0.57	< 0.001
SMI (kg)	0.53	< 0.001	0.53	< 0.001
Total bone mass (kg)	0.56	< 0.001	0.58	< 0.001
Body water content (kg)	0.55	< 0.001	0.56	< 0.001
HGS (kg)	-	-	-	-
Energy intake (kcal/day)	0.01	0.762	0.01	0.790
Total protein intake (g/day)	0.01	0.703	0.03	0.548
Animal protein intake (g/day)	0.02	0.614	0.02	0.631
Vegetable protein intake (g/day)	0.00	0.972	0.03	0.529
Total fat intake (g/day)	0.01	0.743	0.03	0.474
Animal fat intake (g/day)	0.03	0.343	0.03	0.480
Vegetable fat intake (g/day)	-0.02	0.597	0.03	0.568
Carbohydrate intake (g/day)	0.01	0.823	0.00	0.932
Frequency of breakfast (9 levels)	0.03	0.340	0.05	0.291
Physical activity (MET-minutes/week)	0.13	< 0.001	0.00	0.936

¹⁹² BMI, body mass index; ASM, appendicular skeletal muscle mass; SMI, skeletal muscle mass

193 index; HGS, handgrip strength; MET, metabolic equivalent.

Body physique and sarcopenia in Japanese first-university student

195 Multiple linear regression analyses of the factors associated with SMI and HGS

196	To further examine the factors associated with SMI and HGS, we performed multiple linear
197	regression analyses that included BMI, energy intake, frequency of breakfast intake, and physical
198	activity as independent factors (Table 3). These variables were chosen because BMI, energy
199	intake, and physical activity were significantly correlated with SMI and HGS in both sexes (Table
200	2). Additionally, frequency of breakfast intake has been reported to be associated with various
201	health problems such as weight gain, glycemic control in diabetic patients, and the onset of
202	proteinuria [22-24], and it also tended to be associated with SMI in females in the present study
203	(r = 0.09, P = 0.068) (Table 2).
204	First, we constructed models 1, 2, and 3, which were adjusted for BMI because BMI is a major
205	regulator of skeletal muscle mass and strength (Table 3). In males, we found significant positive
206	correlations of physical activity with SMI and HGS after adjusting for BMI ($\beta = 0.13, P < 0.001$;
207	$\beta = 0.11$, $P < 0.001$, respectively) (Table 3). In females, we found significant positive correlations
208	of energy intake and frequency of breakfast intake with SMI after adjusting for BMI ($\beta = 0.14$, P
209	< 0.001; β = 0.11, <i>P</i> = 0.009, respectively) (Table 3). In females, HGS was positively correlated
210	only with BMI (Table 3).
011	Next and constructed a modul that included all fortage (modul 4). In molectory form 1 that DMI

211 Next, we constructed a model that included all factors (model 4). In males, we found that BMI
212 and physical activity independently exhibited significant positive correlations with both SMI and

Body physique and sarcopenia in Japanese first-university student

213 HGS (SMI,
$$\beta = 0.67$$
, $P < 0.001$, $\beta = 0.13$, $P < 0.001$; HGS, $\beta = 0.28$, $P < 0.001$, $\beta = 0.12$, $P < 0.001$, $\beta = 0.0001$, $\beta = 0.001$

214 0.001) (Table 3). In females, we found that BMI, energy intake, and frequency of breakfast intake

- independently exhibited significant positive correlations with SMI ($\beta = 0.56$, P < 0.001; $\beta = 0.12$,
- 216 $P = 0.002; \beta = 0.09, P = 0.032$, respectively) and that only BMI independently exhibited a
- significant positive correlation with HGS ($\beta = 0.28, P < 0.001$) (Table 3).
- 218

