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ABSTRACT

Objective: Accurate and rapid phenotyping is a prerequisite to leveraging electronic health

records (EHRs) for biomedical research.  While early phenotyping relied on rule-based

algorithms curated by experts, machine learning (ML) approaches have emerged as an alternative

to improve scalability across phenotypes and healthcare settings.  This study evaluates ML-based

phenotyping with respect to (i) the data sources used, (ii) the phenotypes considered, (iii) the

methods applied, and (iv) the reporting and evaluation methods used.

Materials and Methods: We searched PubMed and Web of Science for articles published

between 2018 and 2022.  After screening 850 articles, we recorded 37 variables on 100 studies.

Results: Most studies utilized data from a single institution and included information in clinical

notes.  Although chronic conditions were most commonly considered, ML also enabled

characterization of nuanced phenotypes such as social determinants of health.  Supervised deep

learning was the most popular ML paradigm, while semi-supervised and weakly-supervised

learning were applied to expedite algorithm development and unsupervised learning to facilitate

phenotype discovery.   ML approaches did not uniformly outperform rule-based algorithms, but

deep learning offered marginal improvement over traditional ML for many conditions.

Discussion: Despite the progress in ML-based phenotyping, most articles focused on binary

phenotypes and few articles evaluated external validity or used multi-institution data.  Study

settings were infrequently reported and analytic code was rarely released.

Conclusion: Continued research in ML-based phenotyping is warranted, with emphasis on

characterizing nuanced phenotypes, establishing reporting and evaluation standards, and

developing methods to accommodate misclassified phenotypes due to algorithm errors in

downstream applications.
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BACKGROUND AND SIGNIFICANCE

Electronic health records (EHRs) are a central data source for biomedical research.[1] In recent

years, EHR data has been used to support discovery in disease genomics, to enable rapid and

more inclusive clinical trial recruitment, and to facilitate epidemiological studies of understudied

and emerging diseases.[2–6] EHRs are also positioned to be a key source of data for the

development of personalized treatment strategies and generation of real-world evidence.[7,8] A

critical aspect of any secondary use of EHR data is phenotyping, the process of identifying

patients with a specific phenotype (e.g. the presence or onset time of a clinical condition or

characteristic) based on information in their EHR.[9–11] Phenotyping is one of the first steps of

an EHR-based application as it is used to both identify and characterize the population of

interest.

Generally, the phenotyping consists of 4 steps: (i) data preparation, (ii) algorithm development,

(iii) algorithm evaluation, and (iv) application of the algorithm (Figure 1).  The focus of our

article is on the use of machine learning (ML) for algorithm development.  Traditionally,

phenotypes have been inferred from rule-based algorithms consisting of inclusion and exclusion

criteria handcrafted by clinical and informatics experts.[12] However, given the complexity and

variation in documentation across phenotypes, providers, and institutions, developing a sufficient

set of rules is prohibitively resource-intensive and difficult to scale across conditions and

healthcare settings.[13,14] For example, the Electronic Medical Records and Genomics

(eMERGE) Network was an early leader in phenotyping in creating a public phenotype library

called PheKB.  A key finding from this effort was the time intensiveness of  rule-based

phenotyping, sometimes requiring up to 6-10 months of manual effort depending on the
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complexity of the condition.[14]  Similar findings have been reported by other large research

networks such as OHDSI (Observational Health Data Science and Informatics).[10]

To address this barrier to EHR-based research, there has been increasing interest in phenotyping

algorithms derived from ML models.[15,16] In contrast to rule-based approaches, ML methods

aggregate multiple sources of information available in patient records in a more automated and

generalizable fashion to improve phenotype characterization.[17] While there has been

substantial progress in ML approaches designed to make phenotyping more efficient, accurate,

and portable in recent years, these advances have yet to be formally synthesized.[18] To the best

of our knowledge, 5 articles surveyed EHR-based phenotyping methods through

2018.[11,15–17,21] These articles provide conceptual summaries of rule-based methods and

early ML approaches and do not capture advances in semi-supervised, weakly-supervised, and

deep learning that were popularized after publication (Table S1).  Moreover, in light of the wave

of EHR-based studies prompted by the pandemic and the increased complexity of ML

approaches relative to their rule-based counterparts, there is a pressing need to survey the

landscape of phenotyping given its ubiquity in EHR-based applications.[19,20]

OBJECTIVE

Our work fills this gap in current literature through a methodical review of ML-based

phenotyping with respect to (i) the data sources used, (ii) the phenotypes considered, (iii) the

methods applied, and (iv) the reporting and evaluation methods used.  Based on our analysis of

37 items recorded across 100 selected articles, we also identify areas of future research.
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MATERIALS AND METHODS

Working definitions

To situate our discussion, key terminology related to EHR data and ML is provided in Table 1.

