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Abstract13

Background: The successful development of multiple COVID-19 vaccines has led to a14

global vaccination effort to reduce severe COVID-19 infection and mortality. However, the ef-15

fectiveness of the COVID-19 vaccines wane over time leading to breakthrough infections where16

vaccinated individuals experience a COVID-19 infection. Here we estimate the risks of break-17

through infection and subsequent hospitalization in individuals with common comorbidities18

who had completed an initial vaccination series.19

Methods: Our study population included vaccinated patients between January 1, 2021 to20

March 31, 2022 who are present in the Truveta patient population. Models were developed to21

describe 1) time from completing primary vaccination series till breakthrough infection; and22

2) if a patient was hospitalized within 14 days of breakthrough infection. We adjusted for age,23

race, ethnicity, sex, and year-month of vaccination.24

Results: Of 1,192,135 patients in the Truveta Platform who had completed an initial25

vaccination sequence between January 1, 2021 and March 31, 2022, 2.84, 3.42, 2.76, and 2.8926

percent of patients with CKD, chronic lung disease, diabetes, or are in an immunocompromised27

state experienced breakthrough infection, respectively, compared to 1.35 percent of the pop-28

ulation without any of these four comorbidities. We found an increased risk of breakthrough29

infection and subsequent hospitalization in individuals with any of the four comorbidities when30

compared to individuals without these four comorbidities.31

Conclusions: Vaccinated individuals with comorbidities experienced an increased risk of32

breakthrough COVID-19 infection and subsequent hospitalizations compared to the general33

population. Individuals with immunocompromising conditions and chronic lung disease were34

most at risk of breakthrough infection, while people with CKD were most at risk of hospital-35

ization following breakthrough infection. Individuals with comorbidities should remain vigilant36

against infection even if vaccinated.37
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1 Introduction38

The successful development of multiple COVID-19 vaccines has led to a global vaccination effort39

with the goal of reducing severe COVID-19 infection and mortality [1, 2]. The effectiveness of the40

COVID-19 vaccines, however, does wane over time and breakthrough infections have been reported41

since the beginning of the vaccination effort [3–10]. A breakthrough infection is defined as when42

an individual experiences a COVID-19 infection despite having completed their initial vaccination43

sequence (i.e., two doses plus an addition 2 weeks for an mRNA vaccine). This waning vaccine44

effectiveness, along with vaccine-variant mismatch, are the principal reasons behind the need for45

individuals to receive one or more booster doses of an mRNA vaccine [3, 11–14].46

Prior studies of unvaccinated and vaccinated populations have shown more severe outcomes for47

COVID-19 infection for people with certain high-risk comorbidities such as diabetes, chronic kidney48

disease (CKD), lung disease, hypertension, or are immunocompromised (e.g., because of cancer,49

solid organ transplant, HIV, etc.) among many other conditions when compared to individuals50

without those conditions [6, 15–27]. However, most of the analyses surrounding breakthrough51

COVID-19 infection, and subsequent hospitalization, in vaccinated populations were not based on52

people in the United States (though see Embi et al. [24]), and instead focused on large populations53

in the United Kingdom [9, 19, 21].54

Additionally, explicit interactions between comorbidities have not necessarily been analyzed, as55

previous work has tended to focus on one or two intrinsically related comorbidities [6, 7, 19, 24, 28,56

29] or are full omnibus analyses which focus on incidence rates of breakthrough and hospitalization57

[5, 9, 10, 20, 21, 23, 30, 31].58

In order to better understand the risk of breakthrough infection and severe outcomes in high-59

risk populations, we used Truveta data [32] to ask whether vaccinated patients with chronic kidney60

disease, chronic lung disease, diabetes, or those who have immunocompromising conditions have61

a greater risk of breakthrough COVID-19 infection and greater odds of hospitalization following62

breakthrough infection than in those vaccinated but without the studied comorbidities. We chose63

these comorbidities to study based on their prevalence in the US population, association with64

impaired immune function, as well as previous literature on risk factors for COVID hospitalization65

in unvaccinated and vaccinated populations. [9, 11, 15, 21, 33–35].66

2 Methods67

2.1 Study population68

The study population included a subset of the Truveta patient population who received a complete69

initial series of an mRNA vaccine for COVID-19 patients present in Truveta between 2021-01-0170

and 2022-03-31 [32]. We used the Truveta Studio to access the de-identified medical records used71

in this study on 2022-10-19. Truveta is a consortium of healthcare systems which have combined72

their electronic health record (EHR) data to enable medical research. Currently this consortium73

includes 25 members who provide patient care in over 20,000 clinics and 700 hospitals across 4374

states. Updated data is provided daily to Truveta. Similar data fields across systems are mapped75

though syntactic normalization to a common schema referred to as the Truveta Data Model (TDM).76