219 Table 3. Multiple linear regression analyses of the factors associated with SMI and HGS

SMI		BMI (kg/m ²)	Energy intake (kcal/day)	Frequency of breakfast intake	Physical activity (MET-minutes/week)
Model 1					
Male	β	0.68	0.03	-	-
_	P value	< 0.001	0.232	-	-
Female	β	0.56	0.14	-	-
	P value	< 0.001	< 0.001	-	-
Model 2					
Male	β	0.68	-	0.02	-
	P value	< 0.001	-	0.47	-
Female	β	0.56	-	0.11	-
	P value	< 0.001	-	0.009	-
Model 3					
Male	β	0.67	-	-	0.13
	P value	< 0.001	-	-	< 0.001
Female	β	0.56	-	-	0.06
	P value	< 0.001	-	-	0.138
Model 4					
Male	β	0.67	0.01	0.02	0.13
	P value	< 0.001	0.736	0.556	< 0.001
Female	β	0.56	0.12	0.09	0.05
	P value	< 0.001	0.002	0.032	0.194

Body physique and sarcopenia in Japanese first-university student

220

221 **Table 3. (continued)**

HGS		BMI (kg/m ²)	Energy intake (kcal/day)	Frequency of breakfast intake	Physical activity (MET-minutes/week)
Model 1					
Male	β	0.29	0	-	-
	P value	< 0.001	0.904	-	-
Female	β	0.28	0.01	-	-
	P value	< 0.001	0.869	-	-
Model 2					
Male	β	0.29	-	0.02	-
	P value	< 0.001	-	0.55	-
Female	β	0.28	-	0.06	-
	P value	< 0.001	-	0.201	-
Model 3					
Male	β	0.29	-	-	0.11
	P value	< 0.001	-	-	< 0.001
Female	β	0.28	-	-	0
	P value	< 0.001	-	-	0.988
Model 4					
Male	β	0.28	-0.03	0.02	0.12
	P value	< 0.001	0.398	0.491	< 0.001
Female	β	0.28	0	0.06	0
	P value	< 0.001	0.982	0.206	0.989

BMI, body mass index; ASM, appendicular skeletal muscle mass; SMI, skeletal muscle mass
index; HGS, handgrip strength; MET, metabolic equivalent; β: standardized regression
coefficient. Model 1 was adjusted for BMI and energy intake, Model 2 was adjusted for BMI
and frequency of breakfast, Model 3 was adjusted for BMI and physical activity and Model 4
was adjusted for BMI, energy intake, frequency of breakfast and physical activity.

227

Body physique and sarcopenia in Japanese first-university student

229 **Discussion**

230	The present study revealed that there was a higher proportion of underweight individuals than
231	that of obese individuals; specifically, there were 1.6 times more underweight males and 3.8 times
232	more underweight females (Fig 2A). It is feared that such underweight individuals may suffer
233	from health problems in the future, such as sarcopenia, osteoporosis, and type 2 diabetes, which
234	may shorten healthy life expectancy. Furthermore, this study revealed that in addition to BMI,
235	energy intake, frequency of breakfast intake, and physical activities were significantly associated
236	with skeletal muscle mass and strength in youth. Therefore, sarcopenia in youth was considered
237	a part of secondary sarcopenia, that is, nutrition- and activity-related sarcopenia.
238	The increasing prevalence of underweight among young females has been a growing problem
239	in Japan [25, 26]. However, this study showed that there is a high prevalence of underweight in
240	males besides females. Additionally, high prevalence of low SMI and/or weak HGS were
241	observed in underweight individuals of both sexes (Fig 2B). To prevent the onset of sarcopenia
242	in later life, it is important to increase muscle mass and strength during youth and young adulthood
243	(up to \sim 40 years of age) and to maintain these factors beyond the age of 50 years because muscle
244	mass and strength decrease with age [8]. Therefore, the results of this study suggest that the
245	prevalence of sarcopenia may increase in the future and that we must be alert to this possibility.
246	The present study showed that the prevalence of weak HGS was low compared with that of

