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Abstract 
Although a variety of brain lesions may contribute to the pathological diagnosis of dementia, 

the relationship of these lesions to dementia, how they interact and how to quantify them remain 

uncertain. Systematically assessing neuropathological measures in relation to the cognitive and 

functional definitions of dementia may enable the development of better diagnostic systems 

and treatment targets. The objective of this study is to apply machine learning approaches for 

feature selection to identify key features of Alzheimer-related pathologies associated with 

dementia. We applied machine learning techniques for feature ranking and classification as an 

unbiased comparison of neuropathological features and assessment of their diagnostic 

performance using a cohort (n=186) from the Cognitive Function and Ageing Study (CFAS). 

Seven feature ranking methods using different information criteria consistently ranked 22 out 

of the 34 neuropathology features for importance to dementia classification. Braak 

neurofibrillary tangle stage, Beta-amyloid and cerebral amyloid angiopathy features were the 

most highly ranked, although were highly correlated with each other. The best performing 
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dementia classifier using the top eight ranked neuropathology features achieved 79% 

sensitivity, 69% specificity, and 75% precision. A substantial proportion (40.4%) of dementia 

cases was consistently misclassified by all seven algorithms and any combination of the 22 

ranked features. These results highlight the potential of using machine learning to identify key 

indices of plaque, tangle and cerebral amyloid angiopathy burdens that may be useful for the 

classification of dementia.  

 

Keywords— Dementia, Alzheimer’s, Feature Selection, Machine Learning, Neuropathology, 

Beta-amyloid 

Introduction  

Dementia is a major healthcare concern among the elderly. It is estimated that the 

number of people with dementia will reach 131.5 million by 2050 worldwide [1]. There is no 

cure for this syndrome, but accurate and timely diagnosis of dementia may create opportunities 

for patients to access symptomatic and potential disease-modifying therapies. The syndrome is 

defined by cognitive and daily activity decline, often measured using cognitive and functional 

tests as defined in the Diagnostic and Statistical Manual of Mental Disorders 5th edition, along 

with medical history typically reported by the patient or caregiver [2]. In clinical settings 

further investigations are performed mostly in younger onset dementias focused on anatomical 

and, sometimes, functional changes measured by magnetic resonance imaging (MRI) and 

positron emission tomography (PET) scans, and increasingly cerebrospinal fluid (CSF) 

samples taken from a lumbar puncture considered to be dementia subtype biomarkers. 

However, dementia as it is most often manifest in older old populations is associated with 

multiple different pathologies [3,4]. It remains challenging to assess the interactions of the 

multiple findings in the brain in relation to the syndrome expressed during life.  
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The Cognitive Function and Ageing Studies (MRC CFAS, CFAS I, CFAS II) are 

longitudinal population-based studies of ageing with a focus on cognition. This analysis 

focuses on the brain donation from the original MRC CFAS. More than 550 participants from 

CFAS voluntarily donated their brains to the study after their death for a comprehensive 

pathological assessment[5,6]. Neuropathological investigations have explored the relationship 

of pathological features in the brain to dementia phenotypes, including various measures 

related to tau and beta-amyloid (Aβ) pathologies. These studies showed considerable overlap 

in burdens of lesions between participants dying with and without dementia [3,4]. Dementia 

incidence increases dramatically as age increases and the predictive value of Alzheimer type 

pathologies is attenuated. Attributable risk shows the importance of many other different 

pathologies in the brain [7].   

Machine learning (ML) classification algorithms coupled with feature selection 

techniques have enabled automated ways of classifying heart and skin diseases along with 

identifying the most informative combination of predictors of those diseases [8,9]. Studies 

investigating dementia utilizing imaging assessments utilized three supervised ML algorithms 

(neural network, support vector machine, and adaptive neuro-fuzzy inference system (ANFIS)) 

for the diagnosis of Alzheimer’s disease (AD) and vascular dementia (VD) based on  selected 

MRI  features [10]. These algorithms used ranked features based on their significance in 

defining the class value of the dataset records.  Their results show that categorizing AD and 

VD profiles using ML has high discriminant power with classification accuracy of more than 

84% and ANFIS has a prediction rate of 77.33%. ML feature selection approaches were also 

shown to enable identification of neuropsychological assessments and MRI features for 

classification of AD [11]. Nevertheless, these ML techniques have never been used to assess 

the relationships between dementia and the neuropathological features of post-mortem brains 

from a population study. 
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In order to distinguish key indices such as plaque, tangle and CAA burdens, we need an 

objective approach to rank these pathologies and identify a combination of features useful for 

classifying dementia. We hypothesize that ML feature prioritisation and filtering can 

objectively and automatically reduce the number of neuropathological features for dementia 

diagnosis. To test this hypothesis, we asked several questions during the analysis of 

neuropathological features: 1) How are they scored across dementia cases? 2) Are any of the 

features related to one another and convey redundant information? 3) Can we computationally 

rank the features in an unbiased way to facilitate machine learning? 4) What is the smallest 

subset of neuropathological features needed in an ML model to explain dementia diagnosis? 5) 

Is there a limit to how accurately neuropathology features can classify dementia? 

We investigated these questions using Alzheimer-related pathologies measured in a 

population-representative subcohort of CFAS [6,12–15]. There exist 34 features related to 

neuropathological assessments, such as Aβ features, cerebral amyloid angiopathy (CAA) 

features and plaque scores.  These features were automatically ranked, filtered and included in 

ML classifiers. We also report the limits of ML classification of dementia using 

neuropathology factors and discuss possible reasons for these limitations.  

 

Material and methods 

Overview of feature selection approach 

The selection of neuropathology features that are informative of dementia involved 

three stages of design, implementation and evaluation (Fig. 1). We obtained access to and 

downloaded the CFAS dataset following review and ethics approval (REC 15/WA/0035) by 

the CFAS management committee. Re-coding of available neuropathological features was 

performed to categorize and label them into distinct categories (tau, Aβ, demographics, etc.). 
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We used supervised learning and feature selection techniques based on multiple filter-based 

methods. Features were then ranked according to their importance, and the most significant 

features identified. The smallest subset of features that can classify dementia was identified 

from the significant features using advanced supervised ML techniques. We determined how 

neuropathological features combined to detect dementia. We then identified misclassified cases 

using neuropathology features and linked the associations with other non-standard pathologies. 

 

Fig. 1 Methodology for classification of dementia. The methodology for classification of dementia followed 
three stages of design, implementation, and evaluation. After acquiring access to neuropathology and additional 
data, we pre-processed and assessed feature-feature correlation. We used feature ranking via filter methods to 
rank all neuropathology features.  Classifiers were then benchmarked with different subsets of features selected 
according to their rankings. We then compared cases that were consistently misclassified, and evaluated brain 
attributes associated with these cases in order to improve machine learning. 

CFAS cohort 

The CFAS cohort used for this study included data from two of the centres (Cambridge 

and Newcastle), totalling 186 subjects with 34 features in addition to age and brain weight as 

shown in Table 1. The features include basic neuropathological measures for each subject, 

including Braak neurofibrillary tangle (NFT) stage, Brain-Net Europe protocol for tau 
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pathology, hippocampal tau NFT stage [16], Thal phase, primary age-related tauopathy 

(PART), cerebral amyloid angiopathy (CAA), thorn-shaped astrocytes (TSA) [14] and 

microinfarct stage [17] (Table 1). A total of 107 out of the 186 subjects had a diagnosis of 

dementia, which represents approximately 58% of the cohort. Of these 107 cases, 72 were 

women and 35 men, their median ages were 89 and 88. There was a balanced gender ratio (37 

females and 33 males) for participants dying without dementia (median age 85, 79).  

Table 1: description of the neuropathology features in addition to the age and brain weight features. 

No Feature Feature Description Type 

Control 

Dementia 
(n=107) 

No 
Dementia 

(n=69) 
Missing (n=9) 

1 Braak NFT stage Braak Stage refers to the Braak neurofibrillary tangle (NFT) stage (0-
VI) [18,19]. Nominal 107 69 0 

2 Thal phase 
Thal phase refers to the Thal Aβ phase, which is the new BrainNet 
stage for Aβ to detect immunopositive amyloid in cortical and 
subcortical areas and differentiate five phases [20,21]. 

Nominal 107 69 0 

3 Aβ stage typical Aβ stage typical indicates the Aβ stage typical and atypical [15]. Nominal 107 69 0 

4 PART-definite 
PART relates to the new primary age related-tauopathy concept. 
PARTdefinite as cases having no Aβ pathology (Thal 0) and with Braak 
NFT stage I-IV [22]. 

Nominal 50 46 80 (45%) 

5 PART-all Those cases with mild Aβ pathology (Thal I-II) and with Braak NFT 
stage I-IV [22]. Nominal 71 62 43 (24%) 

6 CAA areas The number of brain areas examined that have CAA (number of areas 
out of 9 maximum) [23].  Numeric 107 69 0 

7 CAA type As defined by Thal where CAA type 1 are cases with capillary amyloid 
and 2 only in larger vessels and type 0 no CAA [12,23]. Nominal 107 69 0 

8 CAA parenchymal 
CAA severity score according to Love et al [24] leptomeningeal and 
parenchymal vascular amyloid in four neocortical areas- So in any area 
CAA can be 1, 2, or 3 and  the score ranges from 0 to 12 [15]. 

