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 2

Abstract: 26 
 27 
Objectives: Tuberculosis (TB) is a bacterial infectious disease caused by Mycobacterium 28 
tuberculosis. Annually, an estimated 10 million people are diagnosed with active TB, and 29 
approximately 1.4 million dies of the disease. If left untreated, each person with active TB 30 
will infect 10 to 15 new individuals every year. Therefore, interrupting disease transmission 31 
by accurate early detection and diagnosis, paired with appropriate treatment is of major 32 
importance. In this study, we aimed to identify biomarkers associated with the development 33 
of active TB that can then be further developed for clinical testing. 34 
 35 
Methods: We assessed the relative plasma concentration of 92 proteins associated with 36 
inflammation in individuals with active TB (n=19), latent TB (n=13), or healthy controls 37 
(n=10). We then constructed weighted protein co-expression networks to reveal correlations 38 
between protein expression profiles in all samples. After clustering the networks into four 39 
modules, we assessed their association with active TB. 40 
 41 
Results: One module consisting of 16 proteins was highly associated with active TB. We 42 
used multiple independent transcriptomic datasets from studies investigating respiratory 43 
infections and non-TB diseases. We then identified and removed genes encoding proteins 44 
within the module that were low expressed in active TB or associated with non-TB diseases, 45 
resulting in a 12-protein plasma signature associated with active TB.  46 
 47 
Conclusion: We identified a plasma protein signature that is highly enriched in patients with 48 
active TB but not in individuals with latent TB or healthy controls and that also had minimal 49 
cross-reactivity with common viral or bacterial lower respiratory tract infections.  50 
 51 
Keywords: Mycobacterium Tuberculosis, Co-expression network analysis, Plasma protein 52 
signature 53 
 54 
 55 
 56 
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Introduction: 58 
 59 
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an ongoing pandemic 60 
responsible for approximately 10 million clinical cases and 1.4 million deaths annually, 61 
making it the single deadliest infectious disease excluding the ongoing SARS-CoV2 62 
pandemic. However, there are still many limitations in diagnostic methods available for 63 
active TB (1, 2). Around one-fourth to one-fifth of the world’s population is estimated to be 64 
latently infected with Mtb (3), of which 5-10% are estimated to eventually develop active 65 
disease. 66 

Pulmonary TB is the most common clinical form, and it is diagnosed by detecting 67 
Mtb in sputum samples by microscopy, nucleic acid amplification tests, such as PCR, and the 68 
reference method mycobacterial culture. Several limitations to these methods exist; as 69 
compared with culture positivity, sputum microscopy is positive only in approximately 50% 70 
of cases (4) and PCR in approximately 90% of cases in respiratory samples (GeneXpert 71 
RIF/TB and GeneXpert Ultra) (5, 6). Additional difficulties relate to specific patient groups, 72 
such as HIV-infected patients and children, the latter commonly having low bacterial load 73 
and cannot produce sputum. Mycobacterial culture can take several weeks to yield positive 74 
results and requires specialized safety laboratories. In addition, it is often unavailable in 75 
resource-poor settings where TB is more prevalent. In addition, the diagnosis of 76 
extrapulmonary TB relies on invasive procedures to obtain samples for microbiological 77 
analysis. Thus, diagnosis is frequently based on clinical and radiological findings or 78 
algorithms, especially in low-resource settings. The diagnostic delays in endemic areas are 79 
well-described (7) The gap between estimated and reported TB cases was more than 4 million 80 
in 2020, and of those reported only 59% were microbiologically confirmed (8). No specific 81 
blood test or biochemical marker has yet been introduced in the routine clinical work-up to 82 
distinguish TB from other medical conditions. The need for non-sputum-based tests, both for 83 
screening and diagnostic purposes is urgent and the requirements of those tests have been 84 
described in detail in WHO statements for Target Product Profiles (9). 85 

Over the last decades, various methods that examine the host response to Mtb 86 
infection have been evaluated. Attempts at identifying TB-specific transcriptional, protein, 87 
and metabolic signatures in patient blood samples were recently reviewed (10, 11). Promising 88 
results have emerged for transcriptional signatures (12, 13) but no protein signature for active 89 
TB has so far been validated in independent confirmatory studies. The protein signatures so 90 
far identified show limited overlap and together with varying study designs and methods, this 91 
makes a meta-analysis difficult (14). 92 