Once organized into common fields, values are then semantically normalized to common ontologies77

such as ICD-10-CM, SNOMED-CT, LOINC, RxNorm, CVX, etc. These normalization procedures78

employ an expert-led, artificial intelligence driven process to accomplish high-confidence modeling79
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at scale. The data are then de-identified by expert determination under the HIPAA Privacy Rule.80

Once de-identified, the data are then made available for analysis using Truveta Studio.81

A patient was considered to have completed their primary vaccination series at two weeks82

after receiving a second mRNA vaccine dose (Moderna or Pfizer) based on the patient’s medical83

records. Patients were excluded from our study population if they were missing sex or age at84

time of vaccination fields, experienced a COVID-19 infection prior to being completing their initial85

mRNA COVID-19 vaccination sequence (i.e., 14 days post second vaccine dose), were missing their86

date of being fully vaccinated, and were under 18 years of age at time of first vaccine dose. All87

vaccination events generally consisted of vaccinations that took place within the health system as88

well as vaccination records actively pulled from the health system’s respective state’s Immunization89

Information System. See the Supplemental Material for a list of CVX codes corresponding to these90

vaccines.91

Our four comorbidities of interest (chronic kidney disease, chronic lung disease, diabetes, and92

immunocompromised) were defined using Elixhauser comorbidity ICD-10-CM diagnostic codes and93

related SNOMED-CT diagnostic codes [36], and patients were identified as having one or more of94

these comorbidities based on the presence of these diagnostic codes in a patient’s medical record95

prior to their completion of a primary COVID-19 vaccination series. Patients who were diagnosed96

with a comorbidity after completing their initial dose sequence plus 14 days were excluded from97

analysis.98

Our response variables of interest were 1) time from completing a COVID-19 primary vaccination99

series till breakthrough infection, and 2) if a patient who experienced a breakthrough infection was100

hospitalized within two-weeks of that infection. SARS-CoV-2 infection was defined as a patient’s101

first diagnosis of COVID-19 using either diagnosis codes or laboratory results.102

The code lists associated with all studied conditions were initially based on code lists published103

to the National Institute of Health’s Value Set Authority Center website (https://vsac.nlm.nih104

.gov/). These value sets where then modified based on the expert opinion of the multiple clinical105

informaticists who are co-authors on this study. The complete lists of ICD-10-CM, SNOMED-CT,106

CVX, and LOINC codes for each of COVID-19 vaccination, COVID-19 diagnosis, COVID-19 test,107

and all considered comorbidities are presented in the Supplementary Material.108

In addition to the four comorbidities stated above, we also included multiple demographic109

covariates in our models: race (White, Asian, Black or African American, American Indian or110

Alaska Native, Native Hawaiian or Other Pacific Islander, Unknown), ethnicity (Hispanic or Latino,111

Not Hispanic or Latino, and Unknown), sex, and person’s age in years at time of completing a112

COVID-19 primary vaccine sequence. In all analyses described below, the effect of age in years113

was modeled using a natural cubic spline with five degrees of freedom. We also included the year-114

month when a patient completed their primary vaccine sequence as a categorical covariate. We115

consider this variable as a proxy for differences associated with COVID-19 variant and transmission116

"environment" experienced by that patient.117

2.2 Time from COVID-19 vaccination to breakthrough infection118

We used a Cox proportional hazards model to describe the relationship between the time from119

completing a COVID-19 primary vaccination series till breakthrough infection and the comorbidities120

of interest and other covariates listed above. The response variable for our analysis of time from121

completing a COVID-19 primary vaccination series (i.e., time of second dose plus 14 days) till122

breakthrough infection was defined as the minimum time among three potential events: time of123
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first COVID-19 infection, time of last encounter in EHR, and 180 days. If a patient did not124

experience a breakthrough infection they were considered right-censored at either 180 days or the125

time of their last encounter in the EHR, which ever was first. This censoring scheme assumes all126

censoring is uninformative and that any censored value less than 180 days indicates that a patient127

was lost to follow-up as of their last encounter in the EHR.128

We hypothesized that, for patients with more than one of these four comorbidities, there may129

be an interaction effect influencing the chance of breakthrough infection. We developed four models130

of time till breakthrough infection, each allowing for a different degree of interactions. The base131

model assumes that the comorbidities have only an additive effect and there is no additional hazard132