Nominal 107 69 0 

9 CAA meningeal CAA severity meningeal has the same scoring system as CAA 
parenchymal with the score ranging from 0 to 12 [15]. Nominal 107 69 0 

10 CAA total severity 
The scores for parenchymal and leptomeningeal amyloid were summed 
in four areas, scores range from 0 (minimum) to 24 (maximum) for 
severity in cortical areas [23]. 

Numeric 107 69 0 

11 CAA frontal CAA in frontal cortex (Present or Absent) [16]. Nominal 107 69 0 
12 CAA temporal CAA in temporal cortex (Present or Absent) [16]. Nominal 107 69 0 
13 CAA parietal CAA in the parietal cortex (Present or Absent) [16]. Nominal 107 69 0 
14 CAA occipital CAA in occipital cortex (Present or Absent) [16]. Nominal 107 69 0 

15 CAA hippocampus CAA in hippocampus and occipitotemporal gyrus (Present or Absent) 
[16]. Nominal 107 69 0 

16 CAA cerebellum CAA in cerebellum (Present or Absent) [16]. Nominal 106 68 2 (1%) 

17 BrainNet tau stage 
BrainNet tau stage, refers to BrainNet Europe Protocol for tau 
pathology, a six-stage scheme that uses neuropil threads and is 
proposed by the BrainNet Europe Consortium [20]. 

Nominal 107 68 1 (1%) 

18 Hippocampal tau NFT 
stage Hippocampal tau neurofibrillary tangles (NFT) stage Nominal 56 35 85 (48%) 

19 subpial TSA in 
expanded cortex The subpial thorn-shaped astrocytes (TSA) in the expanded cortex. Nominal 107 68 1 (1%) 

20 subpial TSA in mesial 
temporal lobe The subpial thorn-shaped astrocytes (TSA) in the mesial temporal lobe. Nominal 107 68 1 (1%) 

21 subpial TSA in 
brainstem The subpial thorn-shaped astrocytes (TSA) in the brainstem. Nominal 107 68 1 (1%) 

22 TSA-any Thorn-shaped astrocytes (TSA) in any brain area. (Present or Absent) Nominal 107 68 1 (1%) 

23 TSA-total The number of areas in the brain with thorn-shaped astrocytes (TSA)  
[25–28]. Numeric 107 68 1 (1%) 

24 Tufted astrocytes The tufted parenchymal astrocytes in any brain area. Nominal 107 68 1 (1%) 

25 Subpial mesial 
temporal 

The subpial tau neurites in the mesial temporal lobe.  Nominal 107 68 1 (1%) 
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26 Subpial brainstem The subpial tau neurites in the brainstem/subcortical region. Nominal 107 68 1 (1%) 
27 Argyrophilic grains The argyrophilic grains disease. Nominal 107 68 1 (1%) 

28 Cortical stage The cortical microinfarcts stage which distinguishes the number of 
cortical areas that have microinfarcts.  Numeric 106 69 1 (1%) 

29 Subcortical stage Subcortical lacune stage which distinguishes the number of subcortical 
areas that have microinfarcts. Numeric 106 69 1 (1%) 

30 Microinfarct stage The total microinfarct stage which differentiate the number of total 
areas that have microinfarcts. Numeric 106 69 1 (1%) 

31 Frontal microinfarct Frontal microinfarct [17]. Nominal 106 69 1 (1%) 
32 Temporal microinfarct Temporal Microinfarct [17]. Nominal 106 69 1 (1%) 
33 Parietal microinfarct  Parietal microinfarct [17]. Nominal 106 69 1 (1%) 
34 Occipital microinfarct     Occipital Microinfarct [17]. Nominal 106 69 1 (1%) 
35 Age Patient’s age at death. Numeric    
36 Brain weight Patient’s brain weight. Numeric    
37 Dementia Status Class Label (Dementia or No dementia) Status of a patient Binary 107 69 0 

 

Diagnosing dementia 

Dementia status at death for each respondent was determined based on 

interviews/assessments during the last years of the respondent’s life. This included using the 

full Geriatric Mental State-Automated Geriatric Examination for Computer Assisted 

Taxonomy diagnostic algorithm, the Diagnostic and Statistical Manual of Mental Disorders 

(third edition -revised), interviews of the informants after the respondent’s death and cause of 

death. Respondents were classified as having no dementia at death if they had not been 

identified with dementia from their last interview if less than six months before death, or if 

they did not have dementia identified at the last interview and the retrospective interview 

showed no dementia at death. Bayesian analysis was used to estimate the probability of 

dementia where their last interviews were more than six months before death, and no record of  

having dementia at interview and no retrospective informant interview (RINI) [5,29].  

Ranking neuropathology features 

To gain preliminary insight and highlight influential neuropathological features of 

dementia, we used different filter-based feature selection methods to measure the relevance of 

each feature to dementia. These included Chi-square (CHI) [30], Gain Ratio [31], Information 

Gain (IG) [32], ReliefF [33,34], Symmetrical Uncertainty [35], Least Loss [36] and Variable 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


8 
 

Analysis [37,38]. Generally, filter methods use different mathematical models to compute 

feature relevance. Filter-based methods are efficient feature selection methods that employ 

mathematical models to derive scores for each feature based on correlations between the 

features and class label in the input dataset. The filter methods use a different mathematical 

criterion to compute scores, where the scores vary based on the type of the filter method used. 

There can be discrepancies in the ranking of features based on such scores due to the different 

mathematical models used [38,39]. The CFAS cohort consisting of 186 post-mortem and 34 

neuropathology features was used for feature ranking. In addition to the 34 neuropathology 

features, age and brain weight (adjusted for gender) were included. Using SciPy.stats v1.5.4 in 

Python3, we used z-score to adjust brain weight based on sex. 

CHI utilizes the difference between observed and expected frequencies of the instances 

as shown in Equation (1).  

             𝑋" = (%&'))

'
            (1) 

where O and E are the Observed and Expected frequencies for a specific feature, respectively. 

IG employs Shannon entropy to measure the correlation between a feature and dementia 

status (Equations 2 & 3).  

𝐼𝐺	(𝑆, 𝐴) 	= 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆) 	− ∑ ((	|	𝑆:	| 	÷ |	𝑆	|) 	× 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆:))	   (2) 

where Entropy (T) =−∑ 𝑃>𝑃>	        (3) 

𝑃	is the probability that S belongs to class label c. Sv is the subset of S for which a feature has 

value v. |Sv| is the number of data instances in Sv, and |S| is the size of S. 

Gain Ratio is a normalized form of IG which is estimated by dividing the IG with the 

Entropy of the feature with respect to the class (Equations 4 and 5).  

Gain Ratio = ?@
'AB(C,D)

          (4) 
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𝐸𝑁𝑇(𝑆, 𝐹)=−∑ CH
C
𝑙𝑜𝑔" 

CH
C

        

 (5) 

where IG denotes the information gain and ENT is the Entropy of feature F over a set of 

examples S. 

Symmetrical Uncertainty deals with the bias of IG that occurs due to a large number of 

distinct values for the feature and presents a normalized score (Equation 6).  

𝑆𝑈(𝐴,𝐵) 	= 	 "	×	?@(M|N)
'(M)	O	'(N)

         (6) 

where 𝐼𝐺(𝐴|𝐵) denotes the information gain of A after knowing the class. E(A) and E(B) are 

the Entropy values of A and B, respectively.  

ReliefF calculates the scores of each available feature with the class using the 

differences between the neighbouring data instances and the target instances (Equation 7).  

W[A] = W[A] -  
PQRSS

T,UH,V
W X

	PQRSS
T,UH,Y
W X

           (7) 

where, W[A] are the feature weights, A is the number of features, m is the number of random 

training data instances out of ‘n’ number of training data instances used to amend W. 

𝑅R = A random chosen test instance and H/M is nearest hit and nearest miss 

Least Loss is computed per feature based on the simplified expected and observed 

frequencies of the features (Equation 8), and Variable Analysis employs a vector of scores of 

both CHI and IG results, normalizes the scores, and then computes the vector magnitude 

(V_score) (See Equations 9 & 10).  

𝐿"(𝑌, 𝑋) = 	∑R,] [𝑃_𝑌R,𝑋]` − 𝑃(𝑌R)𝑃(𝑋])]"       

 (8) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


10 
 

where X is the independent feature class, Y is class label, 𝑃(𝑌R) is the theoretical marginal 

distributions of 𝑌,	and	𝑃_𝑋]` is the theoretical marginal distributions of X, 𝑃_𝑌R,𝑋]` is the 

theoretical joint probability distributions of X and Y. 

𝑉f = P ?@g
hCBg

X           (9) 

|𝑉f| = i(𝐼𝐺)" + (𝑇𝑆𝑇)"        (10) 

where 𝑉f  is the square root of the sum of the square of its CHI and IG results of a feature. 

The V_score and the Correlation Feature Set results [40] are then integrated to represent 

a new measure of goodness to select relevant features. 