We broadly classified a ML method as either (i) supervised, (ii) semi-supervised, (iv)

weakly-supervised, or (v) unsupervised according to the model used and the data available for

training.[22,23] We further classified each method as deep learning if it is neural network-based

and as a traditional ML approach otherwise.  Consistent with recent literature, [18] we used an

inclusive definition of phenotyping as a procedure that uses EHR data to “assert

characterizations about patients.”  Our study therefore includes binary phenotypes such as the

presence of disease and nuanced phenotypes such as disease severity, disease progression, and

social determinants of health (SDOHs).  We focused solely on literature using EHRs, defined as

longitudinal records of a patient’s interactions with a healthcare institution or system primarily

authored by health professionals. We regard our work as a “methodical review” as it does not

qualify as a Cochrane style review, but closely adheres to the PRISMA  (Preferred Reporting

Items for Systematic reviews and Meta-Analyses) guidelines. [24]

Search strategy

Due to the broad and evolving definition of phenotyping, early systematic reviews employed a

manual review of all full-text articles published in a small number of informatics venues.[12,17]

This manual approach was later expanded to a PubMed query [15] using an overly inclusive

search designed to capture all articles that (i) used EHR as the primary data source and (ii)

utilized ML or natural language processing (NLP) or considered phenotyping.  The PubMed

query was similarly restricted to a subset of informatics venues in order to target articles focused
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on phenotyping rather than clinical applications.  We followed an analogous strategy, but

increased the scope of our search by including Web of Science as we found articles were missed

by PubMed.  We also added additional strings related to ML.[25]

Specifically, our search of PubMed and Web of Science identified full-text articles that employed

ML or NLP or considered phenotyping with EHR data published between January 1, 2018, and

April 14, 2022.  The range of publication year was specified to not overlap with existing reviews

and focused on the same major informatics venues: (1) Journal of American Medical Informatics

Association (JAMIA), (2) Journal of Biomedical Informatics (JBI), (3) PloS One, (4)

Proceedings of the American Medical Informatics Association’s Annual Symposium (AMIA), and

(5) JAMIA Open.[12,15,16,26,27] The complete search queries are provided in Table S2.

Study selection

Our overall search strategy is depicted in a PRISMA diagram (Figure 2).

Title and abstract screening

After removing duplicates, articles were retrieved and underwent title and abstract screening by

two authors (S.Y. and J.G.).  A third author (P.V.) resolved disagreements.  Articles were

excluded if they (i) were reviews, perspectives, or editorials, (ii) did not use EHRs as a primary

data source, (iii) did not use ML methods, or (iv) did not consider phenotyping. Table S3

provides a list of article exclusions.

Full-text review
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One author (S.Y.) reviewed the full-text articles and another author (J.G.) verified the

information from the full-text review when necessary.  After excluding papers that did not focus

on ML approaches for EHR phenotyping, 100 papers were selected (Table S4).  During the

full-text review, we extracted information on: (i) the data sources used, (ii) the phenotypes

considered, (iii) the methods applied, and (iv) the reporting and evaluation methods used.  A list

of the 37 recorded variables is included in Table S5.

RESULTS

In reviewing the literature, we found that all but two deep learning approaches were supervised

(Figure 3).  We therefore summarize contributions in traditional supervised, deep supervised,

semi-supervised, weakly-supervised, and unsupervised learning in the subsequent sections.

Data Sources

63 of the 100 articles relied on EHR data from a single institution, while 8 articles used data

from multiple institutions, including research networks such as the OHDSI [28] and

eMERGE.[29] The remaining articles leveraged publicly available data from the Medical

Information Mart for Intensive Care (MIMIC-III) database and NLP competitions (Table S6).  A

small number of studies utilized additional data sources, including administrative claims [30–36]

and registry databases.[37–40] 94 studies were conducted in the US.