Body physique and sarcopenia in Japanese first-university student

247	low SMI (3.3% vs. 8.9% in males and 2.3% vs. 4.2% in females, respectively), resulting in a low
248	prevalence of sarcopenia (1.0% in males and 1.2% in females) in both sexes. Goodpaster et al.
249	reported that the decline in leg strength is much more rapid than the concomitant loss of muscle
250	mass with aging [27]. This discrepancy may be due to the difference in muscle quality (MQ). MQ
251	is defined as muscle strength per unit of muscle mass [8]. MQ considers to be affected by
252	intramuscular fat infiltration and muscle fibrosis [28]. Taken together, HGS might have been
253	preserved because the MQ was good in the young subjects with low SMI. In the future,
254	histological investigation of skeletal muscle in the young subjects with low SMI, weak HGS, and
255	sarcopenia is needed.
256	The present study showed that HGS was positively correlated with SMI in both sexes (Table
257	2). Furthermore, the factors significantly associated with HGS and those with SMI were almost
258	the same (Table 2). These results suggests that muscle mass is a strong determinant of muscle
259	strength. However, the correlation between HGS and SMI is not as strong (males, $r = 0.53$;
260	females, $r = 0.53$). This is also because MQ is considered to vary not only in the elderly but also
261	in the young. To date, there is no standard method for assessing MQ [8]. We recently reported
262	that phase angle from bioelectrical impedance analysis can be a useful indicator of MQ [29]. The
263	PhA declines with aging and subjects with sarcopenia have a lower PhA compared with those
264	without it [29]. The relationship between the PhA and histological changes in skeletal muscle

Body physique and sarcopenia in Japanese first-university student

should be clarified in the future.

266	Interestingly, in addition to BMI, physical activity in males and energy intake in females were
267	independently associated with SMI. The question then arises as to why there were sex differences
268	in the factors independently associated with SMI. Muscle protein synthesis (MPS) is reported to
269	be correlated with energy intake, particularly the branched-chain amino acid leucine [14].
270	According to the 2019 National Health and Nutrition Survey in Japan, the average energy intake
271	of the females in the present study was much lower than that of elderly females over 75 years old
272	(1,562 vs. 1,674 kcal) [1]. Conversely, the average energy intake of the males in the present study
273	was higher than that of elderly males over 75 years old (2,045 vs. 2,008 kcal) [1], which suggests
274	that the energy intake was considered sufficient for MPS in young males. Taken together, energy
275	intake may be independently associated with SMI if it is insufficient for MPS. Conversely,
276	physical activity may be independently associated with SMI if energy intake is sufficient for MPS.
277	Inadequate protein intake and lack of exercise habits are thought to predispose people to
278	sarcopenia and frailty [30, 31]. Furthermore, the effects of protein intake and physical activity on
279	MPS have been reported to be stronger in the young than in the elderly [14, 15]. Therefore,
280	adequate protein intake and exercise from a youthful age are necessary to prevent the development
281	of sarcopenia in the future.

In the present study, frequency of breakfast intake was independently associated with SMI and

Body physique and sarcopenia in Japanese first-university student

283	HGS in females. According to the 2019 National Health and Nutrition Survey in Japan, both
284	males and females in their twenties had the highest rate of skipping breakfast (15.0% in males
285	and 10.2% in females) [1]. Increase in breakfast intake was associated with greater overall intake
286	in subjects [32]. Additionally, the consumption of a moderate amount of protein at each meal
287	stimulated 24-h MPS more effectively than skewed protein intake [33]. It has also been reported
288	that skipping breakfast can induce stress and risk the appearance of proteinuria [24]. Taken
289	together, regular breakfast intake is considered important for preventing sarcopenia.
290	This study has a few limitations. First, our study was cross-sectional in design and conducted
291	in two universities of the Keiji area; thus, it could only examine associations among SMI, HGS,
292	energy intake, frequency of breakfast intake, and physical activity. Second, dietary habits and
293	physical activity were evaluated using questionnaires. Precise evaluation using objective
294	indicators is necessary. First-year university students may have had special dietary habits and
295	physical activity influenced by studying for entrance exams. To resolve these limitations,
296	prospective studies are necessary in the future.
297	In conclusion, first-year university students showed a high incidence of being underweight with
298	low SMI and/or weak HGS, but the prevalence of sarcopenia was low in both sexes. These young
299	subjects may develop not only sarcopenia but also osteoporosis and type 2 diabetes in the future.
300	BMI, energy intake, frequency of breakfast intake, and physical activity were factors

Body physique and sarcopenia in Japanese first-university student

301	independently associated with skeletal muscle mass and strength. It is necessary to provide early
302	warnings and diet and exercise interventions for youth to prevent the development of sarcopenia.
303	

