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Abstract 28 

Introduction 29 

Identifying disease-associated susceptibility loci is one of the most pressing and crucial challenges 30 

in modeling complex diseases. Existing approaches to biomarker discovery are subject to several 31 

limitations including underpowered detection, neglect for variant interactions, and restrictive 32 

dependence on prior biological knowledge. Addressing these challenges necessitates more 33 

ingenious ways of approaching the “missing heritability” problem. 34 

 35 

Objectives 36 

This study aims to discover disease-associated susceptibility loci by augmenting previous genome-37 

wide association study (GWAS) using the integration of random forest and cluster analysis. 38 

 39 

Methods 40 

The proposed integrated framework is applied to a hepatitis B virus surface antigen (HBsAg) 41 

seroclearance GWAS data. Multiple cluster analyses were performed on (1) single nucleotide 42 

polymorphisms (SNPs) considered significant by GWAS and (2) SNPs with the highest feature 43 

importance scores obtained using random forest. The resulting SNP-sets from the cluster analyses 44 

were subsequently tested for trait-association.  45 

 46 

Results 47 

Three susceptibility loci possibly associated with HBsAg seroclearance were identified: (1) SNP 48 

rs2399971, (2) gene LINC00578, and (3) locus 11p15. SNP rs2399971 is a biomarker reported in 49 

the literature to be significantly associated with HBsAg seroclearance in patients who had received 50 
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antiviral treatment. The latter two loci are linked with diseases influenced by the presence of 51 

hepatitis B virus infection. 52 

 53 

Conclusion 54 

These findings demonstrate the potential of the proposed integrated framework in identifying 55 

disease-associated susceptibility loci. With further validation, results herein could aid in better 56 

understanding complex disease etiologies and provide inputs for a more advanced disease risk 57 

assessment for patients.  58 

 59 
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Introduction 71 

Understanding the emergence and progression of complex diseases incessantly pose challenges to 72 

researchers due to its intricate and multifactorial nature. These diseases are caused by interplays 73 

between genetics and environmental factors leading to a plethora of combinations that need to be 74 

considered in modeling. From the genetics’ aspect, understanding the etiology of complex diseases 75 

necessitates an extensive localization of significant genomic variations due to its polygenic nature 76 

[1, 2, 3]. Identifying these biomarkers, albeit elucidating only a portion of the entire underpinnings 77 

of complex diseases, could nevertheless aid in increasing patients’ chances of survival by allowing 78 

a more personalized and advanced disease risk assessment [4]. 79 

 80 

A genome-wide association study (GWAS) is the traditional approach employed to discover 81 

genetic biomarkers, i.e. single nucleotide polymorphisms (SNPs), associated with various traits 82 

and diseases [5]. GWAS has been successful in identifying several risk loci for a wide array of 83 

illnesses including cancer [6], Type 2 diabetes mellitus [7], Crohn’s disease [8], and coronary 84 

artery disease [9], among others. However, despite these achievements, GWAS faces limitations 85 

due to its individual-SNP analysis approach exacerbated by the high dimensionality of genomic 86 

datasets. As multitudinous individual association tests are performed, stringent thresholds must be 87 

adopted to account for error rates leading to underpowered detection [10]. This increases the 88 

probability of not detecting SNPs with small effects that are truly associated with a trait and could 89 

significantly contribute to phenotypic variability [11]. The traditional GWAS approach also fails 90 

to capture SNP-SNP interactions as it only tests for the marginal effects of SNPs and disregards 91 

the variants’ joint contributions to phenotypic expression. These interactions require explicit 92 
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analysis since they are vital in addressing the “missing heritability” problem [12] which states that 93 

single genetic variations are insufficient in explaining the entire heritability of a trait. 94 

 95 

Under the “polygenic paradigm”, refining statistical models, such as increasing sample sizes [13] 96 

and reducing the number of tests employed [14], is crucial in increasing the chances of discovering 97 

true associations. Empirical evidence [15, 16] has shown that as sample size increases, GWAS 98 

continues to yield more novel trait-associated loci. However, this approach is not always feasible 99 