With respect to the data types used for developing phenotyping algorithms, 70 of the 100 articles

utilized unstructured free-text data and half of these articles also incorporated information from

structured data.  Unsurprisingly, diagnoses were the most common structured data element and
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were typically derived from International Classification of Diseases, 9th or 10th Revision

(ICD-9/10) billing codes (Figure 4(a)).  Clinical note types (eg. progress notes, discharge

summaries) used for algorithm development were rarely specified (Figure 4(b)).  However, most

articles reported on the NLP software that was used to process free-text.  The clinical Text

Analysis and Knowledge Extraction System (cTAKEs) was the most popular.  Frequently used

terminologies and NLP software are detailed in Table S7 and S8, respectively.

Phenotypes

The articles in our study considered 157 phenotypes, with 40 articles focusing on more than one

phenotype.  Studies using data from NLP competitions focused on adverse drug events [41] and

clinical trial eligibility,[42] while studies using MIMIC-III characterized 25 phenotypes seen in

the intensive care unit.[43] Outside of the articles using public data, chronic conditions with a

large burden on the healthcare system, such as heart diseases and type II diabetes mellitus, were

most frequently considered overall.  69 of the 100 articles aimed to identify binary phenotypes

(e.g. case/control disease status), while few focused on severity or temporal phenotypes (4 and

11 articles, respectively).  Although this finding coincides with previous reviews, there were

considerable differences in the top phenotypes across the 5 ML paradigms (Figure 5). The

phenotypes considered in articles utilizing traditional supervised learning were not identified in

previous reviews[12,15] These include phenotypes primarily documented in free-text such as

suicidal behavior [44,45] and SDOHs.[30,46–49] Deep supervised learning papers similarly

considered SDOHs [50–57] as well as episodic conditions [58–61] and COVID-19.[62,63] The

phenotypes considered by articles using semi- or weakly-supervised methods aiming to expedite

algorithm development included common, chronic conditions [64–66] that had been previously
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identified with a rule-based or traditional supervised learning method.[13,67] Most unsupervised

methods considered progressive conditions associated with multiple comorbidities or phenotypic

heterogeneity such as dementia and chronic kidney disease.[68,69]

ML Methods

Traditional supervised learning

60 articles employed supervised learning methods, with 27 articles using traditional models.  In

contrast to rule-based algorithms, phenotyping algorithms derived from supervised learning are

less burdensome to develop as they are learned from the data.[15] Traditional supervised

learning is also more amenable to incorporating a greater number of features predictive of the

phenotype into the algorithm, such as information in clinical notes.[17] Among the articles using

traditional supervised learning, half of them mapped terms in free-text to clinical concepts in the

Unified Medical Language System (UMLS) [70] for use in algorithm development.  Similar to

features derived from structured data elements, the extracted concepts were typically engineered

into patient-level features (e.g. total number of positive mentions of a concept in the record)

based on the consensus of domain experts.[71] Gold-standard labels for model training were

predominantly annotated through manual review of patient records.[72] In some instances,

labels were also derived from registry data,[37] laboratory results,[35,36,73] or rule-based

algorithms.[47]

The most commonly used methods were random forest, logistic regression, and support vector

machine (Table 2).  A common trend among selected articles was the use of a selective sampling

method, such as undersampling or the Synthetic Minority Oversampling Technique (SMOTE), to
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address class imbalance for rare phenotypes such as surgical site infections and

rhabdomyolysis.[31,33,35,37,48,74,75] Several models, including SVM, single-layer

perceptron, and logistic regression, were also extended to accommodate federated analysis of

distributed EHR data held locally at multiple institutions to identify adverse drug reactions.[33]

Deep supervised learning

While traditional supervised learning methods enable the use of free-text in algorithm

development, they are limited by their inability to handle raw input data.  Deep learning models

consist of many processing layers that discover intrinsic patterns within data to alleviate the

burden of feature engineering.[76,77] This is particularly valuable in the context of EHR data as

models can learn rich representations of the clinical language in free-text.[78] All but 2 articles

employing deep supervised learning articles leveraged clinical notes.  The articles utilized word

embeddings to represent words or clinical concepts as real-valued vectors based on their

context.[79] Word embeddings are typically learned from a large corpus in an unsupervised

fashion and used as the input layer to a neural network.  Common corpora within the selected

articles included clinical notes [53,57,63,80–84] as well as external sources such as biomedical

publications [56,61,62,85,86] and Wikipedia articles [51,58,87–90] (Table S9).  Word2vec,[91]

Global Vectors (GloVE),[92] and Bidirectional Encoder Representations from Transformers

(BERT)[93–96] were the most frequently used methods for training embeddings (Table S10).