In this study, we investigated the profile of 92 inflammatory proteins in the plasma 93 
from a Swedish cohort including individuals with active TB, latent TB, and healthy controls 94 
(Figure 1). Through weighted co-expression network analysis, we identified a signature that 95 
was highly associated with active TB and disease severity. We refined the signature by 96 
removing proteins associated with other bacterial and viral respiratory infections and 97 
sarcoidosis. We then validated the signature in several independent transcriptional datasets 98 
and showed it to be highly enriched in individuals with active TB. 99 
 100 
 101 
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102 
Figure 1: Flowchart of the study. 103 

 104 
Materials and methods: 105 
 106 
Ethical considerations 107 
The study was registered and granted ethical permission from the Swedish Ethical Review 108 
Board, EPN-number 2013/1347-31/2 and 2017/2262-32. All study subjects signed written 109 
informed consent forms after receiving written and verbal information, in relevant cases 110 
using professional interpreter services. 111 
 112 
Study participants 113 
Patients were recruited at the Karolinska University Hospital, Stockholm from May 2018 to 114 
November 2019. Eligible for the study were: 1) Active TB patients within seven days of 115 
treatment initiation. Active TB was defined through microbiological verification via Mtb 116 
culture, or if culture negative, other microbiological positive result for Mtb (microscopy or 117 
PCR) combined with clinical and radiological findings and response to anti-TB treatment 118 
(active TB individuals are further described in Table S1); 2) Latent TB individuals with a 119 
positive IGRA result (QuantiFERON-TB Gold In-Tube (QFT-GIT) or QuantiFERON-TB 120 
Gold Plus (QFT-Plus) identified through contact investigation or screening of migrants, for 121 
which active TB had been excluded. The cut-off between recent and remote TB was set to 122 
two years after exposure; 3) Healthy controls with a negative IGRA-result and without 123 
previously known TB-exposure, co-morbidities, or immunosuppression.  124 
 125 
Data collection 126 
Demographic, epidemiological, and clinical data for patients with active and latent TB were 127 
extracted from patient charts. For all subjects this included information regarding previous 128 
exposure to patients with active TB or infection, comorbidities and current medication, 129 
radiological, biochemical, and microbiological test results. For the active TB cases, clinical 130 
symptoms of TB disease were noted, and patients were classified according to pulmonary or 131 
extrapulmonary TB. Microbiological samples for mycobacterial analysis were collected 132 
independent of the study in accordance with clinical practice.  133 
 134 
Analysis of plasma proteins by proximity extension assay  135 
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Venous blood samples were collected in heparin vacutainer tubes and transferred to the 136 
laboratory for immediate preparation. The tubes were centrifuged at 670 g for 8 min after 137 
which the plasma fraction was aliquoted and stored at –80 °C. 138 

