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ABSTRACT 
Introduction: The use of biologic adjuvants (orthobiologics) is becoming commonplace in orthopaedic 
surgery. Amongst other applications, biologics are often added to enhance fusion rates in spinal surgery 
and to promote bone healing in complex fracture patterns. Generally, orthopaedic surgeons use only 
one biomolecular agent (ie allograft with embedded bone morphogenic protein-2) rather than several 
agents acting in concert. Bone fusion, however, is a highly multifactorial process and it likely could be 
more effectively enhanced using biologic factors in combination, acting synergistically. We used artificial 
neural networks to identify combinations of orthobiologic factors that potentially would be more 
effective than single agents. 
 
Methods: Available data on the outcomes associated with various orthopaedic biologic agents, electrical 
stimulation, and pulsed ultrasound were curated from the literature and assembled into a form suitable 
for machine learning. The best among many different types of neural networks was chosen for its ability 
to generalize over this dataset, and that network was used to make predictions concerning the expected 
efficacy of 2400 medically feasible combinations of 9 different agents and treatments.  
 
Results: The most effective combinations were high in the bone-morphogenic proteins (BMP) 2 and 7 
(BMP2, 15mg; BMP7, 5mg), and in osteogenin (150ug). In some of the most effective combinations, 
electrical stimulation could substitute for osteogenin. Some other effective combinations also included 
bone marrow aspirate concentrate. BMP2 and BMP7 appear to have the strongest pairwise linkage of 
the factors analyzed in this study. 
 
Conclusions: Artificial neural networks are powerful forms of artificial intelligence that can be applied 
readily in the orthopaedic domain, but neural network predictions improve along with the amount of 
data available to train them. This study provides a starting point from which networks trained on future, 
expanded datasets can be developed. Yet even this initial model makes specific predictions concerning 
potentially effective combinatorial therapeutics that should be verified experimentally. Furthermore, 
our analysis provides an avenue for further research into the basic science of bone healing by 
demonstrating agents that appear to be linked in function.  
 
CLINICAL RELEVANCE 
Bone healing is a highly multifactorial process, and it likely could be more effectively enhanced using 
combinations of factors rather than single factors in isolation. This study provides a starting point for an 
integration of biomedical experimentation and computational AI that ultimately could lead to highly 
sophisticated combinatorial treatments for bone repair and other applications in orthopaedic medicine.   
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INTRODUCTION 
Bone repair is a highly multifactorial process involving a wide array of molecular and cellular factors.[1] 
Orthopaedic surgeons have manipulated these factors by administering various biologic agents in order 
to augment bone repair.[2] In most cases, surgeons have administered only one biologic agent. 
Considering the physiological complexity of the process, it is reasonable to suggest that superior bone 
repair could be achieved using biologic factors in combination.  
 
Combinatorial explosion prohibits exhaustive experimental evaluation of the full set of possible 
combinations. An alternative is to use computational methods to extrapolate, or generalize, from 
existing data and predict which combinations would be the most effective, and then expend 
experimental resources to evaluate only those. The most powerful AIs in use today for making accurate 
predictions are artificial neural networks (ANNs).[3, 4] ANNs are composed of many, highly 
interconnected neuron-like elements known as units, which can be arranged in layers or circuits.  
 
ANNs are computational devices that process information from their input units to produce a pattern of 
activation at their output units. Feedforward networks have their units arranged in layers. The simplest 
feedforward networks have only two layers of units: input and output. More complex feedforward 
networks have one or more layers of hidden units, so called because they are interposed between the 
input and output layers. Feedforward ANNs are considered deep if they have more than two hidden 
layers.[5] Recurrent networks have their units arranged in circuits. Multiple processing layers, or circuits, 
are needed when the production of useful output patterns requires the processing of complex 
interactions among the inputs.  
 