𝐼𝐺	(𝑆, 𝐴) 	= 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆) 	− ∑ ((	|	𝑆:	| 	÷ |	𝑆	|) 	× 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆:))	   (2) 

All experiment-related ranking-based feature selection was conducted using Waikato 

Environment for Knowledge Analysis (WEKA version 3.9.1) [41].  Percentage contribution of 

each feature was calculated by averaging total weights assigned by all filter methods to each 

feature after normalizing weights scores.  

Dementia classification 

We attempted classification of dementia status in 146 out of 186 samples that had no 

missing values. The 146 samples had a slight imbalanced in class label with 89 demented 

versus 57 non-demented patients. Just before training our models, we randomly selected 57 

patients once from the demented group using sample() function from random module in 

python3 and using sklearn.utils version 0.22.2.post1 to shuffle the row once, resulting in 114 

samples to balance the class label and the 32 samples were held out for final assessment. We 

used the 114 samples during the training classifiers. The hippocampal tau stage [16] feature, 

which has 50% missing values, was dropped during the training classifiers. Age and brain 

weight were removed before training the models, ending up with 22 features and 114 samples 
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for classification. The dataset was split into a training set of 70% (80 samples) and a testing set 

of 30% (34 samples). 

Seven classification algorithms were trained to classify individuals’ dementia status 

using the 22 top ranked features. Scikit-learn version 0.22.2.post1 was used to implement and 

train the ML classifiers as well as measure their performance in classifying dementia. Logistic 

regression was implemented using sklearn.linear_model package with l2 penalty, 

regularisation parameter C set to 1, maximum number of iteration set to 2000 taken for the 

solvers to converge, and other parameters set to default values. Decision tree classifier was 

implemented using the sklearn.tree package. k-Nearest neighbours was implemented using the 

sklearn.neighbors with number of neighbors set to 5, the function “uniform weights” used in 

prediction, and “minkowski” distance metric utilized for the tree, with other parameters set to 

default values. Linear discriminant analysis classifier was implemented using 

sklearn.discriminant_analysis package with singular value decomposition for solver 

hyperparameter and other parameters set to default values. Gaussian Naïve Bayes class was 

implemented using sklearn.naive_bayes, Support Vector Machine with a Radial Basis Function 

kernel (SVM-RBF) was implemented using sklearn.svm with regularisation parameter C set to 

1, the kernel coefficient gamma= “scale”, and other parameters set to default values. Support 

Vector Machine with linear kernel (SVM-LINEAR), was implemented using the sklearn.svm 

package with regularisation parameter C set to 1, with a “linear” kernel, gamma coefficient 

“scale”, and other parameters set to default. The sklearn.metrics package was used to report 

performances. Training and performance evaluation were performed 500 times from which 

average performance was calculated as the overall performance. Accuracy, balanced accuracy, 

F1 score, precision, sensitivity, and specificity utilizing regression plot, were used to determine 

classification performance. ML models and feature selection libraries were built using Python 

3.7.3. 
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  The smallest subset of features that can diagnose dementia with acceptable 

performance was determined from the 22 top ranked features. We initially created a feature set 

that contained the single top ranked feature N(1) which was used to train the ML algorithms to 

classify dementia, and calculate their classification performances. The second top ranked 

feature was added to the features subset, to generate a feature set with N(1)+1 features. The 

ML classifiers were trained using the new feature subset and the classification performances 

were calculated. This process was repeated in descending rank order until a feature set 

containing all ranked features were included in the feature set. This process resulted in 22 

feature sets that ranged in size from 1 to 22, with the performance of each feature subset in 

classifying dementia calculated. The best subset of features was determined as a compromise 

between performance and size. For each feature set, the data is split into 30% test set and 70% 

training set.  

Evaluation of classification performance 

We formulated prediction of dementia as a binary classification problem (Dementia, 

Control), therefore, evaluation metrics such as accuracy, f1-score, balanced accuracy, 

precision, specificity, and sensitivity, are used to measure the performance of the subsets of 

features. The following evaluation metrics were used: 

● True positives (TP): Number of dementia cases that were correctly classified. 

● False positives (FP): Number of healthy subjects incorrectly classified as dementia cases. 

● True negatives (TN): Number of healthy subjects correctly classified. 

● False negatives (FN): Number of dementia cases incorrectly classified as healthy subjects.  

● Accuracy (%): The proportion of correct classifications among total classifications: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 BnOBA
o

        (11) 
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where n is the number of total classifications per test. 

● Sensitivity (%): It is the proportion of dementia cases correctly classified. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 Bn
BnODA

        (12) 

● Specificity (%): It is the proportion of healthy subjects correctly classified. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 BA
BAODn

             (13) 

● Precision: It is the proportion of subjects classified as dementia cases who actually have 

dementia. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 Bn
BnODn

             (14) 

● F1 score (F-measure) (%): Harmonic mean of precision and sensitivity. 

	𝐹1	 = 	2	 × CwoxRyR:Ryz×n{w>RxR|o
CwoxRyR:RyzOn{w>RxR|o

	= 	 Bn
BnO(DnODA)/"

    (15) 

Identifying misclassified cases 

We further investigated the classification performance for all seven classifiers Logistic 

regression, Decision tree, k-Nearest neighbours, Linear discriminant analysis, Gaussian Naïve 

Bayes, SVM-RBF, and SVM-LINEAR using Scikit-learn version 0.22.2.post1 [42] in Python3 

on each sample. Leave one out cross-validation was used for training and performance 

evaluation of trained classifiers using Scikit-learn version 0.22.2.post1 [42] in Python3. A 

split() function was provided with the dataset to enumerate for training and test sets evaluation, 

where evaluation was achieved by making predictions and comparing the prediction values 

versus the expected values. The classification algorithms trained using the top ranked 22 subset 

of features and 114 samples, where one feature is added at a time run creating 22 subsets of 

features for each classifier. All samples were clustered into true positive & true negative, false 

positive and false negative based on the performance of each classification run, and visualised 
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using a heatmap to highlight the differences. The “clustermap” function in Seaborn package 

version 0.11.0 [42] was used for hierarchical clustering. The “average” was used for the linkage 

method in the cluster map, and “euclidean” distance was used as the distance metric. ML 

models and feature selection libraries were built using Python 3.7.3. 

To identify pathological and demographic features (Table 2) distinguishing  the three 

clusters of classification performance, we used robust feature selection based on Recursive 

Feature Elimination (RFE) with a linear SVM as the estimator [43] to identify the smallest set 

of non-standard pathologies features for each of the three clusters [44]. This technique has a 

good balance between performance and computational cost [45]. The linear SVM is initially 

trained using the full feature set of the training data with the C-parameter set to one. The 

absolute weights in the weights vector of the hyperplane is of the trained model were used to 

rank features according to importance, and the worst performing feature pruned from the 

feature set. This process is repeated until the required number of features in the signature is 

achieved. For a dataset with J samples and K features, M=100 subsamples are randomly 

sampled, and feature selection carried out in each subsample and classification performance 

calculated. Different sizes of signatures for each cluster, ranging from one to the full feature 

set. Each feature set was used to train an XGBOOST model to classify the cluster against the 

rest of the clusters [46]. The best signature of features for each cluster was chosen as a trade-

off between signature size and classification performance. Accuracy and F1-score were used 

as classification metrics. ML models and feature selection libraries were built using Python 

3.8.5, Scikit-learn 24.2 library and Jupyterlab 2.2.6.  

Links for python script codes in GitHub, (https://github.com/mdrajab/CFAS-ranking-code) 

for the processes of ranking neuropathology features and classification models  and 

(https://github.com/emmanueljammeh/cfas) for feature signatures showing association of 

the non-standard pathologies and demographics features with clusters. 
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Results 

Distribution of neuropathology feature scores across dementia cases 

Fig. 2 depicts the distribution of values of participants dying without and without 

dementia across all neuropathology features in our study containing 186 samples and 34 

attributes. In addition to the 34 neuropathology features, age and brain weight (adjusted for 

gender) features were included. People aged between 80 and 89 years had a higher frequency 

of dementia than other age sub-groups. The findings from this analysis are those already 

published using more traditional biostatistical methods, with the proportion of individuals with 

dementia increasing with increasing Braak NFT stage, peaking at stage IV, with the same 

finding for Thal phase increase, hippocampal tau stage. The measures of CAA across subjects 

reveals that the proportion of dementia cases increases as the number of brain areas with CAA 

increases. On the other hand, few microinfarcts features (frontal, occipital, parietal) were 

observed in individuals who died with dementia. A similar observation is seen with Aβ stage 

typical and Argyrophilic grains, which may limit classifiers from differentiating subjects using 

these features. 
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Fig. 2 CFAS Neuropathology features distribution. The figure depicts neuropathology features distribution 
including age and brain weight (proportion of individuals with and without dementia of the CFAS 
neuropathology Dataset). All features shown are based on the ranking features list, row from left to right. Most 
features are categorical features except some are numeric, such as age, CAA total severity, brain weight, CAA 
areas, TSA-total, cortical stage, subcortical stage and Microinfarct Stage. 