[14] especially for studies involving small populations and diseases with low prevalence. For this 100 

reason, it is more viable to reduce the number of tests employed to relax the stringent conditions 101 

used to consider genomic variants as significant. Existing approaches to this latter strategy include 102 

haplotype-based association analysis and SNP-set analysis, both of which also address the inability 103 

of GWAS to capture SNP-SNP interactions [17, 18]. Haplotype-based analysis [19] accounts for 104 

linkage disequilibrium between SNPs; while SNP-set analysis, e.g. gene-based [20] and pathway-105 

based analyses [21], considers the joint effects of variants on phenotypic expression. Aside from 106 

addressing the aforementioned GWAS’ limitations, SNP-set analysis further permits hypothesis 107 

testing on associations possibly existing between wider loci and traits [18]. However, when this 108 

type of analysis groups SNPs based on prior biological knowledge, a study’s success may be 109 

hampered when information on genetic variations and competitive pathways related to the trait are 110 

insufficient. To allow a less restricted analysis, it is necessary to explore other methods of forming 111 

SNP-sets using information independent of a priori biological knowledge.  112 

 113 

Machine learning (ML) is an innovative and powerful approach used in solving complex problems 114 

in various fields and disciplines due to its capability to handle and analyze high-dimensional 115 
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datasets [22, 23, 24]. Several studies have already demonstrated the usability of ML in genomic 116 

datasets [25, 26, 27]; however, to our knowledge, there is only a handful of existing literature 117 

discussing its application to SNP-set formation [28, 29, 30, 31]. These studies employed cluster 118 

analysis to form SNP-sets in a data-driven manner. This approach could subsequently lead to the 119 

identification of novel risk loci associated with a trait [31], albeit there may be problems related to 120 

computational complexity and cost. As genomic datasets are usually of high dimension, it is 121 

susceptible to the “curse of dimensionality” [32, 33], a problem that could be addressed by solely 122 

clustering the SNPs found in certain genomic regions that are known to play a role in trait 123 

development [29, 30]. However, this approach defeats the purpose of performing an inclusive 124 

analysis as the search for significant biomarkers is restricted by relatively narrow regions. For a 125 

more varied selection of SNPs to analyze, dimensionality reduction techniques based on random 126 

forest (RF) could be used to reduce dataset dimensions before conducting cluster analysis. RF has 127 

been widely incorporated in SNP research [25, 34, 35, 36] due to its significant properties: (1) a 128 

nonparametric nature that allows the establishment of predictive models without the need for 129 

preliminary statistical assumptions, and (2) the capability to provide an importance score, i.e. 130 

variable importance measure (VIM) for each SNP, which increases the probability of detecting 131 

highly relevant biomarkers. 132 

 133 

Cluster analysis and random forest have already been proven applicable and effective in genomic 134 

data analysis, specifically in identifying predictive and presumably disease-associated SNPs [31, 135 

37]. However, based on the literature review, the integration of these approaches has not been 136 

explored on SNP data. This study aims to incorporate these two techniques to augment previous 137 
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GWAS findings and allow the discovery of novel trait-associated susceptibility loci. The study 138 

implements the proposed integrated framework using the following three-step algorithm: 139 

 140 

1. Dimensionality reduction through RF; 141 

2. SNP-set formation through cluster analysis involving top-ranking SNPs from Step 1 and 142 

SNPs considered by GWAS to be significantly associated with the trait of interest (termed 143 

in this study as ‘GWAS-identified SNPs’); and 144 

3. Association testing on the resulting SNP-sets from Step 2.  145 

 146 

In Step 1, dimension reduction is implemented using random forest feature selection to circumvent 147 

the “curse of dimensionality” problem associated with analyzing high-dimensional SNP datasets 148 

[35]. In Step 2, top-ranking SNPs determined from the results of Step 1 and GWAS-identified 149 

SNPs are subjected to cluster analysis to evaluate shared similarities among the variants and form 150 