ANNS are trained via machine learning on a set of input/desired-output examples. They have been 
applied in many domains of biomedicine.[6-8] The most extensive medical applications of ANNs have 
been in radiology.[9-12] Generally in these applications the inputs are the pixels of (usually MRI) images, 
and the desired outputs are the components of known radiological diagnoses. Once trained, the ANN 
could generalize from its training data and could make a diagnosis from an image on which it has not 
been trained. It is likely that clinicians will soon use ANNs adjunctively in radiological diagnosis.  
 
Other applications under development of ANNs in medicine include cancer diagnosis from gene 
expression data[13, 14], heart-disease diagnosis from electrocardiogram data[15], osteoporosis 
diagnosis from bone-density data[16], and diabetes diagnosis from blood chemistry data[17, 18]. More 
recent applications involve patient records as inputs.[19-21] ANNs have been applied to orthopaedic 
patient records, to predict outcomes such as bone fracture healing or mortality following hip 
fracture.[22, 23]  
 
The application of various biologic agents to bone repair is a rapidly growing subfield of orthopedics. 
Over the past few decades, many reports have demonstrated the benefits of specific agents on post-
surgical bone fusion rates. Still, to our knowledge, AI has not been applied in this domain.  
 
The usefulness of an ANN derives from its ability to generalize beyond its training data, so that it can 
predict the correct output for inputs on which it has not been trained. We collected a large amount of 
the available data, organized it into a form suitable for machine learning, and used it to train an ANN 
with an architecture that we had determined beforehand would generalize well over the dataset. We 
used this ANN to explore potential combinatorial therapies within the realm of orthobiologic adjuncts. 
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METHODS 
Our study design consisted of six steps: (1) assemble a dataset on the outcomes associated with the use 
of various agents and organize them into a form suitable for machine learning; (2) build a series of ANNs 
with increasingly complex architectures and processing potentials; (3) determine for each network type 
its optimal machine learning parameters; (4) assess the ability of each network type to generalize over 
the dataset; (5) train the best generalizing network on the dataset and use it to predict the efficacy of a 
large set of combinations of the factors on which it had been trained; and (6) analyze the predictions 
and determine which combinations of factors are potentially the most effective, and should be 
experimentally verified. The first five steps are methodological and are summarized here in the Methods 
section. Further methodological details are available in Supplementary Texts S1 – S4. Step (6) is 
elaborated in the Results section.  
 
Step 1. We curated the dataset from the experimental literature and organized the data into 
input/desired-output pairs. In total, 17 factors (active orthobiologic agents and their vehicles of 
administration, or other nonpharmacological treatment types) constituted the inputs, and 26 outcomes 
(metrics quantifying the efficacy for improvement of bone healing due to the agents) constituted the 
desired outputs. The input/desired outputs are quantified precisely in the dataset according to their 
units as appropriate. We used as many factors as inputs, and outcomes as desired outputs, as were 
available in the literature, in order to maximize the amount of ANN training data.  
 
Step 2. We evaluated the generalizability of 16 different ANN types. Our 8 basic types were feedforward 
with 0, 1, 2, 3, 5, 7, or 10 hidden layers, and a recurrent network with a hidden circuit. All hidden layers 
(and the hidden circuit) were composed of 100 units. We evaluated each of these 8 network types with 
and without an autoencoder layer. An autoencoder is the hidden-unit representation developed by a 
network that learns to reproduce its own input at the output. Placing an autoencoder layer after the 
input layer can improve the generalizability of an ANN that is trained to produce a desired output for 
every input.  
 
Steps 3 and 4. We optimized the parameters of the machine-learning algorithm used to train each of the 
network types, and then tested the ability of each type to generalize over the dataset following training. 
We found that the feedforward ANN composed of an input layer, an autoencoder layer, 2 hidden layers, 
and an output layer exhibited the best generalizability. A diagram of this ANN is shown in Figure 1.  
 