Highly correlated neuropathology features  

The results of statistical analysis to determine the significance of each feature and to 

determine the inter correlation of features identified some highly correlated features such as 

CAA related features. Since CAA-related features including CAA type, CAA areas, and CAA 
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total severity (CAA meningeal, CAA parenchymal) are common among the top features 

offered by the different feature selection results shown (Supplementary Table 1, Additional 

File 1), we needed to ensure that only dissimilar features are chosen by minimizing feature-to-

feature correlations. We identified three main clusters of highly correlated features as shown 

in (Fig. 3) using all neuropathology features in our study containing 186 samples and 34 

attributes in addition to age and brain weight features. Hence, some of these features may be 

redundant in the diagnosis of dementia based on neuropathological features. 

 
Fig. 3 Spearman correlation of the complete CFAS neuropathological data set. Heat map Spearman 
correlation of the complete CFAS neuropathological data set 34 neuropathology features in addition to age and 
brain weight features as a benchmark, 36 features in total and 186 samples. A coefficient close to 1(blue colour) 
means that there is a very high positive correlation between the two variables. The diagonal line is the same 
variable i.e. spearman rho 1. 
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Ranking of neuropathology features 

The ranking results of statistical tests conducted to determine the significance of each 

feature to dementia using seven feature-ranking methods are presented in (Supplementary 

Table 1, Additional File 1). The results show that a few common features are highly ranked by 

the seven different ranking methods. Braak NFT stage, BrainNet tau stage and CAA-related 

features are consistently ranked at the top by most of the feature selection methods. A high 

ranking of Braak NFT stage which shows the neurofibrillary tangle stage (0–VI), supports 

Braak NFT stage as a highly impactful feature for dementia pathology [19]. The fact that the 

Braak NFT score was ranked in the top 6 by all ranking techniques (CHI, gain ratio, information 

gain, ReliefF, symmetrical uncertainty, least loss and variable analysis) is important to both 

human and computer-aided diagnosis of dementia, and that it should be utilized as a primary 

feature. Different feature selection techniques result in different ranking of the features, 

however, most of the commonly used features are consistently highly ranked. For example, 

Braak stage, BrainNet tau stage, CAA type, Thal phase, subpial brainstem, and subpial TSA in 

mesial temporal lobe are consistently ranked in top 12 (out of 36) notwithstanding which 

ranking method is used. Nevertheless, averaging feature ranks across different ranking methods 

should lead to a more accurate ranking of the features in CFAS dataset. 

BrainNet tau stage appears at the top of ranked features and it has previously been found 

to be highly correlated with the Braak NFT stage as tangles and neuropil threads seem to 

progress together [14]. BrainNet tau stage, a six-stage scheme that uses neuropil threads and 

proposed by the BrainNet Europe consortium [47], has been used to predict dementia pathology 

in recent research studies. CAA-related features including CAA type, CAA areas, and CAA 

total severity (CAA meningeal, CAA parenchymal) are common among the top features 

offered by the different feature selection results shown in (Supplementary Table 1, Additional 
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File 1). We believe this may be in part due to the high correlation among these CAA related 

features (Fig. 3). Therefore, we evaluated these features to ensure that only dissimilar features 

are chosen by minimizing feature-to-feature correlations. Lastly, subpial TSA in mesial 

temporal lobe appears frequently in the results of all feature selection methods with a high rank. 

This indicates that tau-related factors such as subpial TSA in mesial temporal lobe can quantify 

dementia neuropathological factors especially when they present in the aged human medial 

temporal lobe. 

All 34 neuropathology features in addition to age and brain weight (gender adjusted) 

and 186 samples were assessed using the seven ranking methods (Supplementary Table 1; 

Figur 4, Additional File 1). Based on the weights from each ranker we calculated the percentage 

of contribution for each feature by taking the average of total weight assigned by all filter 

methods to each feature. We found a subset of 25 features where a percentage of contribution 

was estimated by all ranking methods. For downstream analysis, we dropped features with less 

than 7% contribution or those not ranked by all ranking methods. In order to assess the utility 

of neuropathology features to classify dementia, we removed the non-neuropathology features 

(age and brain weight), and hippocampal tau stage due to high missingness, leaving 22 ranked 

features. 
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Fig. 4 Ranking of neuropathology features. Ranking of 34 neuropathology features using seven filter methods 
in addition to age and brain weight features as a benchmark, 36 features in total and 186 samples. Based on 
these weights we calculated the percentage of contribution for each feature by taking the average. Dotted line 
indicates features to be dropped, which features percentage contribution show less than 7%. 

Classification of the ranked neuropathology features  

We further investigated subsets of the top 22 ranked neuropathological features and 114 

samples using ML feature selection based on the results presented in (Fig.4). A single feature 

was successively added from the set of 22 most significant features to create subsets of features 

with sizes ranging from 1 to 22 (from top to last ranked features).  A sub dataset was then 

created for each subset of features. Each sub dataset was randomly split into a training set 

containing 70% of the samples and the remaining 30% of the samples were used for testing. 

The training set was used to train classification models using logistic regression, decision tree, 

k-nearest neighbours, linear discriminant analysis, gaussian naïve bayes, SVM-RBF, and 

SVM-LINEAR classification algorithms. The performance of each trained model was 

evaluated using the test set for prediction. (Fig. 5) depicts F1-score performance of all subsets 
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of features (by forward and backward order of ranked features) in classifying dementia status 

for the seven ML techniques considered. The F1 score shows that top eight features have the 

highest performance of 74% by (SVM-RBF and logistic regression) algorithms. This supports 

the accuracy and balanced accuracy that show the top eight features performance of 74% for 

both accuracy and balanced accuracy by most algorithms. The results showed that there was 

no substantial classification performance increase beyond using eight features. In fact, 

increasing the number of features beyond 8 features resulted in a slight drop in the performance 

in most of the trained models in identifying dementia patients. The results suggest that for the 

data used in this study, the most influential neuropathology features for classifying dementia 

status are the eight top ranked features as shown in (Fig. 4) where age and brain weight features 

are excluded. We also showed sensitivity and specificity for all of our models to explain why 

some of our training of the forward ranking performances increase when adding the last three 

features (Supplementary Figures 3 & 4, Additional File 1). This explains that some features 

have an imbalanced class where last features in our forward ranking training show high 

specificity and low sensitivity. For example, in the linear discriminant analysis classifier, the 

last five features achieved 84% sensitivity and 50% specificity, which explained that the target 

class is still imbalanced for those features even though we balanced the target class for the 

dataset. The highest sensitivity was achieved with logistic regression 79% with top eight 

features, and SVM-LINEAR 79% with top ten features. For specificity, the highest specificity 

was achieved by a decision tree with top two features. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


22 
 

 

Fig. 5 Performance of all subsets of neuropathology features.  F1 score performance of all subsets of 
neuropathology features from the rank list forward and backward rankings. Forward ranking (blue) adds to the 
classifier model from the top feature to the lowest feature while the backward ranking (orange) adds to the 
model from the lowest feature to the top feature. Seven classifiers were utilized in this investigation: logistic 
regression, decision tree, k-nearest neighbors, linear discriminant analysis, gaussian naive bayes, support 
vector machines with radial basis function kernel, and support vector machines with linear kernel. Please see 
(Supplementary: Figures 1-7, Additional File 1) for other metrics such as accuracy, balanced accuracy, 
sensitivity, specificity. 

Limits to the accuracy of classification of neuropathology features 

Classification results of different feature subsets using the seven classifiers, 114 

samples and 22 top ranked neuropathology features showed that 40.4% of patients were 

misclassified out of 114 individuals using cross-validation. The cause of this high 

misclassification rate was further investigated. Using a heatmap to visualise the classification 

of each patient, showed that some cases are always or mostly misclassified as false positive, 

and false negative irrespective of the ML algorithm used. (Fig. 6) shows a heatmap of clustering 

the classification results, where seven classification techniques were used for the clustering of 

classification of patients for different numbers of features. Three clusters were identified 
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containing cases that were classified correctly, and misclassified as false positive or false 

negative. The false positive cluster denotes cases where neuropathology features classified 

them as having had dementia when in actuality they did not. The false negative cluster denotes 

cases classified as not having dementia, but in actuality they did. Perhaps, this cluster could 

correspond to cases of dementia with insufficient neuropathology changes [48]. 

 

Fig. 6 Clustering of classification performance. Clustering of classification performance from leave one out 
cross-validation on 114 CFAS participants and top 22 ranked standard neuropathology features. Each cluster 
illustrates a classification that was given to individuals consistently, or nearly consistently, irrespective of what 
classification algorithm was used. Evaluation of 7 classifiers revealed 24 individuals (blue) were mostly 
misclassified as false positive, 22 individuals (red) were mostly misclassified as false negative, and 68 
individuals (grey) were mostly correctly classified as true positive or true negative. Each algorithm evaluated 
subsets of ranked features from 1 (top feature) to 22 features (all ranked features). 
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Since the classical markers of neuropathology features summarising the prevalence of 

plaques and tangles could not classify a large proportion of patients, we hypothesised that non-

standard pathologies for rarer dementia syndromes and regional markers could be more useful. 