SNP-sets. Finally, Step 3 involves testing the SNP-sets derived from Step 2 for trait-association. 151 

The proposed methodology was applied to the GWAS data by [39] wherein the phenotype of 152 

interest is hepatitis B virus surface antigen (HBsAg) seroclearance, a marker for clearance of 153 

chronic hepatitis B virus (HBV) infection.  154 

Methodology 155 

This study proposes a novel machine learning-based SNP-set analysis approach for identifying 156 

disease-associated susceptibility loci. RF, cluster analysis, and previous GWAS findings were 157 

integrated into a single framework to increase detection power and account for SNP-SNP 158 

interactions—factors that are vital in addressing the “missing heritability” problem. The entire 159 
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analysis is divided into three main parts: dimension reduction, SNP-set formation, and association 160 

testing. Fig. 1 shows the architecture of the proposed integrated framework. 161 

Data Description and Preprocessing 162 

The data used in this study was adopted from the GWAS conducted by [39] which aimed to 163 

identify susceptibility loci associated with HBsAg seroclearance among patients with chronic 164 

hepatitis B. The dataset is composed of 1,365,088 SNPs collected from 200 subjects of Korean 165 

ethnicity. The subjects were further divided into two groups: the cases (n = 100), which consist of 166 

patients who had experienced HBsAg seroclearance before the age of 60, and the controls (n = 167 

100) comprising of patients who exhibited high levels (> 1000 IU/mL) of HBsAg at ≥ 60 years of 168 

age. An additive genetic model was utilized to transform the SNP dataset wherein 0, 1, and 2 were 169 

used to represent homozygous dominant, heterozygous, and homozygous recessive, respectively. 170 

 171 

Dimension Reduction 172 

Dimension reduction is commonly a prerequisite in analyzing SNP datasets as large amounts of 173 

features exceed the capability of analytical approaches in performing fast and effective analyses. 174 

In this study, VIM of RF was used to reduce dataset dimension by identifying highly predictive 175 

and informative SNPs prior to conducting cluster analysis. RF has been widely utilized in 176 

analyzing SNP data primarily due to its capacity to build a predictive model without making any 177 

assumptions about the underlying relationship between genotype and phenotype [40]. In RF, the 178 

predictive abilities of multiple decision trees, which are trained on bootstrap samples of the data, 179 

are consolidated to generate the final output prediction. In addition, randomization is not only 180 

induced by bootstrapping but also introduced at the node level when growing a tree. It selects a  181 
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 182 

Fig. 1: The architecture of the proposed integrated framework. In Stage 2, SNPs in concentric 183 

circles in darker shades of gray represent higher-ranking SNPs based on RF. 184 

 185 

random subset of SNPs at each node of the tree as candidates to find the best split for the node. In 186 

estimating the importance of SNPs, RF calculates the Gini importance which quantifies the 187 
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difference between a node’s impurity and the weighted sum of the impurities of the two descendent 188 

nodes.  189 

 190 

Mathematically, the importance of  𝑆𝑁𝑃𝑗 is determined by summing the decrease in impurity (𝛥𝐼) 191 

for all the nodes 𝑡, where 𝑆𝑁𝑃𝑗 is split. The decreases in impurity are weighted by fractions of 192 

samples in the nodes 𝑝(𝑡) and averaged over all trees in the forest. The Gini variable importance 193 

is then given by, 194 

𝑉𝐼𝑔𝑖𝑛𝑖
(𝑘)

(𝑆𝑁𝑃𝑗)  =  ∑ 𝑝(𝑡) 𝛥𝐼 (𝑠𝑡 , 𝑡)

𝑡∈𝑇𝑘:𝑣(𝑠𝑡)