304 Acknowledgments

305	The authors would like to thank Hiromi Kusakabe for her secretarial assistance at the Clinical
306	Research Institute, National Hospital Organization Kyoto Medical Center, Risa Hirai, and
307	Yumiko Yamaguchi for their measurement assistance at the Kyoto Institute of Technology,
308	Chikako Sugimoto, Yuko Imamura, Yumie Sakamoto, Hiromi Kato, and Junko Yamamoto for
309	their measurement assistance at the Shiga University, and Enago (www.enago.jp) for the English
310	language review.

311

312 Author Contributions

313	Conceptualization:	Toru Kusakabe,	Hiroshi Arai,	Yuji	Yamamoto,	Kazuwa Na	ikao
-----	---------------------------	----------------	---------------	------	-----------	-----------	------

314 **Data curation:** Toru Kusakabe, Hiroshi Arai, Yuji Yamamoto, Yasunori Akamatsu

315 Formal analysis: Toru Kusakabe, Yasunori Akamatsu

- 316 **Funding acquisition:** Toru Kusakabe
- 317 **Investigation:** Toru Kusakabe, Yasunori Akamatsu
- 318 Methodology: Toru Kusakabe, Yasunori Akamatsu

Body physique and sarcopenia in Japanese first-university student

- 319 Project administration: Toru Kusakabe, Hiroshi Arai, Yuji Yamamoto
- 320 **Resources:** Toru Kusakabe
- 321 Supervision: Toru Kusakabe, Kazuwa Nakao,
- 322 Writing original draft Preparation: Toru Kusakabe
- 323 Writing Review & Editing: Hiroshi Arai, Yuji Yamamoto, Kazuwa Nakao, Yasunori
- 324 Akamatsu, Yuki Ishihara, Tetsuya Tagami, Akihiro Yasoda, Noriko Satoh-Asahara

325

326 Funding

- 327 This study was supported in part by Grant-in-Aid for Clinical Research from the National Hospital
- 328 Organization to T.K. (H30-NHO-03, R3-NHO-01) and Grant-in-Aid for Scientific Research (C)
- 329 to T.K. (JSPS KAKENHI Grant No. 21K11691). This study was also supported in part by a grant
- 330 from Issikai Association to T.K. The funders played no role in the study design, data collection
- and analysis, decision to publish, or preparation of the manuscript.
- 332

333 Conflict of interest

The authors declare they have no conflict of interest with respect to this research study and paper.

Body physique and sarcopenia in Japanese first-university student

336 **References**

- 1. Ministry of Health LW. National Health and Nitrition Survey (in Japanese). 2019.
- 2. Someya Y, Tamura Y, Suzuki R, Kaga H, Kadowaki S, Sugimoto D, et al. Characteristics of
- 339 Glucose Metabolism in Underweight Japanese Women. J Endocr Soc. 2018;2(3):279-89. doi:
- 340 10.1210/js.2017-00418
- 341 3. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion
- 342 responsible for NIDDM. Diabetes. 1988;37(6):667-87. doi: 10.2337/diab.37.6.667
- 4. van der Voort DJ, Geusens PP, Dinant GJ. Risk factors for osteoporosis related to their
- outcome: fractures. Osteoporos Int. 2001;12(8):630-8. doi: 10.1007/s001980170062
- 5. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71(5
- 346 Suppl):1344S-52S. doi: 10.1093/ajcn/71.5.1344s
- 347 6. Li C, Zhu N, Zeng L, Dang S, Zhou J, Pei L, et al. Effect of maternal pre-pregnancy
- 348 underweight and average gestational weight gain on physical growth and intellectual development
- of early school-aged children. Sci Rep. 2018;8(1):12014. doi: 10.1021/bi00311a015
- 350 7. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5 Suppl):990S-1S.
- 351 doi: 10.1093/jn/127.5.990S
- 8. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia:
- revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:

Body physique and sarcopenia in Japanese first-university student

354 10.1093/ageing/afy169

- 9. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia:
- 356 consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc.
- 357 2014;15(2):95-101. doi: 10.1016/j.jamda.2013.11.025
- 358 10. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working
- 359 Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am
- 360 Med Dir Assoc. 2020;21(3):300-7 e2. doi: 10.1016/j.jamda.2019.12.012
- 361 11. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia:
- 362 European consensus on definition and diagnosis: Report of the European Working Group on
- 363 Sarcopenia in Older People. Age Ageing. 2010;39(4):412-23. doi: 10.1093/ageing/afq034
- 12. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength
- across the life course: normative data from twelve British studies. PloS One. 2014;9(12):e113637.
- 366 doi: 10.1371/journal.pone.0113637
- 13. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength
- loss. Muscles Ligaments Tendons J. 2013;3(4):346-50.
- 369 14. Breen L, Phillips SM. Skeletal muscle protein metabolism in the elderly: Interventions to
- 370 counteract the 'anabolic resistance' of ageing. Nutr Metab (Lond). 2011;8:68. doi: 10.1186/1743-
- 371 7075-8-68

Body physique and sarcopenia in Japanese first-university student

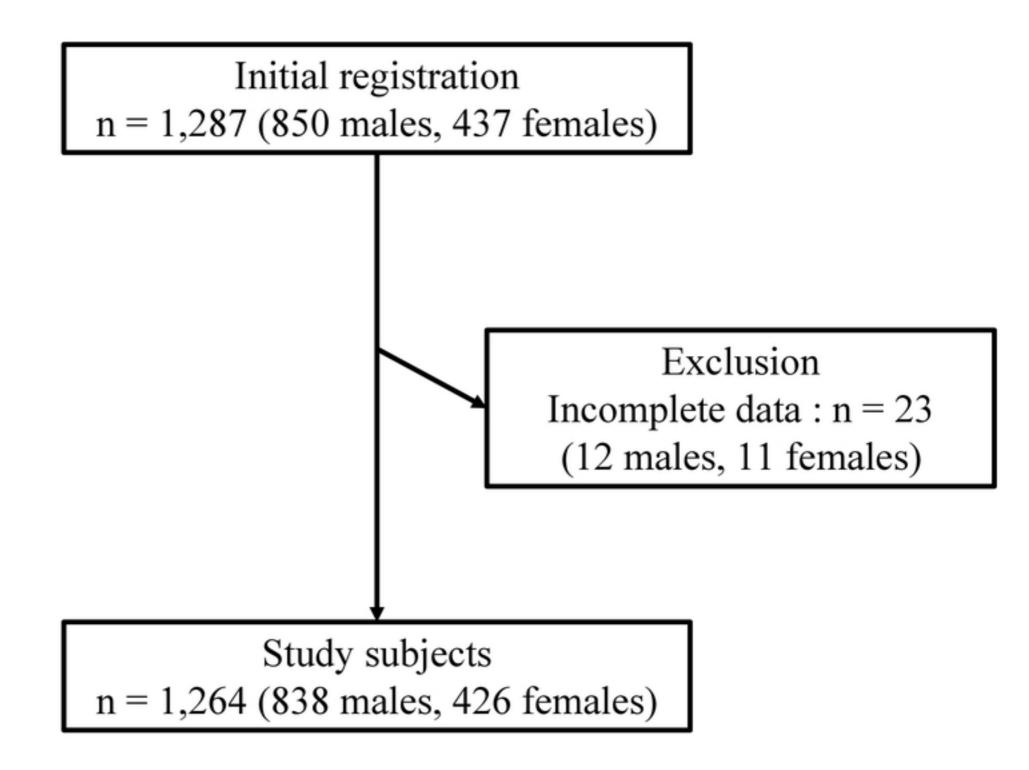
372	15. Dideriksen K, Reitelseder S, Holm L. Influence of amino acids, dietary protein, and physical
373	activity on muscle mass development in humans. Nutrients. 2013;5(3):852-76. doi:
374	10.3390/nu5030852
375	16. Yamada Y, Nishizawa M, Uchiyama T, Kasahara Y, Shindo M, Miyachi M, et al. Developing
376	and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance
377	Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for
378	Sarcopenia. J Environ Res Public Health. 2017;14(7). doi: 10.3390/ijerph14070809
379	17. Kobayashi S, Murakami K, Sasaki S, Okubo H, Hirota N, Notsu A, et al. Comparison of
380	relative validity of food group intakes estimated by comprehensive and brief-type self-
381	administered diet history questionnaires against 16 d dietary records in Japanese adults. Public
382	Health Nutr. 2011;14(7):1200-11. doi: 10.1017/S1368980011000504
383	18. Kobayashi S, Honda S, Murakami K, Sasaki S, Okubo H, Hirota N, et al. Both comprehensive
384	and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in
385	Japanese adults. J Epidemiol. 2012;22(2):151-9. doi: 10.2188/jea.je20110075
386	19. Ministry of Education C, Sports, Science and Technology. Standard Tables of Food
387	Composition in Japan -2015- (Seventh Revised Version).
388	20. Dinger MK, Behrens TK. Accelerometer-determined physical activity of free-living college
389	students. Med Sci Sports Exerc. 2006;38(4):774-9. doi: 10.1249/01.mss.0000210191.72081.43