These less common and ‘disregarded’ pathologies have been described across the CFAS cohort 

[49]. We therefore performed further analysis to determine which features are associated with 

cases where the ranked neuropathology features alone were unable to explain dementia. There 

are 28 features used and 114 samples. The non-standard features used were based on more 

granular neuropathology features in different regions in the brain such as, neuronal loss, gliosis, 

pick bodies, lewy bodies, spongiform changes, superficial gliosis, tangles, virchow-robin space 

expansion and ballooned neurons as well as some demographic features such as, gender, age, 

and brain weight features.  

Our best performing model, RFE with a SVM estimator (SVM-RFE), has been shown 

to be effective in the removal of features that are irrelevant and redundant to achieve good 

generalisation. (Fig. 7) shows the set of non-standard pathologies features measured in the 

different regions of the brain along with age, sex and brain weight and their coefficient values 

compared to the classification performance from the ML models that used standard 

neuropathologies (Supplementary Figure 6, Additional File 1). We found that the mean age for 

false negative cases was highest with mean 89.3 years, whereas the false positive mean age is 

84.5 and true positive & true negative mean age is 84.7. We also found that brain weight mean 

was lower in the false negative group than false positive and true positive & true negative 

groups. Lewy bodies in substantia nigra, neuronal loss in the hippocampus, neuronal loss in 

substantia nigra, tangles in temporal lobe, parenchymal CAA in the frontal lobe, and gliosis in 

hippocampus were all associated with the classification performance of standard 

neuropathologies, however, a high proportion of misclassifications occurred where there was 

a lack of pathology detected from these measures.  
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For further evaluation, we combined the top eight classical neuropathology features 

with the ten non-standard features associated with classifier performance. Together, we tested 

subsets of the 18 features to classify dementia status. Earlier using the classical features, we 

observed 40.4% of the cases being misclassified, however, when combining the feature sets 

the percentage of misclassified cases decreased to 35.1% (Supplementary Figure 5, Additional 

File 1). This decrease in misclassifications was observed in cases of at least 85 years old (46.3% 

to 40.3%) and observed in cases younger than 85 years (31.9% to 27.7%). Of the 32 cases that 

were held-out, we observed sensitivity of 68.8% (logistic regression) using the top eight 

neuropathology features, whereas the combined set of standard and non-standard 

neuropathology features achieved a better sensitivity of 81.3%. 
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Fig. 7 Associations of standard and non-standard neuropathological and demographic features. Non-
standard neuropathological and demographic features that were associated with mis-classified and correctly 
classified cases by the standard neuropathology features. The features together were identified as being 
associated with the classification performance (Supplementary Figure 6, Additional File 1). 
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Discussions & Conclusions 

In this study, we introduced an ML approach to describe how neuropathological 

features at the end of life relate to functional and neuropsychological assessments Our step-

wise ML approach to rank and select Alzheimer-related pathologies for classifying dementia 

allowed us to investigate how the different measures, such as those related to Aβ-related 

assessments and tau can inform about dementia status. We ranked 22 features for ML 

classification from 186 CFAS subjects and found that tau-related assessments, such as the 

Braak NFT stage, were most influential in classifying dementia in a population-representative 

cohort. Seven different classification algorithms tested using different subsets of ranked 

features revealed that maximum classification accuracy was at most 74% with the top eight 

ranked features. Two groups of subjects were identified after classification (false positives, 

false negatives) accounting for 40.4% of all participants who were consistently misclassified 

no matter the classification algorithms used. In order to improve classification accuracy, we 

considered whether non-standard and more granular neuropathology features for particular 

regions of the brain could help with classification. False positives and false negatives for 

dementia classification were more likely for different ages and brain weights [4]. Savva et al. 

showed that the association between AD pathology and dementia is different between younger 

and older ages [7]. We found that lewy bodies in substantia nigra, neuronal loss in the 

hippocampus, neuronal loss in substantia nigra, tangles in temporal lobe, parenchymal CAA in 

the frontal lobe, and gliosis in hippocampus could complement standard neuropathology 

features for classifying dementia. Most of the misclassifications in our analysis occurred where 

there was a lack of pathology observed from these measures. This is consistent with Corrada 

et al. who reported that 22% of demented participants did not have sufficient pathology to 

account for cognitive loss [50]. Using the Vantaa 85+ cohort, Hall et al. showed that cognition 

and education predicted dementia but not AD or amyloid-related pathologies for the oldest old 
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[51]. When combining the top eight neuropathology features with the non-standard 

pathologies’ features, we were able to improve the dementia classification for the older 

individuals (85 years old and above).  

Statistical and ML analysis of the dataset revealed at least three clusters of highly 

related features. This shows that some measures in the dataset are redundant because they are 

so highly correlated. Removing some of the redundant features in cohort datasets such as the 

CFAS dataset reduces collinearity, improves the performance of feature selection and 

classification accuracy [52–56]. We showed that different ranking methods resulted in slightly 

different ranking of the features in terms of their association with dementia status. Averaging 

feature ranks across different ranking methods showed a more consistent and robust feature 

ranking. This suggests that ML-based feature ranking should be averaged across different 

ranking techniques [57–59]. We utilised feature selection and ML classification techniques and 

seven different filter-methods to rank neuropathology features. The results showed that most 

of the commonly used features are consistently highly ranked. Braak NFT stage and BrainNet 

tau stage are the top two selected features in line with previous studies [6,14,15,60,61]. 

However, our results also showed that subpial TSA in mesial temporal lobe had a significant 

rank, presenting a contradictory finding from prior studies [6]. Our results show that most of 

our models with top eight features obtained an accuracy of 74%, with considerable 

misclassification with false negatives and false positives.  

One of the limitations of this study is that it does not cover a vast number of 

classification algorithms, especially ones that utilize deep learning, due to its relatively small 

sample size. Further investigation using other ML techniques if the number of cases and 

controls in our cohort increases. Furthermore, including more instances and possibly more 

neuropathological variables would be advantageous to evaluate the performance of the 

classification algorithms used in this study. These limitations can potentially be research 
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directions, especially in designing and implementing an accurate and cost-effective computer-

aided artificial intelligence-based diagnosis system for dementia classification. This can be 

done in an additional study using an independent dataset, such as the Alzheimer’s Disease 

Neuroimaging Initiative at (http://www.adni-info.org/) [62] or the Rush Memory and Ageing 

Project [63]. The challenge of using neuropathology assessments is that diagnosis of dementia 

has a time-lapse between the last clinical assessment and the post-mortem brain, which could 

be a possible reason for the classification performance’s upper limit. However, the reported 

dementia status also included information from those who knew the individual at the time and 

up to death. Another explanation for the poor classification performance is that some cases 

express dementia during life without classical neuropathological changes [48]. Pathological 

features are very different between different types of dementia such as AD, Frontotemporal 

Dementia, VD, Lewy Body Dementia  [64–66] and their mixed occurrence is still poorly 

understood, despite consistent reports from neuropathological collections associated with older 

populations and volunteer cohorts. In order to define those misclassified clusters, we may need 

to investigate younger populations that exhibit separate and distinct pathologies that can be 

learned by classification models. The features we used are mostly confined to measures of tau 

and Aβ. There is a need for more extensive modelling to quantify measures of other key age-

related brain pathologies, particularly vascular disease, synuclein staging and age-related 

Transactive response DNA-binding protein 43 (TDP43) pathology (limbic predominant age-

related TDP43 encephalopathy). This would allow us to link pathology with other symptoms 

relating to dementia. Rather than assess associations between one feature and outcome at a 

time, it would be useful to investigate whether the combinations of features are associated with 

multiple clinical phenotypes [67–71]. This would have translational value in helping to make 

complex diagnoses that involve multiple clinical assessments. The feature ranking and filtering 
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approaches could also be extended to a diverse set of data features from pathology, imaging, 

CSF or blood-based biomarkers. 

This study provides a new approach for understanding how much cognitive and 

functional classification of dementia can be explained by pathological features of the brain. 

The application of ML as a means of robust evaluation of neuropathological assessments and 

scores for 186 subjects and 34 neuropathology features from the CFAS cohort, highlights the 

benefits and limitations of automated methods for dementia classification and points out the 

key indices of Alzheimer-related pathologies. While we found that as many as 22 

neuropathology features could be useful for classification of dementia, tau-related assessments, 

such as Braak NFT stage, were most influential in the ML classifiers. Our finding that 40.4% 

of cases are consistently misclassified with existing features opens the door to further 

neuropathological assessments and more complex models for explaining dementia. We hope 

that further applications of this approach can lead to identifying biomarkers of early diagnosis, 

and improve disease management plans for patients and their families. 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


31 
 

References 

[1] M. Prince, A. Wimo, M. Guerchet, G.C. Ali, Y.T. Wu, M. Prina, Alzheimer’s disease 
international (2015). world alzheimer report 2015: The global impact of dementia: An analysis of 
prevalence, incidence, cost and trends, Alzheimer’s Disease International, London. [Google 
Scholar]. (2018). 

[2] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-
5®), American Psychiatric Pub, 2013. 