 195 

where 𝑇𝑘is the number of nodes in the 𝑘𝑡ℎ tree, 𝑝(𝑡)  =  
𝑛𝑡

𝑛
 is the fraction of the samples reaching 196 

node 𝑡; and 𝑣(𝑠𝑡) is the variable used in the split 𝑠𝑡. 197 

 198 

Step 1 of the proposed integrated framework uses a random forest classifier that is initially trained 199 

on the dataset and evaluated using leave-one-out cross-validation (LOOCV). LOOCV uses 𝑁 − 1 200 

observations as the training set and the excluded observation as the testing set, where 𝑁 is the 201 

number of samples. This ensures reliability and unbiasedness in the estimation of model 202 

performance. The final feature importance score of a SNP is then calculated by averaging the 203 

scores of the said SNP obtained by RF for every fold in LOOCV.  204 

SNP-set formation 205 

This study exploited the similarities shared among SNPs to identify novel susceptibility loci 206 

associated with HBsAg seroclearance. The analysis utilized the unsupervised machine learning 207 

method known as cluster analysis which aims to separate data points into distinct groups such that 208 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.25.22274157doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.25.22274157
http://creativecommons.org/licenses/by/4.0/


MACHINE LEARNING-BASED SNP-SET ANALYSIS 

11 

more similarities are shared among objects within the same group than objects belonging to 209 

different groups. Similarities between SNPs can be quantified in terms of agreement, i.e. based on 210 

the occurrence of sequence alterations computed via matching coefficients and measures of 211 

correlation, or dependence, i.e. based on the presence or absence of dependence quantified via 212 

measures based on the χ2-statistic [41]. This study adopts an agreement-based similarity measure 213 

by employing the method proposed in [30]. This method modified an agglomerative hierarchical 214 

clustering algorithm with average linkage for continuous data to develop a Hamming distance-215 

based algorithm for determining SNP-sets. Hamming distance is a similarity measure used to 216 

calculate the number of dissimilar components between two categorical data points of the same 217 

size [42]. Applied to SNP data, the Hamming Distance dHAD between SNPs i and j would be, 218 

 219 

𝑑𝐻𝐴𝐷 (𝑖, 𝑗)  =  ∑  [𝑦𝑖.𝑘  ≠  𝑦𝑗.𝑘] 𝑛−1
𝑘=0                                                     220 

 221 

where n is the total number of subjects and yk is the genotype of the kth subject. The similarity 222 

measure was adapted on SNP datasets based on the premise that the more individuals carrying the 223 

same genotype concerning two given SNPs or two SNP-sets (signified by a relatively small 224 

Hamming distance), the more similar the variants are and more likely to cluster [30]. 225 

 226 

Multiple cluster analyses were performed exclusively on GWAS-identified and top-ranking SNPs 227 

obtained by random forest. As shown in Table 1, the number of SNPs analyzed was gradually 228 

increased to achieve a higher likelihood of discovering novel susceptibility loci. Each 229 

implementation resulted in candidate SNP-sets identified using the following parameters: 230 
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percentile cut which specifies the height wherein a dendrogram will be cut and minimum cluster 231 

size which dictates the minimum number of SNPs for all clusters.  232 

 233 

Table 1. Number of SNPs subjected to cluster analysis 234 

Cluster analysis Number of SNPs included* 

1 1047 

2 2044 

3 3041 

4 4038 

5 5036 

*The set of SNPs included in the cluster analysis is the union of the 52 significant SNPs from Kim et. al.’s 235 

GWAS [39] and the top biomarkers identified by random forest (starting from top 1000 to top 5000 SNPs 236 

in increments of 1000).  237 

Association test 238 

Hamming distance-based association tests (HDAT) [30] were employed to identify the candidate 239 

SNP-sets significantly associated with HBsAg seroclearance. The presence of association depends 240 

on the amount of difference in the biomarkers found in cases and controls. Minor alleles were 241 

incorporated in the equations as it reveals more similarities in the genomes of two individuals than 242 

common alleles [43]. A comprehensive discussion of the equations used in HDAT can be found 243 

in [30]. Permutation test, a non-parametric test used to evaluate the statistical significance of a 244 

model through randomization, is used to compute the p-value of each SNP-set. The test calculates 245 
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the p-value by permuting the dataset and constructing a test-statistic distribution and evaluating 246 

the probability that a test-statistic would be equal to or more extreme than the initial computed 247 