Step 5. Following ANN training, we used clinical judgement in deciding which combinations of factors to 
evaluate, and which outcomes to use in assessing the predicted post-surgical benefit of those selected 
combinations. We generated a set of 2400 combinations of 9 of the factors that were included among 
the 17 inputs in the dataset. These factors were chosen because they could be combined appropriately 
in a surgical setting. The 9 chosen agents were bone-morphogenic protein-2 (BMP2), bone-morphogenic 
protein-7 (BMP7), osteogenin (OG), platelet-derived growth factor (PDGF), bone marrow aspirate 
concentrate (BMAC), and platelet rich plasma (PRP).[2] The vehicles carrying these agents varied greatly 
among published studies, so we included the most common one, exogenous bone graft (EBG), as a 
stand-in for all vehicles. Pulsed ultrasound (US) and electrical stimulation (ES) were also chosen for the 
combination screen because they have been shown to increase bone healing rates.[24, 25]  
 
We quantized input levels in order to generate a finite number of input combinations. For the 
combination screen the factor BMP7 takes 2 levels; BMP2, OG, and PU each take 4 levels; and PDGF 
takes 5 levels in their ranges. The factors ES, BMAC, and PRP are either present or absent. EBG, as the 
common vehicle of administration, is present in all combinations.  
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We further constrained the number of combinations for reasons of practicality. Although PU and ES 
could theoretically be used in combination, the feasibility of carrying out this dual therapy in practice is 
low. Due to the additional operative time of harvesting PRP and BMAC to use at the bone healing site, 
we decided to not to include combinations involving both agents. Editing according to these constraints 
left 2400 combinations. 
 
To screen the combinations for efficacy, we set the input in turn to each one of the 2400 combinations: 
the 9 input units corresponding to BMP2, BMP7, OG, PDGF, PU, ES, BMAC, PRP, and EBG took their 
values as specified for that combination; the other 8 of the 17 input units took value 0. We then 
computed the activities in response to each input of the 26 output units. Due to randomness inherent in 
the machine-learning algorithms, ANNs of the same type trained on the same dataset can nevertheless 
vary slightly. Therefore, the best predictions are derived from the averaged outputs of several ANNs.[26] 
We based our predictions on the averaged outputs of 10 separately trained ANNs of the type shown in 
Figure 1.  
 
To compute a relative efficacy measure for each factor combination, we combined 17 of the 26 
averaged output unit activations into a single number. We chose these 17 outcomes because they best 
assessed the degree of bone healing and functional outcome across studies. The chosen outcomes are 
distraction rate (DR), bone formation at 3 months (BF3), bone formation at 6 months (BF6), mineralized 
tissue volume/total tissue volume (MV/TV), 1-level posterior lumbar fusion rate (PLF-FR), Oswestry 
disability index improvement (ODI), fusion rate (FR), fracture healing percentage (FH), Oswestry Score 
(OW), radiographic outcome (RO), histomorphometric outcome (HO), implant survival percentage (IS), 
time to achieve full weight bearing/clinical healing (TWB/CH), mean time to radiographic union (TRU), 
need for repeat bone grafting (RBG), not healed at end of trial (NH), and need for dynamization (DY). We 
flipped the outputs whose high score indicated poor efficacy, normalized all outputs into the range [0, 1] 
and then averaged the 17 normalized outputs to arrive at a single-number efficacy score. By this relative 
measure, perfectly effective and ineffective combinations would have efficacy scores of 1 and 0, 
respectively.  
 
 
RESULTS 
We trained the ANN with the best generalizability (Figure 1) to achieve a good but not perfect match 
between its actual and desired outputs, because the overtraining required to achieve a perfect match 
would impair its ability to generalize. Comparison of the desired and actual output images for an 
example ANN (Figure 2) shows that the agreement is good but not perfect. Precisely this sort of 
relationship would be expected for an ANN that could generalize beyond its training data.  
 