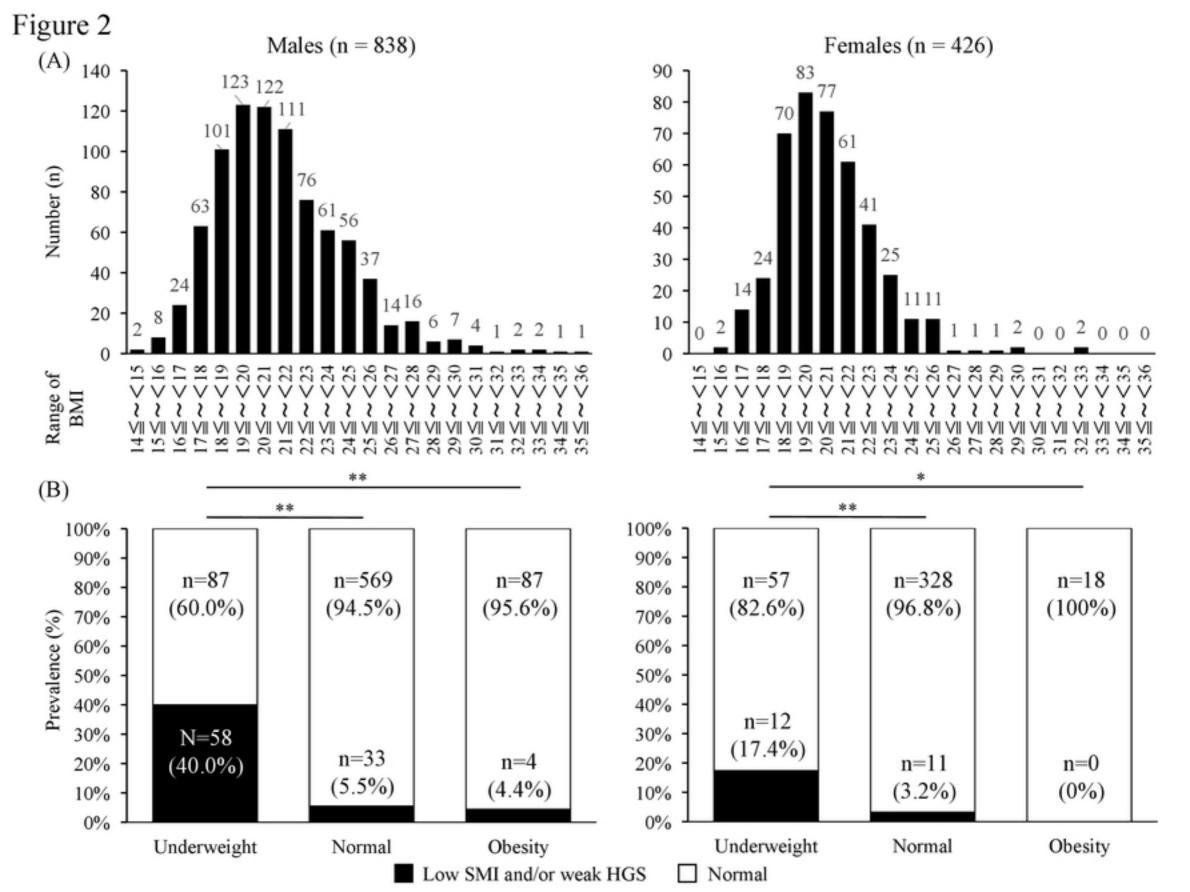
Body physique and sarcopenia in Japanese first-university student