value. 248 

Results 249 

Top-ranking SNPs from dimension reduction 250 

This study used random forest feature selection to reduce dataset dimensions prior to conducting 251 

cluster analysis. Specifically, random forest was employed to rank SNPs based on their feature 252 

importance score, a measure which determines a variant’s relevance in making accurate phenotype 253 

predictions. SNPs are assigned a feature importance score based on the average scores for every 254 

fold in LOOCV to eliminate bias and ensure robustness. Investigation into the functional 255 

significance of three of the top five biomarkers ranked by RF led to possible connections between 256 

the variants and HBsAg seroclearance. SNPs rs28588178 (top-ranking SNP), rs1994209 (3rd-257 

ranking SNP), and rs7958186 (5th-ranking SNP) are linked with Cadherin 4 (CDH4), PIG11, and 258 

PCED1B, respectively—genes reported to be associated with hepatocellular carcinoma (HCC) 259 

[44, 45, 46], a disease that can develop due to the presence of the hepatitis B virus.  260 

Generated SNP-sets 261 

Upon performing multiple cluster analyses, a total of 108 candidate SNP-sets were identified at a 262 

percentile cut of 0.9 and a minimum cluster size of 3. SNP-sets with the maximum number of 263 

SNPs were chosen in cases where there were overlaps to maximize the information obtained from 264 

the analyses.  265 

 266 
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SNP-sets containing SNPs which were considered significant in a previous GWAS were 267 

investigated as the variants sharing high degrees of similarity with GWAS-identified SNPs may 268 

also provide insights into trait etiology. As shown in Table 2, SNPs rs2399971, rs2119977, 269 

rs6826277, rs35689347, rs1505687, and rs741229 were grouped with at least one of the variants 270 

reported to be significantly associated with HBsAg seroclearance. No information regarding 271 

possible association existing between the latter five SNPs and the phenotype of interest was found; 272 

meanwhile, the opposite was true for rs2399971. Notably, albeit rs2399971 had not reached the 273 

cut-off value used in the GWAS performed by Kim et al. [39] on the whole study population, it 274 

was nevertheless found to be significantly associated with HBsAg seroclearance in the subjects 275 

who had received antiviral treatment [39]. Fig. 2 shows the dendrogram of the GWAS-identified 276 

SNPs together with the aforementioned six variants and as presented, the SNPs belonging to the 277 

SNP-set which contains rs2399971 shows the least height differences, indicating that the SNPs in 278 

the set are more similar to each other than the variants found in other clusters. 279 

 280 

Table 2. Cluster memberships of the SNPs that obtained a p-value less than 10-4 in Kim et. al.’s 281 

GWAS [39] 282 

 283 

SNP-set SNPs Genea Chromosome 

1 rs1809862, rs10769023, rs10838245, 

rs2017434, rs2047456, rs7945342, rs872751 

UBQLNL;  

 

rs7945342  

- OLFM5P 

11 

2 rs2399971, rs10508462, rs2153442, 

rs4748035 

BEND7 10 
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3 rs2215905, rs2192611, rs199869387, 

rs887941, rs12464531, rs13018470 

- 2 

 

4 rs2119977, rs6826277, rs11931577 - 4 

5 rs6749972, rs1558599, rs11891860, 

rs17584600 

- 2 

6 rs35689347, rs2173091, rs8037510 AGBL1 15 

7 rs6462008, rs6947275, rs6462003 rs6462008  

- EVX1, 

HOXA13;  

 

rs6947275 

- HOTTIP, EVX1; 

 

 rs6462003 

- HOXA13  

7 

8 rs1505687, rs12620748, rs13382813 rs12620748 and 

rs13382813 

- LINC01246 

2 

9 rs741229, rs12151705, rs6737829 - 2 

SNPs in boldface are those that obtained a p-value less than 10-4 in Kim et. al.’s GWAS [39]. 284 
a: Genes were retrieved from dbSNP [47] and [39]. 285 