associated having multiple comorbidities. We also considered all two-way interactions (i.e., any133

combination of 2 comorbidities), all two- and three- way interactions, and all two-, three-, and134

four-way interactions between the comorbidities.135

We used AIC and AICc to compare the four different models of each outcome and then select136

the best model for each outcome. When comparing models of the same response, the model with137

the lowest AIC/AICc indicates which of those models does the best job balancing the complexity138

of the model and its likelihood [37–40]. This approach was chosen because we did not have a strong139

hypothesis as to the "correct" number of possible interactions, and we also wanted to balance the140

complexity of the model with the size of our data set.141

The hazard ratio associated for individual comorbidities with no interaction terms is normally142

calculated as the exponentiated regression coefficients from the Cox regression model. However, as143

we are interested in the hazard ratios associated with a patient having one or more comorbidities144

in combination versus a patient with no comorbidities, we used the emmeans R package to calculate145

these hazard ratios [41].146

2.3 Odds of hospitalization following breakthrough infection147

We used a logistic regression model to describe the relationship between hospitalization following148

breakthrough COVID-19 infection and the comorbidities and other covariates listed above. Hos-149

pitalization following a breakthrough COVID-19 infection was defined as an inpatient encounter150

where the patient was hospitalized within 14 days of a positive SARS-CoV-2 test. We choose to151

analyze this outcome because we were specifically interested in the conversion probability from152

"infected with COVID-19" to "hospitalized" and not the time from vaccination till hospitalization153

nor time from breakthrough infection till hospitalization. This is a binary scenario describing a154

transition probability within the infected population for which this method is appropriate as we155

believe this analysis captures our research question well [42].156

As with our analysis of time till breakthrough infection, we hypothesized that, for patients with157

more than one of these four comorbidities, there may be an interaction effect influencing the odds158

of hospitalization following breakthrough infection. We developed four models of hospitalization159

following breakthrough infection, each allowing for a different degree of interactions. The base160

model assumes that the comorbidities have only an additive effect and there is no additional hazard161

associated having multiple comorbidities. We also developed models which consisted of all two-way162

interactions (i.e., any combination of 2 comorbidities), all two- and three- way interactions, and all163

two-, three-, and four-way interactions. And as with the models of time till breakthrough infection,164

we used AIC and AICc to compare these models and select the best one among that group.165

The odds ratio associated for individual comorbidities with no interaction terms is normally cal-166

culated as the exponentiated regression coefficients from the logistic regression model [42]. However,167
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as we are interested in the odds ratios associated with a patient having one or more comorbidities168

in combination versus a patient with no comorbidities, we used the emmeans R package to calculate169

these odds ratios [41].170

Analysis was done using the R programming language (4.1.1) [43] along with the following171

packages: arrow [44], broom [45], dplyr [46], emmeans [41], ggplot2 [47], janitor [48], purrr [49],172

rlang [50], stringr [51], survival [52], table1 [53], tibble [54], and tidyr [55].173

The R code used to run the analyses presented in this study is available at https://github.c174

om/Truveta/smits_et_al_covid_breakthrough_comorbidities.175

3 Results176

3.1 Study population177

1,192,135 patients on Truveta met the study inclusion and exclusion criteria of having completed178

a primary vaccination sequence between 2021-01-01 and 2022-03-31. Of the patients in our study,179

68,218 had chronic kidney disease, 138,752 had chronic lung disease, 133,829 had diabetes, 302,469180

were considered immunocompromised, and 756,178 had none of these four comorbidities (Table 1).181

Note that patients can have more than one comorbidity, and thus the sum of patients with each182

comorbidity will exceed the total of patients with comorbidities.183
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3.2 Time from COVID-19 vaccination to breakthrough infection184

Model complexity AIC delta_AIC AICc delta_AICc
Four-way 601933.00 0.00 601933.32 0.00
Three-way 601936.72 3.73 601937.03 3.71
Two-way 601935.42 2.42 601935.67 2.35
Base 602032.80 99.80 602032.98 99.66

Table 2: Comparison between four candidate models of time till breakthrough COVID-19 infection
each with varying degrees of interaction between comorbidities.