[3] Lancet, Pathological correlates of late-onset dementia in a multicentre, community-based 
population in England and Wales, The Lancet. 357 (2001) 169–175. 
https://doi.org/10.1016/s0140-6736(00)03589-3. 

[4] F.E. Matthews, C. Brayne, J. Lowe, I. McKeith, S.B. Wharton, P. Ince, Epidemiological 
pathology of dementia: attributable-risks at death in the Medical Research Council Cognitive 
Function and Ageing Study, PLoS Med. 6 (2009) e1000180. 

[5] C. Brayne, J. Nickson, C. McCracken, C. Gill, A.L. Johnson, Cognitive function and dementia in 
six areas of England and Wales: the distribution of MMSE and prevalence of GMS organicity 
level in the MRC CFA Study, Psychol. Med. 28 (1998) 319–335. 

[6] S.B. Wharton, C. Brayne, G.M. Savva, F.E. Matthews, G. Forster, J. Simpson, G. Lace, P.G. 
Ince, Medical Research Council Cognitive Function and Aging Study, Epidemiological 
neuropathology: the MRC Cognitive Function and Aging Study experience, J. Alzheimers. Dis. 
25 (2011) 359–372. 

[7] G.M. Savva, S.B. Wharton, P.G. Ince, G. Forster, F.E. Matthews, C. Brayne, Age, 
neuropathology, and dementia, N. Engl. J. Med. 360 (2009) 2302–2309. 

[8] S. Shilaskar, A. Ghatol, Feature selection for medical diagnosis : Evaluation for cardiovascular 
diseases, Expert Syst. Appl. 40 (2013) 4146–4153. 

[9] A.K. Verma, S. Pal, S. Kumar, Prediction of Skin Disease Using Ensemble Data Mining 
Techniques and Feature Selection Method—a Comparative Study, Appl. Biochem. Biotechnol. 
190 (2020) 341–359. 

[10] G. Castellazzi, M.G. Cuzzoni, M. Cotta Ramusino, D. Martinelli, F. Denaro, A. Ricciardi, P. 
Vitali, N. Anzalone, S. Bernini, F. Palesi, E. Sinforiani, A. Costa, G. Micieli, E. D’Angelo, G. 
Magenes, C.A.M. Gandini Wheeler-Kingshott, A Machine Learning Approach for the 
Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features, 
Front. Neuroinform. 14 (2020) 25. 

[11] S. Thapa, P. Singh, D.K. Jain, N. Bharill, A. Gupta, M. Prasad, Data-driven approach based on 
feature selection technique for early diagnosis of Alzheimer’s disease, in: 2020 International 
Joint Conference on Neural Networks (IJCNN), IEEE, 2020: pp. 1–8. 

[12] D.R. Thal, U. Rüb, M. Orantes, H. Braak, Phases of Aβ-deposition in the human brain and its 
relevance for the development of AD, Neurology. 58 (2002) 1791–1800. 

[13] M.E. Murray, V.J. Lowe, N.R. Graff-Radford, A.M. Liesinger, A. Cannon, S.A. Przybelski, B. 
Rawal, J.E. Parisi, R.C. Petersen, K. Kantarci, O.A. Ross, R. Duara, D.S. Knopman, C.R. Jack Jr, 
D.W. Dickson, Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid 
phase across the Alzheimer’s disease spectrum, Brain. 138 (2015) 1370–1381. 

[14] S.B. Wharton, T. Minett, D. Drew, G. Forster, F. Matthews, C. Brayne, P.G. Ince, on behalf of 
the MRC Cognitive Function and Ageing Neuropathology Study Group, Epidemiological 
pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


32 
 

Europe protocol) to the MRC cognitive function and ageing brain study, Acta Neuropathologica 
Communications. 4 (2016) 11. 

[15] S.B. Wharton, D. Wang, C. Parikh, F.E. Matthews, C. Brayne, P.G. Ince, Epidemiological 
pathology of Aβ deposition in the ageing brain in CFAS: addition of multiple Aβ-derived 
measures does not improve dementia assessment using logistic regression and machine learning 
approaches, Acta Neuropathologica Communications. 7 (2019) 1–12. 

[16] G. Lace, G.M. Savva, G. Forster, R. de Silva, C. Brayne, F.E. Matthews, J.J. Barclay, L. Dakin, 
P.G. Ince, S.B. Wharton, MRC-CFAS, Hippocampal tau pathology is related to neuroanatomical 
connections: an ageing population-based study, Brain. 132 (2009) 1324–1334. 

[17] P.G. Ince, T. Minett, G. Forster, C. Brayne, S.B. Wharton, M.R.C.C. Function, A.N. Study, 
Microinfarcts in an older population-representative brain donor cohort (MRC CFAS): 
Prevalence, relation to dementia and mobility, and implications for the evaluation of cerebral 
Small Vessel Disease, Neuropathol. Appl. Neurobiol. 43 (2017) 409–418. 

[18] H. Braak, E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta 
Neuropathol. 82 (1991) 239–259. 

[19] H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, K. Del Tredici, Staging of Alzheimer 
disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry, 
Acta Neuropathol. 112 (2006) 389–404. 

[20] I. Alafuzoff, D.R. Thal, T. Arzberger, N. Bogdanovic, S. Al-Sarraj, I. Bodi, S. Boluda, O. 
Bugiani, C. Duyckaerts, E. Gelpi, S. Gentleman, G. Giaccone, M. Graeber, T. Hortobagyi, R. 
Höftberger, P. Ince, J.W. Ironside, N. Kavantzas, A. King, P. Korkolopoulou, G.G. Kovács, D. 
Meyronet, C. Monoranu, T. Nilsson, P. Parchi, E. Patsouris, M. Pikkarainen, T. Revesz, A. 
Rozemuller, D. Seilhean, W. Schulz-Schaeffer, N. Streichenberger, S.B. Wharton, H. 
Kretzschmar, Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe 
Consortium, Acta Neuropathologica. 117 (2009) 309–320. https://doi.org/10.1007/s00401-009-
0485-4. 

[21] D.R. Thal, U. Rüb, M. Orantes, H. Braak, Phases of Aβ-deposition in the human brain and its 
relevance for the development of AD, Neurology. 58 (2002) 1791–1800. 
https://doi.org/10.1212/wnl.58.12.1791. 

[22] J.F. Crary, J.Q. Trojanowski, J.A. Schneider, J.F. Abisambra, E.L. Abner, I. Alafuzoff, S.E. 
Arnold, J. Attems, T.G. Beach, E.H. Bigio, N.J. Cairns, D.W. Dickson, M. Gearing, L.T. 
Grinberg, P.R. Hof, B.T. Hyman, K. Jellinger, G.A. Jicha, G.G. Kovacs, D.S. Knopman, J. 
Kofler, W.A. Kukull, I.R. Mackenzie, E. Masliah, A. McKee, T.J. Montine, M.E. Murray, J.H. 
Neltner, I. Santa-Maria, W.W. Seeley, A. Serrano-Pozo, M.L. Shelanski, T. Stein, M. Takao, 
D.R. Thal, J.B. Toledo, J.C. Troncoso, J.P. Vonsattel, C.L. White 3rd, T. Wisniewski, R.L. 
Woltjer, M. Yamada, P.T. Nelson, Primary age-related tauopathy (PART): a common pathology 
associated with human aging, Acta Neuropathol. 128 (2014) 755–766. 

[23] S.B. Wharton, on behalf of the Cognitive Function and Ageing Neuropathology Study Group, D. 
Wang, C. Parikh, F.E. Matthews, C. Brayne, P.G. Ince, Epidemiological pathology of Aβ 
deposition in the ageing brain in CFAS: addition of multiple Aβ-derived measures does not 
improve dementia assessment using logistic regression and machine learning approaches, Acta 
Neuropathologica Communications. 7 (2019). https://doi.org/10.1186/s40478-019-0858-4. 

[24] S. Love, K. Chalmers, P. Ince, M. Esiri, J. Attems, K. Jellinger, M. Yamada, M. McCarron, T. 
Minett, F. Matthews, S. Greenberg, D. Mann, P.G. Kehoe, Development, appraisal, validation 
and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in 
post-mortem brain tissue, Am. J. Neurodegener. Dis. 3 (2014) 19–32. 

[25] K. Ikeda, Glial fibrillary tangles and argyrophilic threads: Classification and disease specificity, 
Neuropathology. 16 (1996) 71–77. https://doi.org/10.1111/j.1440-1789.1996.tb00158.x. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


33 
 

[26] K. Ikeda, H. Akiyama, T. Arai, T. Nishimura, Glial Tau Pathology in Neurodegenerative 
Diseases: Their Nature and Comparison with Neuronal Tangles, Neurobiology of Aging. 19 
(1998) S85–S91. https://doi.org/10.1016/s0197-4580(98)00034-7. 

[27] K. Ikeda, H. Akiyama, H. Kondo, C. Haga, E. Tanno, T. Tokuda, S. Ikeda, Thorn-shaped 
astrocytes: possibly secondarily induced tau-positive glial fibrillary tangles, Acta 
Neuropathologica. 90 (1995) 620–625. https://doi.org/10.1007/bf00318575. 