 286 

Significant SNP-sets 287 

Hamming distance-based association test (HDAT) was performed on the candidate SNP-sets to 288 

further identify SNPs possibly associated with HBsAg seroclearance. After performing a 289 

Bonferroni correction for multiple tests, 11 SNP-sets significantly associated with HBsAg 290 

seroclearance (p-value < 0.0005) were identified, the majority of which (7 out of 11) were found 291 

to harbor at least one of the GWAS-identified SNPs. Among the SNP-sets obtaining the lowest  292 
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 293 

Fig. 2: Dendrogram of the SNPs listed in Table 2. 294 

 295 

p-values, the set which obtained the highest test statistic is the one composed of rs1809862, 296 

rs10769023, rs10838245, rs2017434, rs2047456, rs7945342, and rs872751—all GWAS-identified 297 

SNPs [39]. All these variants reside in 11p15.4, a region that shows a possible correlation with 298 

HBsAg seroclearance. In a study by [48], it was observed that among hepatocellular carcinoma 299 

cases, more than 20 percent loss of heterozygosity (LOH) was shown for locus 11p, wherein region 300 

11p15 was commonly affected. Moreover, a significant correlation was found to exist between 301 

LOH on 11p and HBsAg positivity. Specifically, results showed that there is a significantly higher 302 

frequency of LOH on 11p among hepatitis B virus carriers [48].  303 

 304 
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Table 3 shows the five significant SNP-sets which do not hold any of the GWAS-identified SNPs. 305 

No supporting evidence was found regarding possible associations between the individual variants 306 

belonging to the five SNP-sets and HBsAg seroclearance. Nonetheless, interesting findings were 307 

discovered when SNPs were analyzed collectively. Results showed that three out of the five SNP-308 

sets in Table 3 harbor SNPs residing in similar genes, i.e. there is a corresponding gene for each 309 

distinct set. These are the following: (1) LOC105373438 for SNP-set 3, (2) LINC00578 for SNP-310 

set 4, and (3) STOX2 for SNP-set 5. In [49], LINC00578 was reported to be a prognostic marker 311 

for pancreatic cancer (PC), a disease for which hepatitis B has been suggested to be a risk factor 312 

[50, 51, 52], increasing the likelihood of PC by 24% [53].  313 

 314 

Table 3. SNP-sets obtaining the lowest p-values (excluding those that harbor variants reported by 315 

Kim et al. to be significantly associated with HBsAg seroclearance) 316 

SNP-set List of SNPs p-value* 

1 rs6731235, rs199703414, rs16829541, rs1485096, 

rs2341849 

0.0002 

2 rs28365850, rs62625038, rs17102970 0.0004 

3 rs59659073, rs10754962, rs2380525 0.0004 

4 rs200957040, rs1499880, rs4857702 0.0004 

5 rs12644266, rs13130260, rs6815422 0.0001 

*p-values were obtained from 10000 permutations 317 
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Discussion 318 

This study aims to discover novel trait-associated susceptibility loci by augmenting previous 319 

GWAS findings using a machine learning-based SNP-set analysis approach built on the integration 320 

of RF and cluster analysis. Investigation into the functional relevance of variants found in the same 321 

SNP-set containing GWAS-identified SNPs and SNP-sets obtaining significant p-values led to the 322 

discovery of loci that may also contribute to phenotypic expression yet overlooked by GWAS as 323 

a consequence of stringent detection conditions and neglect for SNP-SNP interactions in the 324 

experimental design. The novelty in our proposed method lies in the GWAS-based and data-driven 325 

approach in feature selection prior to cluster analyses. This study did not restrict the discovery of 326 

susceptibility loci to a certain genomic region alone as the criteria for selecting SNPs depend on 327 

statistical significance and predictive powers. As a result, the resulting SNP-sets implicated a 328 

varied selection of genes and cytobands. 329 

 330 

The proposed method was applied on an HBsAg seroclearance GWAS data [39] and was able to 331 

detect SNP rs2399971 as it showed a high degree of similarity with GWAS-identified SNPs. Note 332 

that variant rs2399971, albeit not considered significant in the GWAS conducted on the whole 333 

study population (obtaining a p-value of 1.05x10-4 wherein the cut-off p-value used was 1.00x10-334 