We rank-ordered the predicted efficacy scores for the 2400 combinations (Figure 3). They ranged from 
about 0.30 to almost 0.75 and so covered almost half of the possible [0, 1] range. The efficacy scores 
seemed to plateau for the most effective several hundred combinations.  
 
The 2400 rank-ordered combinations are shown in two separate images in Figure 4: one for all 2400 
combinations and another for the top 200. Analysis of the top 200 reveals some statistically significant, 
pairwise correlations among the 9 factors (Table 1). BMP2 and BMP7 are positively correlated, while OG 
and PDGF are negatively correlated. PDGF is negatively or positively correlated with BMAC or PRP, 
respectively. PU and ES, and likewise BMAC and PRP, are also negatively correlated, but this is due 
largely to constraints in the design of the combination screen (see Methods). 
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The 10 best factor combinations show some consistent similarities, and some consistent differences 
with the 10 worst combinations. BMP2 and BMP7 are at their highest levels in the 10 best combinations, 
while they are 0 in the 10 worst combinations, and this is consistent with the positive correlation 
observed between BMP2 and BMP7 in the top 200 combinations. OG tends to be at its highest levels in 
the 10 best combinations but is 0 in the 10 worst combinations. In contrast, PDGF tends to be at its 
lowest or highest levels in the 10 best or worst combinations, respectively, and this is consistent with 
the negative correlation observed between OG and PDGF in the top 200 combinations.   
 
The analysis suggests that the most effective combinations are high in BMP2, BMP7, and OG, but low in 
PDGF (see Table 2 and its caption for quantification of amounts). These 4 factors seem to be the most 
determinative of the best factor combinations. BMAC appears in some of the 10 best combinations but 
in none of the 10 worst, and this is consistent with the negative correlation between PDGF and BMAC. 
PRP is absent from all 10 best and worst combinations. The 10 best and 10 worst combinations seem 
indifferent to the levels of PU and ES, with the potentially important exception that ES appears in some 
of the 10 best combinations that lack OG.  
 
The 2400 combinations in the screen include the null combination (ie none of the 9 factors are present 
except for EGB, the common vehicle), and all combinations in which EGB and 1 other factor only are 
present. The analysis clearly indicates that combinations of several orthobiologic factors would be more 
effective than any single factor alone. The analysis indicates that combinations of BMP2, BMP7, and OG, 
perhaps including ES or BMAC, each at the high end of their ranges as reported in relevant studies, 
should outperform combinations that lack those components. Experimental verification of these 
predictions could lead to the development of orthobiologic factor combinations that outperform single 
factors for the enhancement of bone repair.  
 
 
DISCUSSION 
To properly situate our model within the orthopaedic literature, it is necessary to distinguish between 
process-driven and data-driven models. Process-driven models represent processes explicitly. There is a 
long tradition of process-driven modeling in bone fracture healing (see [1] for review). Process-driven 
models are valuable in that they explicitly describe the processes involved, but they are limited to what 
is known about the processes themselves. This limits their predictive power.  
 
Data-driven models are built almost entirely on observed input-output relationships, without regard for 
the specifics of the underlying processes. Data-driven models offer little mechanistic insight, but they 
provide a powerful means to leverage all available data for predicting the outputs to novel inputs. Deep 
neural networks are the premier form of data-driven modeling in AI today. The multilayered ANN we 
chose to make our predictions (Figure 1) is a deep neural network.[5] To our knowledge, our model is 
the first data-driven, deep neural network model of the relationship between biologic factors and bone 
repair.  
 