Among neural network architectures, feed-forward networks were only used in 3 studies (Table

S11)[97] while BERT and variants were frequently used for phenotypes documented in clinical

notes such as SDOHs (e.g. education [50,57]) and symptoms (e.g. chest pain,[90] bleeding [58]).
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Recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their variants

were the most prevalent architectures as they accommodate sequential data in longitudinal

patient records and clinical text.[24,76] For instance, the bidirectional long-short term memory

(Bi-LSTM), an RNN variant that captures previous and future information in a sequence, was

used to characterize phenotypes evolving over time such as dementia [34] and substance

abuse.[54] In terms of text-based phenotyping, the Bi-LSTM with a conditional random field

layer (Bi-LSTM-CRF) was used to improve identification of adverse drug events.[80,81,88]

Similarly, Gehrmann et al. improved text-based phenotyping with a CNN designed to identify

phrases relevant to substance abuse, depression, and other chronic conditions with the

MIMIC-III phenotype dataset.[55]

Semi-supervised learning

Despite its widespread use, supervised learning is difficult to scale due to the time and resources

required to obtain gold-standard labeled data.[98] Semi-supervised methods are trained with a

large amount of unlabeled data (i.e. unreviewed medical records) and a small amount of labeled

data to minimize the burden of chart review.[99] Three types of methods were used in 6 articles

utilizing semi-supervised learning (Table 3).  The first type performed feature selection using

“silver standard labels” that can be automatically extracted from patient records, such as the

frequency of phenotype specific diagnostic codes, prior to supervised training.[100,101] For

instance, PheCAP processed openly available knowledge sources such as Wikipedia articles to

generate a candidate list of related UMLS concepts.  An ensemble sparse regression approach

using silver-standard labels was then used to identify relevant concepts for supervised learning.

PheCAP was used to phenotype over twenty conditions using EHR data from 4
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institutions.[100,102] The second type of semi-supervised learning applied self-learning to train

a generative model with labeled data to create pseudo-labels for the unlabeled dataset in order to

train a traditional supervised model. Self-learning performed on par with supervised learning for

18 phenotypes.[64,65] In contrast, the third type directly incorporated unlabeled data into the

algorithm through modification of the loss function.[66,103] For example, a semi-supervised

tensor factorization (PSST) approach used the information in unlabeled data to incorporate

cannot link constraints into tensor factorization for classification of hypertension and type-2

diabetes.[66] PSST performed similarly to supervised tensor factorization, but with fewer

labeled examples.

Weakly-supervised learning

Analogous to semi-supervised learning, the goal of weakly-supervised learning is to expedite the

phenotyping process by eliminating the need for gold-standard labeled data.  Weakly supervised

methods rely on a “silver-standard” label that can be easily extracted from patients records in

place of gold standard labels.[104] The silver-standard label is selected based on clinical

expertise as a proxy for the phenotype.[104–107] Common silver-standard labels included

specific diagnosis codes, lab results, and free-text mentions of the phenotype.[108–110]

Two types of weakly-supervised learning approaches were used in 15 articles (Table 4).  The

first type assumed the silver-standard label follows a mixture model representing phenotype

cases and controls.[108–114] For example, PheNorm utilized Gaussian mixture-models with

denoising self-regression for phenotyping 4 chronic conditions.[108] MAP later improved upon

PheNorm with an ensemble of mixture models and was validated across 16 phenotypes and two
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phenome-wide association studies.[40,109] PheVis extended the resolution of PheNorm from

patient-level to visit-level by incorporating past medical history information into

estimation.[112] The second type of weakly-supervised methods used silver standards to directly

train supervised models.[51,105,106,115–119] For instance, APHRODITE employs “noisy

label” learning with an anchor feature with a near perfect positive predictive value (PPV), but

potentially imperfect sensitivity to train L1-penalized logistic regression models.[115]

APHRODITE is available in openly available software for users of the OMOP common data

model.  Similar approaches have been used to identify phenotypes poorly documented in

structured data such as systemic lupus erythematosus.[51,116] In general, weakly-supervised

models exhibit similar or improved performance to their rule-based and supervised counterparts

(Figures S1 and S2).