4), nevertheless exhibited significance in the subgroup analysis performed (p-value of 4.60x10-5). 335 

This result demonstrates that by reducing the unit of analysis into groups and exploiting previous 336 

GWAS findings, an increase in detection power could be achieved as a result of pooled strengths 337 

of signal. Through SNP-set analysis, it also becomes possible to generate hypotheses not only on 338 

SNPs but also on other larger biological units such as genes or cytobands [29, 18]. For instance, 339 

gene LINC00578 and locus 11p15, regions implicated by two of the SNP-sets with the lowest p-340 
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values, have shown potential in understanding HBsAg seroclearance as both are linked with 341 

diseases associated with the presence of hepatitis B virus infection. By mapping out these 342 

implicated regions and identifying shared susceptibility loci with a well-researched phenotype, a 343 

better understanding of the intricate underpinnings of the trait of interest could be achieved. For 344 

instance, some of the SNPs associated with height may be considered in understanding the etiology 345 

of HBsAg seroclearance as 11p15 has been reported to harbor genes responsible for growth and 346 

development [54]. Furthermore, elevations in alanine transaminase (ALT) level, a consideration 347 

in declaring HBsAg seroclearance, was found to be an important factor for growth impairment in 348 

children [55]. 349 

 350 

Despite the advantages, the proposed method is subject to several limitations such as time and 351 

computational constraints affecting the total number of SNPs for inclusion in the cluster analyses; 352 

therefore, variants possibly associated with the trait but obtaining low feature importance scores 353 

might not be accounted for. Secondly, parameter values would still have to be tuned by utilizing 354 

specific measures such as gap statistics [56, 57] to ensure an optimal number and a more cohesive 355 

composition of SNP-sets. Lastly, there is a lack of previous research on the integration of 356 

unsupervised and supervised machine learning techniques in analyzing SNP data as well as a 357 

scarcity of studies on SNP-set formation and trait-association. Considering these limitations, 358 

results obtained from the analysis necessitate further biological investigation. 359 

Conclusion 360 

This study aims to identify disease-associated susceptibility loci by augmenting previous GWAS 361 

findings using the integration of RF and cluster analysis. The proposed approach was applied to a 362 
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hepatitis B virus surface antigen (HBsAg) seroclearance GWAS data [39]. Thereafter, the 363 

researchers were able to detect rs2399971, a variant that was not considered to be significantly 364 

associated with the phenotype in the main GWAS, but which obtained a significantly low p-value 365 

in a subgroup analysis [39]. Results of the association tests conducted on the generated SNP-sets 366 

led to the implication of gene LINC00578 and locus 11p15. The former was linked with pancreatic 367 

cancer [49] and the latter with hepatocellular carcinoma [48], diseases associated with hepatitis B 368 

virus infection. Researchers who aim to extend this study could experiment on different supervised 369 

learning techniques for feature selection and utilize other similarity measures for clustering SNPs. 370 

With further investigation and validation, insights gleaned using the proposed framework could 371 

also be integrated into prediction models to aid in quantifying patients’ risks for trait or disease 372 

development. 373 
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Tables 645 

 646 

Table 1. Number of SNPs subjected to cluster analysis 647 

Cluster analysis Number of SNPs included* 

1 1047 

2 2044 

3 3041 

4 4038 

5 5036 

*The set of SNPs included in the cluster analysis is the union of the 52 significant SNPs from Kim et. al.’s 648 

GWAS [39] and the top biomarkers were identified by random forest (starting from top 1000 to top 5000 649 

SNPs in increments of 1000).  650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.25.22274157doi: medRxiv preprint 

https://drive.google.com/file/d/1lotiMDGB_WjnvO6f8J0qtOD36mIQcj1S/view
https://doi.org/10.1101/2022.04.25.22274157
http://creativecommons.org/licenses/by/4.0/