The model of time from COVID-19 primary sequence till breakthrough infection with a maxi-185

mum of four-way interactions between the comorbidities was considered "best" among the candidate186

models (Table 2). This means that specific interaction effects (e.g., changes to hazard ratios as-187

sociated with specific combinations of comorbidities) are estimated up to the maximum possible188

four-way interaction among the comorbidities. This result means that we have found evidence that189

while patients with one of these four comorbities had an increased risk of breakthrough COVID-19190

infection compared to individuals without any of these comorbidities, patients with two or more of191

the comorbidities have further increased risk than would be expected by the independent effects of192

the comorbidities on odds of breakthrough infection.193

Presented here (Fig.1) are the hazard ratios of breakthrough COVID-19 infection for a patient194

having one or more comorbidities versus a patient with none of the comorbidities. Our selected195

model included up to four-way interactions between comorbidities.196

We find that persons with any of the studied comorbidities, in any combination, were associated197

with a greater risk of breakthrough COVID-19 infection than those persons without any comor-198

bidities after adjustment (Fig. 1; CKD HR 1.57 [CI 1.24, 2.00]; immunocompromised HR 1.86 [CI199

1.75, 1.99]; diabetes HR 1.67 [CI 1.50, 1.87]; chronic lung disease HR 1.91 [CI 1.73, 2.13]). See200

Supplemental Material for a full breakdown of the selected model’s parameter estimates.201

3.3 Odds of hospitalization following breakthrough infection202

Model complexity AIC ∆AIC AICc ∆AICc
Four-way 17752.96 3.63 17753.28 3.78
Three-way 17751.35 2.02 17751.65 2.15
Two-way 17759.26 9.94 17759.52 10.01
Base 17749.33 0.00 17749.51 0.00

Table 3: Comparison between four candidate models of probability of hospitalization following
breakthrough COVID-19 infection each with varying degrees of interaction between comorbidities.

The model of hospitalization following breakthrough COVID-19 infection with no interaction203

terms between the comorbidities was considered "best" among the candidate models (Table 3).204

While we are able to calculate the odds ratio for an arbitrary number of interactions, our model205

included no interaction effects among the comorbidities so the presented values are based on ad-206

ditive effects alone. While individuals with multiple of the comorbidities have an increased risk of207
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Figure 1: Estimated hazards-ratios of breakthrough COVID-19 infection associated with one or
more comorbidity versus being comorbidity free. Hazards-ratios are estimated from a model which
considers up to four-way interactions between comorbidities.
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hospitalization following breakthrough infection, our model selection results are consistent with the208

comorbidities having independent additive effects on the odds of hospitalization.209

Figure 2: Estimated odds-ratios of breakthrough COVID-19 infection associated with one or more
comorbidity versus being comorbidity free. Odds-ratios are estimated from a model which consid-
ers no interactions between comorbidities, and their combined effects do not reflect any explicit
interaction effects between comorbidities.

Presented here (Fig.2) are the odds ratio of hospitalization following a breakthrough COVID-210

19 infection for a patient having one or more comorbidities versus a patient with none of the211

comorbidities. Our selected model does not include any interaction effects among the comorbidities,212

though we can calculate these odds ratios for any combination of comorbidities.213

We find that all of the comorbidities were associated with an increased risk of hospitalization214

following breakthrough COVID-19 infection when compared to patients without any of the comor-215

bidities of interest after adjustment (Fig. 2; CKD OR 2.41 [CI 1.97, 2.95]; immunocompromised OR216

1.59 [CI 1.37, 1.85]; diabetes OR 1.66 [CI 1.41, 1.98]; chronic lung disease OR 1.70 [CI 1.45, 1.99]).217

See Supplemental Material for a full breakdown of the selected model’s parameter estimates.218
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4 Discussion219

Here we found that the risk of SARS-CoV-2 breakthrough infection and odds of subsequent hospi-220

talization following breakthrough infection were greater among vaccinated patients with diabetes,221

chronic lung disease, CKD, and with immunocompromising conditions when compared to the vac-222

cinated individuals without these conditions after adjusting for age, sex, race, ethnicity, and year-223

month of vaccination (Fig. 1). This is consistent with studies in unvaccinated and vaccinated people224

showing higher risk of infection and hospitalization in people with any of these comorbidities or sim-225

ilar high-risk conditions [5–7, 9, 10, 19–21, 23, 24, 26, 28–31]. We also found that while patients with226

one of these four comorbities had an increased risk of breakthrough COVID-19 infection compared227

to individuals without any of these comorbidities, patients with two or more of the comorbidities228

have further increased risk than would be expected by the independent effects of the comorbidities229

on odds of breakthrough infection (Fig. 1, Table 2). In contrast, while individuals with multiple230

of the comorbidities have an increased risk of hospitalization following breakthrough infection, our231

model selection results are consistent with the comorbidities having independent effects on odds of232

hospitalization (Fig. 2, Table 3).233

We identified chronic kidney disease as the highest risk individual comorbidity for hospitaliza-234

tion after adjustment for age and other demographic factors (Fig. 2). This result is consistent235

with previous work examining differences in COVID-19 breakthrough infection incident rates in236

the United Kingdom [19, 21]. These studies found that the effectiveness of the COVID-19 vaccines237

against breakthrough infection and subsequent hospitalization varied with the severity of chronic238

kidney disease. In contrast, a large study in male U.S. veterans did not show an elevated risk239

of severe outcomes in breakthrough infections in patients with diabetes, chronic lung disease, or240