Unsupervised learning

In contrast to the previously discussed ML approaches, unsupervised learning is used for

phenotype discovery, including identification of subphenotypes,[39,74,120–128] co-occurring

conditions,[69,129] and disease progression patterns.[68,130–134] Among the 19 articles

utilizing unsupervised learning, Latent Dirichlet Allocation (LDA)[69,124,125,127,133] and

K-means were the most frequently used methods.[120,121,123,125] LDA was applied to

identify the co-occurrence of allergic rhinitis and osteoporosis among patients with kidney

disease [69] as well as to capture trends in mental health and end of life care among dementia

patients.[133] K-means was used to discover subphenotypes such as patients with different

symptoms of acute kidney injury.[120] Model-derived subpopulations were commonly used in

downstream prediction tasks.[39,68,121,122,125,131] For example, a SVM was used to identify
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sepsis using features of subpopulations with distinct dysfunction patterns discovered from a

self-organizing map.[128] Only 1 article utilized a deep learning approach, specifically a deep

autoencoder to discover subtypes of depression.[132]

Reporting and Evaluation Methods

As the articles primarily focused on identifying disease cases (excluding unsupervised learning

articles), most evaluated algorithm performance with PPV, sensitivity, and/or F-score (70/81

articles reported at least one of these metrics; Table S12).  The area under the ROC curve

(AUROC) was also reported as an overall summary of discriminative performance (42/81

articles), while calibration was rarely assessed (5/81 articles).  Additionally, several studies

linked EHR data to administrative claims [30–36] or registry databases [37–40] to validate

algorithm accuracy. Biorepositories were also used to demonstrate the validity of a derived

phenotype in replicating a genetic association study.[109–111,135] Only 5 studies performed

external validation or evaluated algorithmic fairness.[36,40,52,61,136] We also found limited

reporting of the data descriptors necessary to assess the feasibility of implementing an algorithm

in a new setting.  Patient demographics were only reported in 38 of 71 papers using private data

sources and only 20 articles released their analytic code.  A majority of these articles used

complex deep learning models (9 articles) and/or free-text data (9 articles).

With respect to performance comparisons, 21 articles compared an ML approach to a rule-based

method (Table S13).  Traditional ML was used in 10 of these articles and outperformed

rule-based algorithms in 8 articles with respect to PPV, sensitivity, or both (Figure S3).  2

supervised deep learning models were compared to rules, with a Bi-LSTM performing similarly
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to a rule-based approach for substance abuse [54] and a bidirectional gated recurrent unit model

significantly decreasing performance in identifying insulin rejection.[137] 20 articles also

provided comparisons between deep learning and traditional baselines (Table S14). Deep

learning outperformed traditional ML across all reported accuracy metrics for 18 of 33

phenotypes considered (Figure S4(a)).  Deep learning improved sensitivity with a corresponding

decrease in PPV or vice-versa (Figure S4(b-c)) for the remaining phenotypes, with the exception

of one study demonstrating that elastic net logistic regression outperformed a RNN for

phenotyping fall risk (Figure S4(d)).[61] It is important to note that a meaningful gain in

accuracy must be interpreted in the context of the use case of the algorithm and the target metric

of performance.  Moreover, improvements in accuracy must be weighed against additional

challenges brought on by deep learning, including data demands, decreased interpretability, and

limited generalizability over time and across healthcare settings.[72,138–140]

DISCUSSION

This review highlights the substantial ongoing work in ML-based phenotyping.  A broad range

of phenotypes have been considered and the use of unstructured information in clinical notes is

widespread.  While ML approaches did not uniformly outperform rule-based methods, deep

learning provided marginal improvement over traditional baselines.  Moreover, semi-supervised

and weakly-supervised learning have expedited the phenotyping process while unsupervised

learning has been effective for phenotype discovery.  Progress withstanding, most articles

focused on binary phenotypes and few studies evaluated external validity or used

multi-institution data.  Study settings were infrequently reported and analytic code was rarely

released.  Future work is warranted in “deep phenotyping”, reporting and evaluation standards,
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and methods to accommodate misclassified phenotypes due to algorithm errors in downstream

applications.