[28] M. Nishimura, Y. Namba, K. Ikeda, M. Oda, Glial fibrillary tangles with straight tubules in the 
brains of patients with progressive supranuclear palsy, Neuroscience Letters. 143 (1992) 35–38. 
https://doi.org/10.1016/0304-3940(92)90227-x. 

[29] R.E. Marioni, F.E. Matthews, C. Brayne, MRC Cognitive Function and Ageing Study, The 
association between late-life cognitive test scores and retrospective informant interview data, Int. 
Psychogeriatr. 23 (2011) 274–279. 

[30] Huan Liu, R. Setiono, Chi2: feature selection and discretization of numeric attributes, in: 
Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995: 
pp. 388–391. 

[31] I. Kononenko, On biases in estimating multi-valued attributes, in: Ijcai, Citeseer, 1995: pp. 
1034–1040. 

[32] J.R. Quinlan, Induction of decision trees, Machine Learning. 1 (1986) 81–106. 
https://doi.org/10.1007/bf00116251. 

[33] M. Robnik-Šikonja, I. Kononenko, Machine Learning, 53 (2003) 23–69. 
https://doi.org/10.1023/a:1025667309714. 

[34] J. Novakovic, P. Strbac, D. Bulatovic, Toward optimal feature selection using ranking methods 
and classification algorithms, Yugoslav Journal of Operations Research. 21 (2011) 119–135. 
https://doi.org/10.2298/yjor1101119n. 

[35] L. Yu, H. Liu, Efficient Feature Selection via Analysis of Relevance and Redundancy, J. Mach. 
Learn. Res. 5 (2004) 1205–1224. 

[36] F. Thabtah, F. Kamalov, S. Hammoud, S.R. Shahamiri, Least Loss: A simplified filter method 
for feature selection, Inf. Sci. . 534 (2020) 1–15. 

[37] K.D. Rajab, New Hybrid Features Selection Method: A Case Study on Websites Phishing, 
Security and Communication Networks. 2017 (2017). https://doi.org/10.1155/2017/9838169. 

[38] F. Kamalov, F. Thabtah, A Feature Selection Method Based on Ranked Vector Scores of 
Features for Classification, Annals of Data Science. 4 (2017) 483–502. 
https://doi.org/10.1007/s40745-017-0116-1. 

[39] M. Rajab, D. Wang, Practical Challenges and Recommendations of Filter Methods for Feature 
Selection, J. Info. Know. Mgmt. (2020) 2040019. 

[40] M.A. Hall, Correlation-based Feature Selection for Machine Learning, 1999. 
[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data 

mining software: an update, ACM SIGKDD Explorations Newsletter. 11 (2009) 10–18. 
[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss, V. Dubourg, Others, Scikit-learn: Machine learning in Python, The 
Journal of Machine Learning Research. 12 (2011) 2825–2830. 

[43] X. Lin, C. Li, Y. Zhang, B. Su, M. Fan, H. Wei, Selecting Feature Subsets Based on SVM-RFE 
and the Overlapping Ratio with Applications in Bioinformatics, Molecules. 23 (2017). 
https://doi.org/10.3390/molecules23010052. 

[44] J. Xia, L. Sun, S. Xu, Q. Xiang, J. Zhao, W. Xiong, Y. Xu, S. Chu, A Model Using Support 
Vector Machines Recursive Feature Elimination (SVM-RFE) Algorithm to Classify Whether 
COPD Patients Have Been Continuously Managed According to GOLD Guidelines, 
International Journal of Chronic Obstructive Pulmonary Disease. 15 (2020) 2779–2786. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


34 
 

https://doi.org/10.2147/copd.s271237. 
[45] Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in bioinformatics, 

Bioinformatics. 23 (2007) 2507–2517. 
[46] T. Chen, C. Guestrin, XGBoost, Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. (2016). 
https://doi.org/10.1145/2939672.2939785. 

[47] I. Alafuzoff, T. Arzberger, S. Al-Sarraj, I. Bodi, N. Bogdanovic, H. Braak, O. Bugiani, K. Del-
Tredici, I. Ferrer, E. Gelpi, G. Giaccone, M.B. Graeber, P. Ince, W. Kamphorst, A. King, P. 
Korkolopoulou, G.G. Kovács, S. Larionov, D. Meyronet, C. Monoranu, P. Parchi, E. Patsouris, 
W. Roggendorf, D. Seilhean, F. Tagliavini, C. Stadelmann, N. Streichenberger, D.R. Thal, S.B. 
Wharton, H. Kretzschmar, Staging of neurofibrillary pathology in Alzheimer’s disease: a study 
of the BrainNet Europe Consortium, Brain Pathol. 18 (2008) 484–496. 

[48] A. Serrano-Pozo, J. Qian, S.E. Monsell, D. Blacker, T. Gómez-Isla, R.A. Betensky, J.H. 
Growdon, K.A. Johnson, M.P. Frosch, R.A. Sperling, B.T. Hyman, Mild to moderate Alzheimer 
dementia with insufficient neuropathological changes, Ann. Neurol. 75 (2014) 597–601. 

[49] H.A.D. Keage, P.G. Ince, F.E. Matthews, S.B. Wharton, I.G. McKeith, C. Brayne, on behalf of 
MRC CFAS and CC75C, Impact of less common and “disregarded” neurodegenerative 
pathologies on dementia burden in a population-based cohort, J. Alzheimers. Dis. 28 (2012) 485–
493. 

[50] M. M. Corrada, D. J. Berlau, C. H. Kawas, A Population-Based Clinicopathological Study in the 
Oldest-Old: The 90+ Study, Curr. Alzheimer Res. 9 (2012) 709–717. 

[51] A. Hall, T. Pekkala, T. Polvikoski, M. van Gils, M. Kivipelto, J. Lötjönen, J. Mattila, M. Kero, 
L. Myllykangas, M. Mäkelä, M. Oinas, A. Paetau, H. Soininen, M. Tanskanen, A. Solomon, 
Prediction models for dementia and neuropathology in the oldest old: the Vantaa 85+ cohort 
study, Alzheimers. Res. Ther. 11 (2019) 11. 

[52] I. Jain, V.K. Jain, R. Jain, Correlation feature selection based improved-Binary Particle Swarm 
Optimization for gene selection and cancer classification, Applied Soft Computing. 62 (2018) 
203–215. https://doi.org/10.1016/j.asoc.2017.09.038. 

[53] M.W. Mwadulo, A review on feature selection methods for classification tasks, (2016). 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1075.7828&rep=rep1&type=pdf 
(accessed April 6, 2021). 

[54] H. Shi, H. Li, D. Zhang, C. Cheng, X. Cao, An efficient feature generation approach based on 
deep learning and feature selection techniques for traffic classification, Computer Networks. 132 
(2018) 81–98. 

[55] W. Gómez Flores, W.C. de A. Pereira, A.F.C. Infantosi, Improving classification performance of 
breast lesions on ultrasonography, Pattern Recognit. 48 (2015) 1125–1136. 

[56] B. Agarwal, N. Mittal, Prominent feature extraction for review analysis: an empirical study, J. 
Exp. Theor. Artif. Intell. 28 (2016) 485–498. 

[57] J. Izetta, P.F. Verdes, P.M. Granitto, Improved multiclass feature selection via list combination, 
Expert Syst. Appl. 88 (2017) 205–216. 

[58] O. Stromann, A. Nascetti, O. Yousif, Y. Ban, Dimensionality Reduction and Feature Selection 
for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series 
Using Google Earth Engine, Remote Sensing. 12 (2019) 76. 

[59] J. Gonzalez-Lopez, S. Ventura, A. Cano, Distributed multi-label feature selection using 
individual mutual information measures, Knowledge-Based Systems. 188 (2020) 105052. 

[60] G. Lace, P.G. Ince, C. Brayne, G.M. Savva, F.E. Matthews, R. de Silva, J.E. Simpson, S.B. 
Wharton, Mesial temporal astrocyte tau pathology in the MRC-CFAS ageing brain cohort, 
Dement. Geriatr. Cogn. Disord. 34 (2012) 15–24. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


35 
 

[61] A. Keo, A. Mahfouz, A.M.T. Ingrassia, J.-P. Meneboo, C. Villenet, E. Mutez, T. Comptdaer, 
B.P.F. Lelieveldt, M. Figeac, M.-C. Chartier-Harlin, W.D.J. van de Berg, J.J. van Hilten, M.J.T. 
Reinders, Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease, 
Commun Biol. 3 (2020) 101. 

[62] M.W. Weiner, P.S. Aisen, C.R. Jack Jr, W.J. Jagust, J.Q. Trojanowski, L. Shaw, A.J. Saykin, 
J.C. Morris, N. Cairns, L.A. Beckett, A. Toga, R. Green, S. Walter, H. Soares, P. Snyder, E. 
Siemers, W. Potter, P.E. Cole, M. Schmidt, Alzheimer’s Disease Neuroimaging Initiative, The 
Alzheimer’s disease neuroimaging initiative: progress report and future plans, Alzheimers. 
Dement. 6 (2010) 202–11.e7. 