Even though it is data-driven, our model may indicate avenues for further research into the molecular 
physiology of bone healing. For example, OG (osteogenin, or bone morphogenic protein-3 (BMP3)) and 
ES seem to act interchangeably in our model. Interestingly, ES has been shown to upregulate BMPs 2 
through 8, and is effective in upregulating BMP3 (also called OG) in cultured bone cells.[27] The fact that 
our model is able to postdict previously known molecular pathways advocates for its use in predicting 
previously unknown molecular interactions.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.26.22274343doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.26.22274343
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 
The main limitation in our study was in the size and composition of the dataset on which we trained our 
ANN. At 225 input/desired-output training patterns, our dataset is large in comparison with other 
datasets that are curated from the literature, but still very small in comparison with datasets used to 
train ANNs in many applications. Also, most of the input/desired-output patterns in our dataset included 
only one active orthobiologic factor. The risk in training mainly on single factors is that the network 
would fail to learn interactions among them but in our case, it seems that this did not occur.  
 
If machine learning failed to pick up interactions, then the simplest ANN, that composed only of input 
and output layers, would have generalized as well as, if not better than, ANNs with hidden layers (or 
circuits) intervening between input and output (see Supplemental Text S4). The fact that the ANN that 
generalized best over our dataset was a multilayered network strongly suggests that it did learn some of 
the interactions between the factors.  
 
The best way to remedy the main limitation in this analysis is to train deep neural networks on larger 
datasets containing more combinations of factors. The analysis already suggests both good and bad 
combinations that could be explored experimentally. Any and all new data on the outcomes for bone 
healing associated with orthobiologic factors administered alone, or better, in combination could be 
added to the training dataset and would improve the ability of an ANN to identify combinations of 
factors with the potential to outperform single agents.  
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TABLES 
 
 
 
 
 
 
 

Significant Pairwise Correlations among Factors in Top 200 Orthobiologics Combinations 

factor 1 factor 2 correlation coefficient p value 

BMP2 BMP7    0.1962 0.0054 

OG PDGF −0.2538 0.0003 

PDGF BMAC −0.2291 0.0011 

PDGF PRP    0.2265 0.0013 

PU ES −0.5444 0.0000 

BMAC PRP −0.3690 0.0000 

Table 1. Statistically significant pairwise correlations among the factors in the top 200 orthobiologics 
combinations as determined from the neural network. BMP2 and BMP7 are positively correlated, 
while OG and PDGF are negatively correlated. PDGF is negatively or positively correlated with BMAC 
or PRP, respectively. PU and ES are negatively correlated, and BMAC and PRP are also negatively 
correlated. The very low (but still > 0) p values associated with those last two negative correlations is 
attributed mainly to constraints in the design of the combination screen by which PU and ES could not 
be nonzero together, and BMAC and PRP likewise could not be nonzero together. All values including 
p values are reported to four significant places.  
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Ten Best Orthobiologics Combinations 

rank BMP2 BMP7 OG PDGF PU ES BMAC PRP EBG 

1 15 5 150 0 150 0 1 0 1 

2 15 5 150 0 100 0 1 0 1 

3 15 5 150 0 150 0 0 0 1 

4 15 5 0 0 0 1 0 0 1 

5 15 5 150 50 150 0 0 0 1 

6 15 5 150 0 100 0 0 0 1 

7 15 5 150 0 50 0 1 0 1 

8 15 5 150 50 150 0 1 0 1 

9 15 5 0 0 0 0 0 0 1 

10 15 5 0 50 0 1 0 0 1 

 