MACHINE LEARNING-BASED SNP-SET ANALYSIS 

33 

Table 2. Cluster memberships of the SNPs that obtained a p-value less than 10-4 in Kim et. al.’s 661 

GWAS [39] 662 

SNP-set SNPs Genea Chromosome 

1 rs1809862, rs10769023, rs10838245, 

rs2017434, rs2047456, rs7945342, rs872751 

UBQLNL;  

 

rs7945342  

- OLFM5P 

11 

2 rs2399971, rs10508462, rs2153442, 

rs4748035 

BEND7 10 

3 rs2215905, rs2192611, rs199869387, 

rs887941, rs12464531, rs13018470 

- 2 

 

4 rs2119977, rs6826277, rs11931577 - 4 

5 rs6749972, rs1558599, rs11891860, 

rs17584600 

- 2 

6 rs35689347, rs2173091, rs8037510 AGBL1 15 

7 rs6462008, rs6947275, rs6462003 rs6462008  

- EVX1, 

HOXA13;  

 

rs6947275 

- HOTTIP, EVX1; 

 

 rs6462003 

- HOXA13  

7 

8 rs1505687, rs12620748, rs13382813 rs12620748 and 

rs13382813 

- LINC01246 
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9 rs741229, rs12151705, rs6737829 - 2 

SNPs in boldface are those that obtained a p-value less than 10-4 in Kim et. al.’s GWAS [39]. 663 
a: Genes were retrieved from dbSNP [47] and [39]. 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 
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 674 

 675 

 676 
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 679 

 680 

 681 

 682 

 683 

 684 
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Table 3. SNP-sets obtaining the lowest p-values (excluding those that harbor variants reported by 686 

Kim et al. [39] to be significantly associated with HBsAg seroclearance) 687 

SNP-set List of SNPs p-value* 

1 rs6731235, rs199703414, rs16829541, rs1485096, 

rs2341849 

0.0002 

2 rs28365850, rs62625038, rs17102970 0.0004 

3 rs59659073, rs10754962, rs2380525 0.0004 

4 rs200957040, rs1499880, rs4857702 0.0004 

5 rs12644266, rs13130260, rs6815422 0.0001 

*p-values were obtained from 10000 permutations 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 
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Figures 705 

 706 

 707 

Fig. 1: The architecture of the proposed integrated framework. In Stage 2, SNPs in concentric 708 

circles in darker shades of gray represent higher-ranking SNPs based on RF. 709 

 710 

 711 
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 712 

Fig. 2: Dendrogram of the SNPs listed in Table 2. 713 
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Appendix 723 

Table A. SNP-sets significantly associated with HBsAg seroclearance (p-value < 0.0005)  724 

SNP-set List of SNPs test-statistic p-value* 

1 rs6749972, rs1558599, 

rs11891860, rs17584600 0.1760646465 4.00E-04 

2 rs6462008, rs6947275, 

rs6462003 0.1263838384 2.00E-04 

3 rs10838245, rs1809862, 

rs10769023, rs2017434, 

rs2047456, rs7945342, rs872751 0.2967616162 3.00E-04 

4 rs2399971, rs10508462, 

rs2153442, rs4748035 0.241240404 2.00E-04 

5 rs6731235, rs199703414, 

rs16829541, rs1485096, 

rs2341849 0.2778494949 2.00E-04 

6 rs2119977, rs6826277, 

rs11931577 0.181420202 1.00E-04 

7 rs35689347, rs8037510, 

rs2173091 0.1386888889 3.00E-04 
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8 rs28365850, rs62625038, 

rs17102970 0.1339040404 4.00E-04 

9 rs59659073, rs10754962, 

rs2380525 0.1153363636 4.00E-04 

10 rs200957040, rs1499880, 

rs4857702 0.1084454545 4.00E-04 

11 rs12644266, rs13130260, 

rs6815422 0.1604717172 1.00E-04 

*p-values were obtained from 10000 permutations. 725 

SNPs in boldface are those that obtained a p-value less than 10-4 in Kim et al’s GWAS. 726 
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