- 390 21. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al.
- 391 International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports
- 392 Exerc. 2003;35(8):1381-95. doi: 10.1249/01.MSS.0000078924.61453.FB
- 393 22. Purslow LR, Sandhu MS, Forouhi N, Young EH, Luben RN, Welch AA, et al. Energy intake
- at breakfast and weight change: prospective study of 6,764 middle-aged men and women. Am J
- 395 Epidemiol. 2008;167(2):188-92. doi: 10.1093/aje/kwm309
- 396 23. Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O. Fasting until noon
- 397 triggers increased postprandial hyperglycemia and impaired insulin response after lunch and
- 398 dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes care.
- 399 2015;38(10):1820-6. doi: 10.2337/dc15-0761
- 400 24. Tokumaru T, Toyama T, Hara A, Kitagawa K, Yamamura Y, Nakagawa S, et al. Association
- 401 between Unhealthy Dietary Habits and Proteinuria Onset in a Japanese General Population: A
- 402 Retrospective Cohort Study. Nutrients. 2020;12(9). doi: 10.3390/nu12092511
- 403 25. Takimoto H, Yoshiike N, Kaneda F, Yoshita K. Thinness among young Japanese women. Am
- 404 J Public Health. 2004;94(9):1592-5. doi: 10.2105/ajph.94.9.1592
- 405 26. Otsuka H, Tabata H, Someya Y, Tamura Y. Trends in the prevalence of underweight in
- 406 women across generations in Japan. J Bone Miner Metab. 2020. doi: 10.1007/s00774-020-01177-
- 407

z

Body physique and sarcopenia in Japanese first-university student


- 408 27. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The
- 409 loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body
- 410 composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059-64. doi:
- 411 10.1093/gerona/61.10.1059
- 412 28. Yamada M, Kimura Y, Ishiyama D, Nishio N, Abe Y, Kakehi T, et al. Differential
- 413 Characteristics of Skeletal Muscle in Community-Dwelling Older Adults. J Am Med Dir Assoc.
- 414 2017;18(9):807 e9- e16. doi: 10.1016/j.jamda.2017.05.011
- 415 29. Akamatsu Y, Kusakabe T, Arai H, Yamamoto Y, Nakao K, Ikeue K, et al. Phase angle from
- 416 bioelectrical impedance analysis is a useful indicator of muscle quality. J Cachexia Sarcopenia
- 417 Muscle. 2022;13(1):180-9. doi: 10.1002/jcsm.12860
- 418 30. Kobayashi S, Asakura K, Suga H, Sasaki S, Three-generation Study of Women on D, Health
- 419 Study G. High protein intake is associated with low prevalence of frailty among old Japanese
- 420 women: a multicenter cross-sectional study. Nutr J. 2013;12:164. doi: 10.1186/1475-2891-12-
- 421 164
- 422 31. Akune T, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K, et al. Exercise habits
- 423 during middle age are associated with lower prevalence of sarcopenia: the ROAD study.
- 424 Osteoporos Int. 2014;25(3):1081-8. doi: 10.1007/s00198-013-2550-z
- 425 32. Schusdziarra V, Hausmann M, Wittke C, Mittermeier J, Kellner M, Naumann A, et al. Impact


Body physique and sarcopenia in Japanese first-university student

426 of breakfast on daily energy intake--an analysis of absolute versus relative breakfast calories. Nutr

- 427 J. 2011;10:5. doi: 10.1186/1475-2891-10-5
- 428 33. Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore
- 429 M, et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy
- 430 adults. J Nutr. 2014;144(6):876-80. doi: 10.3945/jn.113.185280

Figure 1