Deep Phenotyping

“Deep phenotyping” moves beyond binary identification to characterization of nuanced

phenotypes, such as the timing or severity of a condition, using advanced methods leveraging

interoperable and multimodal data types.[19, 122,141,142] From a methodological viewpoint,

studies of nuanced phenotypes will face similar, but more substantial challenges in obtaining

gold-standard labeled data.  Further work in semi- and weakly-supervised deep learning methods

is necessary.[143,144] Moreover, given the privacy constraints associated with EHRs and other

health data sources, leveraging interoperable and multimodal data calls for advancements in

federated learning methods that can accommodate distributed data sources stored locally across

institutions. [145]

Reporting & Evaluation Standards

Research networks, such as eMERGE, have long advocated for transparent and reusable

phenotype definitions.  Most recently, in response to the wave of COVID-19 studies, Kohane et

al. proposed a checklist for evaluating the quality of EHR-based studies, emphasizing phenotypic

transparency as a key concern.[146] However, we found most articles did not release necessary

details for complete evaluation of an approach or implementation in other settings.  As a step

towards reporting standards that increase transparency and reproducibility, OHDSI proposed

Findable, Accessible, Interoperable, and Reusable (FAIR) phenotype definitions based on

APHRODITE. All of the necessary tooling, data models, software and vocabularies are publicly
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available and released with open-source licenses. [147] As noted in Kashyap et al in evaluating

the APHRODITE framework, effective reporting of phenotyping models should include a

detailed recipe for data preparation and model training, rather than the pre-trained models

themselves, given substantial differences in EHR data across institutions.[115]

Additionally, we observed a lack of rigorous evaluation of phenotyping algorithms, with most

studies using standard metrics to evaluate internal validity.  We stress further model interrogation

for phenotyping, including external validation as well as evaluation of fairness.  However,

reliable performance evaluation requires a substantial amount of gold-standard labeled data.

There is very little work on semi-supervised and weakly-supervised model performance

evaluation, and further research is warranted.[148–150]

Accounting for Misclassified Phenotypes due to Algorithm Errors

As ML phenotyping expands the scope of EHR research, care must be taken when using derived

phenotypes for downstream tasks as they are inevitably misclassified due to algorithm errors.  In

the context of association studies, it is well known in the statistical community that

misclassification can lead to diminished statistical power and biased estimation.[151–153]

However, statistical methods are often siloed from the informatics community.  We advocate for

dissemination of existing methods and for methodological developments in “post-phenotyping”

inferential and predictive modeling studies.
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Limitations

As the definition of phenotyping is variable within the literature,[12] we used a broad search

capturing articles focusing on ML or NLP or phenotyping using EHRs. Following prior work, we

limited our scope to select informatics venues.[12,15] Although we have missed articles outside

of these journals, our aim is to rigorously characterize the general landscape of ML-based

phenotyping, which we believe is captured in the venues considered and in our detailed analyses.

CONCLUSION

This review summarizes the landscape of ML-based phenotyping between 2018 and 2022.

Current literature has laid the groundwork for “deep phenotyping”, but developing standards and

methodology for reliable use of a diverse range of phenotypes derived from ML models is

necessary for continued EHR-based research.
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DATA & CODE AVAILABILITY

The underlying data and R code to replicate our analyses can be found at:

https://github.com/jlgrons/ML-EHR-Phenotyping-Review
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Figure 1. Overview of the phenotyping process.  Step 1 involves data preparation which

includes (i) extraction and processing of relevant data from records of candidate patients from

the data warehouse and (ii) manual review of a subset of charts to obtain gold-standard

phenotype labels.  Step 2 is the algorithm development phase in which researchers use the data

from Step 1, often referred to as the data mart, to develop the phenotyping algorithm with a

rule-based or machine learning (ML) method.  Step 3 evaluates the accuracy of an algorithm by

comparing the assigned phenotype from the algorithm to the gold-standard label, often with

estimates of the positive predictive value (PPV), sensitivity, and other accuracy metrics.  Step 4

applies the algorithm from Step 2 to obtain the cohort of patients with the phenotype for

downstream analysis.  The identified cohort can then be used in a variety of downstream

applications.
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Table 1. Descriptions of  (a) terms used to describe EHR data and (b) ML methods in the

context of phenotyping.