Ten Worst Orthobiologics Combinations 

rank BMP2 BMP7 OG PDGF PU ES BMAC PRP EBG 

2391 0 0 0 100 100 0 0 0 1 

2392 0 0 0 100 50 0 0 0 1 

2393 0 0 0 150 150 0 0 0 1 

2394 0 0 0 150 100 0 0 0 1 

2395 0 0 0 150 0 0 0 0 1 

2396 0 0 0 200 150 0 0 0 1 

2397 0 0 0 150 50 0 0 0 1 

2398 0 0 0 200 100 0 0 0 1 

2399 0 0 0 200 50 0 0 0 1 

2400 0 0 0 200 0 0 0 0 1 

Table 2. The 10 best and 10 worst combinations of orthobiologic factors, as determined from the 
neural network. Combinations are ranked, best to worst, out of the total of 2400 combinations in the 
computational screen. BMP2 and BMP7 are at their highest levels in the 10 best combinations, while 
they are 0 in the 10 worst combinations. OG tends to be at its highest or lowest levels in the 10 best 
or worst, respectively, while PDGF tends in the opposite direction. The 10 best and worst 
combinations seem indifferent to the level of PU. ES or BMAC is present in some of the 10 best but in 
none of the 10 worst. PRP is absent from all 10 best and worst combinations. EGB is present in them 
all but it is present in all 2400 combinations by design and is included only for completeness.  Units: 
BMP2 and BMP7 are in milligrams, OG and PDGF are in micrograms, and PU is in total treatment days; 
the other inputs are either present or absent. The levels (dosages, intensities, amounts, etc) of all 
inputs are in the ranges as reported in published studies.   
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FIGURES 

 
 
 

 
 
Figure 1. Diagram of the artificial neural network used to predict the efficacy of 2400 combinations of 
orthobiologic factors. The feedforward network has two layers of hidden units. The first hidden layer 
receives the input not directly but only after it has been processed by a layer of autoencoder units. The 
17 input units project to a layer of 50 autoencoder units, which project to the first layer of 100 hidden 
units, which in turn project to the second layer of 100 hidden units, which finally project to the set of 26 
output units. The connectivity between layers is complete in that each unit in a previous layer projects 
to every unit in a subsequent layer. The weights from the input layer to the autoencoder layer are 
trained separately, and then held fixed while the other weights in the network are trained.  
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Figure 2. Desired and actual outputs of the neural network after training. The values of the 26 output 
units for each of the 225 input/desired-output patterns in the training dataset are shown as images, 
separately for the desired (left) and actual (right) outputs. The unscaled values of the outputs range 
from 2 (deep blue) to 277 (bright yellow). Close inspection reveals that the match between the desired 
and actual outputs is good but not perfect. This is expected due to ambiguity in the training dataset, 
which is derived directly from the experimental data of multiple labs that often reported different 
outputs for the same inputs. The pattern of agreement in general, with disagreement in detail, indicates 
that the neural network has learned to generalize from the data in the training dataset. The ability to 
generalize is central to the ability of the neural network predict the outputs for combinations of inputs 
on which it has not been trained.  
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Figure 3. The efficacies of 2400 combinations of orthobiologic factors as predicted by the neural 
network. The scores are sorted from least to most effective. Effective combinations were defined as 
those that were high in 12 / 26 outputs (DR, BF3, BF6, MV/TV, PLF-FR, ODI, FR, FH, OW, RO, HO, and IS), 
and low in 5 / 26 outputs (TWC/CH, TRU, RBG, NH, and DY). The remaining 9 / 26 outputs were not 
included in the efficacy measure (see text). For the purposes of ranking, the outputs that should be low 
were flipped, all outputs were scaled in the range [0, 1], and the output values were averaged. By this 
measure, which is relative to the maximal and minimal output values, the highest possible efficacy of 1 
would be obtained if all of the outputs that should be high / low were at their maximal / minimal levels 
for that output, and vice-versa for the lowest possible efficacy of 0. The predicted efficacies for the 2400 
combinations in the screen varied widely over the [0, 1] range and nearly plateaued for the most 
effective several hundred.  
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Figure 4. The combinations of orthobiologic input factors ordered by predicted efficacy. The 
combinations are presented in descending order, so the combinations are most / least effective at the 
top / bottom of either plot. The plot on the left shows all 2400 combinations while the plot on the right 
shows the top 200 combinations. The factors ES, BMAC, and PRP are either present or absent; EBG is 
always present. The factor BMP7 takes 2 levels; BMP2, OG, and PU each take 4 levels; and PDGF takes 5 
levels. Input factor levels varied over a broad range but were normalized into [0, 1] for purposes of 
illustration. In the images, yellow and deep blue correspond to 1 and 0, respectively.  
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