[63] D.A. Bennett, J.A. Schneider, A.S. Buchman, C. Mendes de Leon, J.L. Bienias, R.S. Wilson, The 
Rush Memory and Aging Project: study design and baseline characteristics of the study cohort, 
Neuroepidemiology. 25 (2005) 163–175. 

[64] F.M. Elahi, B.L. Miller, A clinicopathological approach to the diagnosis of dementia, Nature 
Reviews Neurology. 13 (2017) 457–476. https://doi.org/10.1038/nrneurol.2017.96. 

[65] W.W. Barker, C.A. Luis, A. Kashuba, M. Luis, D.G. Harwood, D. Loewenstein, C. Waters, P. 
Jimison, E. Shepherd, S. Sevush, N. Graff-Radford, D. Newland, M. Todd, B. Miller, M. Gold, 
K. Heilman, L. Doty, I. Goodman, B. Robinson, G. Pearl, D. Dickson, R. Duara, Relative 
frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and 
hippocampal sclerosis in the State of Florida Brain Bank, Alzheimer Dis. Assoc. Disord. 16 
(2002) 203–212. 

[66] D.S. Geldmacher, P.J. Whitehouse, Evaluation of dementia, N. Engl. J. Med. 335 (1996) 330–
336. 

[67] A. Hoque, S. Galib, M. Tasnim, Mining pathological data to support medical diagnostics, in: 
Workshop on Advances on Data Management: Applications and Algorithms, Department of 
Computer Science and Engineering, BUET, Dhaka, academia.edu, 2013: pp. 71–74. 

[68] F. Kherif, S. Muller, Neuro-Clinical Signatures of Language Impairments: A Theoretical 
Framework for Function-to-structure Mapping in Clinics, Curr. Top. Med. Chem. 20 (2020) 
800–811. 

[69] T.A. Allen, A.M. Schreiber, N.T. Hall, M.N. Hallquist, From Description to Explanation: 
Integrating Across Multiple Levels of Analysis to Inform Neuroscientific Accounts of 
Dimensional Personality Pathology, J. Pers. Disord. 34 (2020) 650–676. 

[70] C. Gaiteri, S. Mostafavi, C.J. Honey, P.L. De Jager, Genetic variants in Alzheimer disease—
molecular and brain network approaches, Nat. Rev. (2016). 
https://www.nature.com/articles/nrneurol.2016.84.pdf?origin=ppub. 

[71] X. Zhou, S. Chen, B. Liu, R. Zhang, Y. Wang, P. Li, Y. Guo, H. Zhang, Z. Gao, X. Yan, 
Development of traditional Chinese medicine clinical data warehouse for medical knowledge 
discovery and decision support, Artif. Intell. Med. 48 (2010) 139–152. 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


36 
 

Acknowledgements 
We would like to acknowledge the essential contribution of the liaison officers, the medical 

practitioners, their staff, and nursing and residential home staff who have contributed their 

time and effort in collecting data as part of the Cognitive Function and Ageing Study Group. 

We are grateful to our respondents and their families for their generous gift to medical 

research, which has made this study possible. 

 

Funding 
This work was supported by the Medical Research Council (MRC/G9901400, 

U.1052.00.0013, G0900582). SBW is also supported by the Alzheimer’s Society (AS-PG-17-

007 and AS-PG-14-015). Work in the individual CFAS centres is supported by the UK NIHR 

Biomedical Research Centre for Ageing and Age – awarded to Newcastle-upon-Tyne 

Hospitals Foundation Trust; Cambridge Brain Bank supported by the NIHR Cambridge 

Biomedical Research Centre; Nottingham University Hospitals NHS Trust; University of 

Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust and NIHR Sheffield 

Biomedical Research Centre; The Thomas Willis Oxford Brain Collection, supported by the 

Oxford Biomedical Research Centre; The Walton Centre NHS Foundation Trust, Liverpool. 

DW and EJ received support from the Academy of Medical Sciences Springboard 

(SBF004/1052). MR is supported by the Saudi Arabia Ministry of Education.  

 

Author information 
Affiliations 

Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, 

UK. 

Mohammed D Rajab, Emmanuel Jammeh, Teruka Taketa, Li Su, Paul G Ince, Stephen B 

Wharton, & Dennis Wang 

Department of Computer Science, University of Sheffield, Sheffield, UK 

Mohammed D Rajab & Dennis Wang 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


37 
 

Singapore Institute Clinical Sciences, A*STAR, Singapore, 117609, Singapore 

Dennis Wang 

Cambridge Public Health, Cambridge, UK 

Carol Brayne 

Population Health Sciences Institute; Newcastle University, Newcastle upon Tyne, UK 

Fiona E Matthews 

 

Contributions 
Study design and assessment of tissue sections; SBW, PGI. Data analysis; MR, EJ, TT, DW. 

Writing of first draft MR, EJ, TT, DW. Data oversight and analysis results interpretation; LS, 

FM, CB. Contribution to interpretation and to the final manuscript; all authors. All authors 

read and approved the final manuscript. 

Corresponding author 
Correspondence to Dennis Wang. 

 

Ethics declaration 
Ethics approval and consent to participate 

This study was ethically approved by the CFAS management committee for analysis to be 

carried out at the University of Sheffield, University of Cambridge and Newcastle University. 

Study title “Cognitive Function and Ageing Study brain donation cohort bioresource and 

fieldwork activity”. REC reference (15/WA/0035). Amendment date: 28 July 2017. IRAS 

project ID (147624). 

Consent for publication 
Not applicable. 

Availability of data and material 
Data from the CFAS study is accessible via application to the CFAS 

(http://www.cfas.ac.uk/cfas-i/data/#cfasi-data-request), under the custodianship of FM and 

CB.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2022. ; https://doi.org/10.1101/2022.04.28.22274107doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274107
http://creativecommons.org/licenses/by/4.0/


38 
 

Competing interests 

The authors declare that they have no competing interests. 

Figures’ keys, titles, and legends 

Fig. 1 Methodology for classification of dementia. The methodology for classification of 

dementia followed three stages of design, implementation, and evaluation. After acquiring 

access to neuropathology and additional data, we pre-processed and assessed feature-feature 

correlation. We used feature ranking via filter methods to rank all neuropathology 

features.  Classifiers were then benchmarked with different subsets of features selected 

according to their rankings. We then compared cases that were consistently misclassified, and 

evaluated brain attributes associated with these cases in order to improve machine learning.  

Fig. 2 CFAS Neuropathology features distribution. The figure depicts neuropathology 

features distribution including age and brain weight (proportion of individuals with and 

without dementia of the CFAS neuropathology Dataset). All features shown are based on the 

ranking features list, row from left to right. Most features are categorical features except 

some are numeric, such as age, CAA total severity, brain weight, CAA areas, TSA-total, 

cortical stage, subcortical stage and Microinfarct Stage.  

Fig. 3 Spearman correlation of the complete CFAS neuropathological data set. Heat map 

Spearman correlation of the complete CFAS neuropathological data set 34 neuropathology 

features in addition to age and brain weight features as a benchmark, 36 features in total and 

186 samples. A coefficient close to 1(blue colour) means that there is a very high positive 

correlation between the two variables. The diagonal line is the same variable i.e. spearman 

rho 1.  

Fig. 4 Ranking of neuropathology features. Ranking of 34 neuropathology features using 

seven filter methods in addition to age and brain weight features as a benchmark, 36 features 

in total and 186 samples. Based on these weights we calculated the percentage of contribution 

for each feature by taking the average. Dotted line indicates features to be dropped, which 

features percentage contribution show less than 7%.  

Fig. 5 Performance of all subsets of neuropathology features.  F1 score performance of all 

subsets of neuropathology features from the rank list forward and backward rankings. 
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Forward ranking (blue) adds to the classifier model from the top feature to the lowest feature 

while the backward ranking (orange) adds to the model from the lowest feature to the top 

feature. Seven classifiers were utilized in this investigation: logistic regression, decision tree, 

k-nearest neighbors, linear discriminant analysis, gaussian naive bayes, support vector 

machines with radial basis function kernel, and support vector machines with linear kernel. 

Please see (Supplementary: Figures [1-7], Additional File 1) for other metrics such as 

accuracy, balanced accuracy, sensitivity, specificity.  

Fig. 6 Clustering of classification performance. Clustering of classification performance 

from leave one out cross-validation on 114 CFAS participants and top 22 ranked standard 

neuropathology features. Each cluster illustrates a classification that was given to individuals 

consistently, or nearly consistently, irrespective of what classification algorithm was used. 

Evaluation of 7 classifiers revealed 24 individuals (blue) were mostly misclassified as false 

positive, 22 individuals (red) were mostly misclassified as false negative, and 68 individuals 

(grey) were mostly correctly classified as true positive or true negative. Each algorithm 

evaluated subsets of ranked features from 1 (top feature) to 22 features (all ranked features).  

Fig. 7 Associations of standard and non-standard neuropathological and demographic 

features. Non-standard neuropathological and demographic features that were associated 

with mis-classified and correctly classified cases by the standard neuropathology features. 

The features together were identified as being associated with the classification performance 

(Supplementary Figure 6, Additional File 1). 
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