(a)

Term Description

Structured data Data that utilize a controlled vocabulary.  Structured data are readily available and
searchable in an EHR research database, but often have variable accuracy in
characterizing phenotypes.  Examples include diagnosis codes, procedure codes,
demographics, prescriptions, and laboratory values.

Unstructured data Data that is not organized in a specific manner and requires substantial processing prior
to analysis.  In the context of phenotyping, the most common form of unstructured data
is free-text, such as progress notes, admission and discharge summaries, and radiology
reports.  Medical images are another form of unstructured data, but were not used in the
selected articles.

Gold-standard label The best classification available for phenotype status, most often derived from manual
review of patient records by a clinical expert.

Silver-standard label Proxies for the gold-standard phenotype label that are less accurate in characterizing the
phenotype, but that can be obtained without time-consuming chart review.  Examples
include billing codes specific to the phenotype and laboratory values.

Feature Data elements that are potentially predictive of the phenotype and used for algorithm
development.  Examples include structured data elements such as diagnosis codes and
prescriptions as well as information derived from unstructured free-text such as the
number of times a phenotype is positively mentioned in a patient’s record.

Labeled data Data that contains information on both the gold-standard phenotype labels and the
features.

Weakly-labeled data Data that contains information on silver-standard labels and the features.

Unlabeled data Data that contains information on only the features.

(b)

ML method Description Motivation for use in phenotyping

Supervised learning Includes methods used to characterize a
phenotype with algorithms trained with
labeled data.

More automated and potentially more
accurate than rule-based methods.
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Semi-supervised
learning

Includes methods used to characterize a
phenotype with algorithms trained with
both labeled and unlabeled data.

Reduces the amount of labeled data for
model training.

Weakly-supervised
learning

Includes methods used to characterize a
phenotype with algorithms trained with
weakly-labeled data.

Eliminates the need for labeled data for
model training.

Unsupervised
learning

Includes methods used to identify structure
relevant to a phenotype, such as subtypes
or clusters of disease progression
trajectories, using unlabeled data.

Enables phenotype discovery.

Deep learning A type of  ML method that includes
methods based on multi-layer neural
networks.  Can be either supervised,
semi-supervised, weakly-supervised, or
unsupervised.

Alleviates the need for feature engineering
and can yield high accuracy on
phenotyping tasks.

Traditional machine
learning

ML methods that are not constructed based
on multi-layer neural networks.

Simpler to implement and interpret than
deep learning methods.
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Figure 2. PRISMA diagram for article selection. Only one exclusion reason was chosen for

each record during the screening process, although the reasons are not mutually exclusive.
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Figure 3. Number of articles that used the various machine learning paradigms.
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Figure 4. Types of structured data and clinical notes used to develop phenotyping algorithms in

the selected articles (excluding articles using competition data).  A data type is presented if it is

used in more than one article.  Encounters include encounter metadata, while medical history

notes include both social history and cardiac surgical history.
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Figure 5. Top phenotypes considered within each machine learning category and the number of

articles of each phenotype (excluding articles using competition data sources).  Phenotypes are

colored if they appear in more than one category.
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Table 2. Common methods in each machine learning category.  A method is presented if it

appeared in more than one article.

Machine learning
type

Method Number of
articles

Traditional supervised
learning

Random forest 14

Logistic regression 11

Support vector machine (SVM) 11

L1 logistic regression 8

Decision trees 4

Extreme gradient boosting (XGBoost) 4

Naive Bayes 3

Deep supervised
learning

Recurrent neural networks (RNNs) and variants 19

Convolutional neural networks (CNNs) and variants 11

BERT and variants 7

Feed-forward neural networks (FFNNs) 3

Weakly-supervised
learning

PheNorm [108] 3

MAP [109] 2

Random forest (with silver-standard labels) 2

Unsupervised learning Latent Dirichlet Allocation (LDA) 5

K-means 4

UPGMA (unweighted pair group method with arithmetic
mean) hierarchical clustering

2

Note: Some papers used more than one method.  The table does not include any

semi-supervised methods as each article used a distinct method.  Semi-supervised methods are

presented in Table 3.
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Table 3. Semi-supervised methods used in the selected articles, as well as the phenotypes

considered and the size of the labeled and unlabeled datasets.