CKD [27]. This discrepancy was possibly due to differences in study design where patients were241

matched by comorbidity burden which may reduces differences between health status and demo-242

graphics between groups and may limit the generalizability between patients in the Veterans Health243

Administration population and the other sample populations [56]. In contrast our study compared244

patients with any of the identified comorbidities in any combination as well as with patients who245

had none of these comorbidities, and did not exclude patients with multiple comorbidities.246

Like all studies of EHR data, ours is subject to a variety of known limitations [57–62]. We are247

only able to identify events that are captured by the constituent health care systems that are a part248

of the Truveta member system. This means we will not capture COVID-19 infections which were249

reported or diagnosed by a health care system that is not a part of the Truveta. Similarly, we will250

not capture COVID-19 infections which were never reported to a health care system. This limitation251

means we patients with a precedent COVID-19 infection may be missed as part of our inclusion and252

exclusion criteria. Another example limitation is that a patient’s COVID-19 vaccination status may253

not captured in our data because only a limited number of member HCS reconcile their records with254

state health registries and other locations where many patients may have been vaccinated. Finally,255

a patients’ comorbidity status may be misclassified in our data set because their comorbidity status256

is captured in a different, non-member HCS or they are classified in the EHR using codes that were257

not present in our codesets. These are common and well understood limitations associated with258

using this kind of data. In the context of this study these inherent limitations will most likely lead259

to an underestimation of the size of the vaccinated population which will most likely lead to an260

underestimation of the effects of the comorbidities on risk of breakthrough COVID-19 infection and261

subsequent odds of hospitalization following breakthrough infection, especially in combination.262

In addition to the limitations inherent in retrospective analysis of EHR data, there are other263
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limitations associated with our study. For example, we did not include certain risk factors such as264

hypertension and smoking status due to limitations of the Truveta Platform at the time of analysis.265

Additionally, we do not consider alternate outcomes or competing risks in our analysis of time from266

COVID-19 vaccination till breakthrough infection, and instead consider all censoring uninformative.267

A follow-up analysis should consider a large suite of demographic features and risk factors as well268

as more varied outcomes and the potential for competing risks.269

Future work should also consider the effect of booster doses on time till breakthrough COVID-19270

infection and odds of hospitalization following breakthrough infection. The timing of the booster271

dose would most likely have to be accounted for as a time-varying covariate to account for the272

variation in time from completion of primary dose sequence till time of a booster dose. However,273

many individuals in our population were vaccinated well before booster doses were made available,274

meaning that booster doses may not be captured by the 180-day follow-up period. Similarly,275

additional subgroup analyses of differences breakthrough infection and hospitalization associated276

with severity level of CKD is warranted as recent analysis have found substantial differences in277

COVID-19 outcomes associated with severity of CKD [19, 21].278

Overall, these findings complement prior studies which have shown worse outcomes following279

COVID-19 infection in people who are have diabetes, CKD, chronic lung disease, or immunocom-280

promising conditions [5–7, 9, 10, 15–17, 19–21, 23, 24, 28–31]. These results add additional support281

to the recommendation of booster vaccines for those with high-risk conditions given that these282

groups continue to fare worse than the general vaccinated population in terms of breakthrough283

infection and subsequent hospitalization rates. Those with comorbidities will most likely benefit284

from booster vaccinations to increase and improve their immune response to infection, as has been285

observed in people with chronic kidney disease [19].286

As vaccinated people continue to make decisions about booster vaccinations, they will be look-287

ing for information regarding their personal risk of breakthrough COVID-19 infection and severe288

outcomes like hospitalization. The FDA and CDC have both made recommendations that people289

belonging to high-risk groups, such as those with immunocompromising conditions, should receive290

additional doses of the COVID-19 vaccines and at a faster rate than the general population. The291

findings of this study improve the evidence and support recommendations for people with comorbidi-292

ties such as chronic kidney disease, chronic lung disease, diabetes or who have immunocompromising293

conditions to receive booster vaccinations.294
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