Method Paper Phenotype(s) Unlabeled
dataset size

Labeled
dataset size

Silver-standa
rd based
feature
selection

Cade et al.[100] Sleep apnea 15,741 300

Cohen et al.[101] Acute hepatic porphyria 22,372 200

Self-learning Estiri et al.[64] Alzheimer's disease; Atrial fibrillation;
Asthma; Bipolar disorder; Breast cancer;
Coronary artery disease; Crohn's disease;
Congestive heart failure; Chronic obstructive
pulmonary disease; Epilepsy; Gout;
Hypertension; Rheumatoid arthritis;
Schizophrenia; Stroke; Type 1 diabetes
mellitus; Type 2 diabetes mellitus;
Ulcerative colitis

5,732
(Average)

360
(Average)

Estiri et al.[65] Alzheimer's disease; Atrial fibrillation;
Coronary artery disease;  Congestive heart
failure; Chronic obstructive pulmonary
disease;  Rheumatoid arthritis; Stroke;  Type
1 diabetes mellitus; Type 2 diabetes mellitus;
Ulcerative colitis

6,000
(Average)

351
(Average)

Modified loss
function

Zhang et al.[103] Aldosteronism 6,391 185

Henderson et al.[66] Resistant hypertension; Type 2 diabetes
mellitus

1,622 400
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Table 4. Weakly-supervised methods used in the selected articles, as well as the phenotypes

considered and the silver-standard label used.

Method Paper Phenotype(s) Silver-standard label(s)

ICD
code

SNOME
D code

Relevant
concept or
word in
free-text

Other

Mixture
modeling

PheNorm[108] Rheumatoid arthritis; Crohn's
disease; Ulcerative colitis;
Coronary artery disease

✓ ✓

PheProb[111] Rheumatoid arthritis ✓

Multimodel
Automated
Phenotyping
(MAP)[109]

Asthma; Crohn's disease;
Ulcerative colitis;
Cardiomyopathy; Congestive
heart failure; Epilepsy; Juvenile
rheumatoid arthritis; Chronic
pulmonary heart disease; Type
1 diabetes mellitus;
Cardiovascular disease;
Inflammatory bowel disease

✓ ✓

Geva et al.[40] Asthma; Bipolar disorder;
Schizophrenia; Breast cancer;
Chronic obstructive pulmonary
disease; Congestive heart
failure; Coronary artery
disease; Hypertension;
Depression; Epilepsy; Multiple
sclerosis; Rheumatoid arthritis;
Type 1 diabetes mellitus; Type
2 diabetes mellitus; Crohn's
disease; Ulcerative colitis

✓ ✓

PheMAP [110] Type 2 diabetes mellitus;
Dementia; Hypothyroidism

✓

PheVis [112] Rheumatoid arthritis;
Tuberculosis

✓ ✓

Surrogate-guided
ensemble latent
Dirichlet allocation

Asthma; Breast cancer; Chronic
obstructive pulmonary disease;
Depression; Epilepsy;

Phenotype
probabilities
derived from
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(sureLDA)[113] Hypertension; Schizophrenia;
Stroke; Type 1 diabetes
mellitus; Obesity

PheNorm

Ning et al.[114] Coronary artery disease;
Rheumatoid arthritis; Crohn's
disease; Ulcerative colitis;
Pulmonary hypertension

✓ ✓

Noisy
labeling

Automated
PHenotype Routine
for Observational
Definition,
Identification,
Training and
Evaluation
(APHRODITE)[115]

Appendicitis; Type 2 diabetes
mellitus; Cataracts; Heart
failure; Abdominal aortic
aneurysm; Epilepsy; Peripheral
arterial disease; Obesity;
Glaucoma; Venous
thromboembolism

✓

Murray et al.[116] Systemic lupus erythematosus ✓

Ling et al.[38] Metastatic breast cancer ✓

Banerjee et al.[119] Urinary incontinence; Bowel
dysfunction

✓

NimbleMiner [118] Fall ✓

Annapragada et
al.[51]

Child physical abuse ✓

Sanyal et al.[117] Insulin pump failure ✓
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