Patient plasma was analysed using the Olink proximity extension assay, a qPCR 139 
technology that simultaneously measures combinations of cytokines in preselected panels. 140 
We used the 96-protein inflammatory panel, analysing 92 protein biomarkers and 4 controls 141 
(Table S2). In this automated process, specific antibodies carrying single stranded matching 142 
DNA bind in pairs to each of the target proteins allowing for DNA hybridization and 143 
subsequent DNA-extension. The resulting DNA, unique for each target protein, is then 144 
subject to PCR amplification and finally detection. The generated results consist of 145 
normalized protein expression (NPX) values that correspond to log2 transformed relative 146 
protein concentrations. The assay was performed by the Translational Plasma Profile Facility 147 
at SciLifeLab, Stockholm, Sweden. 148 
 149 
Protein expression data analysis 150 
Repeated samples were used between experimental batches for running bridge normalization. 151 
We used read_NPX and olink_normalization functions from the OlinkAnalyze R package 152 
(https://github.com/Olink-Proteomics/OlinkRPackage) to read the log2 NPX protein 153 
expression values and perform bridge normalization between batches of our data respectively. 154 
Proteins with NPX values below the limit of detection (LOD) in more than 30% of samples 155 
were filtered out. To remove batch effects from the final dataset, we applied the 156 
removeBatchEffect function from the Limma R package (15) (Figure S1). We also performed 157 
differential expression analysis using the Limma R package. 158 
 159 
Weighted co-expression network analysis 160 
We used the WGCNA R package to construct a weighted protein co-expression network 161 
among the proteins of our dataset. Pearson correlation and the signedhybrid network type 162 
were used in the adjacency function of the WGCNA package. In the signedhybrid network 163 
type, only links associated to positive correlations were retained in the network, and negative 164 
correlations were discarded. Since most of the biological networks have a scale-free 165 
topology, the WGCNA package in the pickSoftThreshold function tries to find the best value 166 
of the power parameter to make a scale-free network. After network construction, the 167 
network was clustered into modules containing proteins that were highly positively co-168 
expressed using a hierarchical clustering algorithm as implemented in the cutreeDynamic 169 
function of the WGCNA package with parameters deepSplit = 4 and minClusterSize = 5, and 170 
other parameters set as default. The expression profiles of proteins in each module were 171 
summarized by module eigengenes. In the moduleEigengenes function from the WGCNA 172 
package, the first principal component of the expression data of each module is measured as a 173 
module eigengene for that module. To find a module associated with TB progression, the 174 
correlation between each module eigengene and the trait vector was computed to identify 175 
which module that had a significant correlation with TB progression.  176 
 177 
Protein signature enrichment analysis 178 
To further validate the protein signature obtained from the co-expression network analysis, 179 
we applied two computational methods (ssGSEA and QuSAGE) for enrichment analysis in 180 
independent transcriptomic datasets.  In ssGSEA, the enrichment scores of the protein 181 
signature were calculated per sample based on the absolute value of proteins expression in 182 
that sample to quantify how much the protein signature was overrepresented in a specific 183 
sample. Moreover, to verify that the protein signature was specific to active TB and not to 184 
other non-TB respiratory infections or diseases with clinical presentations similar to active 185 
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TB, the qusage function from the QuSAGE R package was applied to datasets comparing 186 
active TB or non-TB disease to various control groups. The gene set differential expression 187 
was calculated by combining individual probability functions obtained from individual 188 
differential expression of genes in a particular comparison. A p-value, calculated by 189 
QuSAGE, determined the statistical significance of a gene set for each given comparison. We 190 
also used different types of single sample gene set enrichment analysis algorithms, including 191 
ssGSEA, GSVA (16) and zscore (17), all implemented in the gsva R package, to compare all 192 
co-expressed modules in terms of enrichment in active TB versus latent TB and healthy 193 
controls. 194 
 195 
Results 196 
 197 
Clinical characteristics of the study participants 198 
The plasma of 21 individuals with active TB, 16 individuals with latent TB, and 10 healthy 199 
controls were analyzed using the Olink inflammation proximity extension assay. During data 200 
processing, 5 samples (2 active TB and 3 latent TB) were excluded for either failing the 201 
quality control check included in the OlinkRPackage or identified as outliers by cluster 202 
analysis (Figure S2). The characteristics of the remaining study participants are further 203 
described in Table 1. 204 

As a reflection of the low TB incidence in Sweden, most study individuals originated 205 
from other countries, mainly situated in Africa, Asia and Eastern Europe. Fifteen of 19 active 206 
cases had pulmonary TB including 3 with pleuritis, 6 of which were sputum smear positive. 207 
Four had extrapulmonary TB cases of which two with disseminated disease. Only 1 out of the 208 
19 active TB patients was not confirmed by microbiologic culture; this patient had a positive 209 
PCR for M. tuberculosis in a lymph node aspirate and gastric lavage as well as radiologic 210 
signs of active pulmonary TB and showed a clinical response to TB-treatment. The active TB 211 
cases were sampled within one week of treatment initiation except for one patient that was 212 
sampled at day 9. Of the 13 latent TB patients, 10 had a known recent TB exposure 1-4 213 
months prior to study inclusion. All but 2 latent TB individuals completed preventive TB 214 
treatment, and none progressed to active TB during a follow up period of > 2 years. There 215 
were few significant co-morbidities, with no patient in either group on immunosuppressive 216 
treatment. All active TB patients were HIV negative. The latent TB and healthy controls were 217 
not routinely tested for HIV infection. 218 

From the 10 healthy controls, 1 had a QFT-Gold Plus result in the low range of the 219 
borderline interval (0.35-0.99 IU/ml) but with no known exposure, potentially indicating a 220 
false positive result (18, 19). 221 
 222 
  223 
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Table 1. Clinical characteristics of the sample cohort 224 
 225 

  

Active TB 

(n=19)  

Latent TB 

(n=13) 

Healthy 

controls 

(n=10) 

Men n (%) 8 (42) 8 (62) 6 (67) 

Age, y (mean, range) 39 (20-71) 39 (18-72) 25 (21-37) 

Origin from TB high endemic country, n  14 5 0 

Time since immigration to Sweden, y  9 (0.2-45) 5 (0.5-15) n/a 

BCG-vaccination  yes/no/unknown 2/1/16 4/1/8 1/9/0 

IGRA result pos/neg/unknown 10/1/8 13/0/0 16/9/- 

Previous Mtb 

infection 

active1 3 0   

latent 1 0   

Previous Mtb 

exposure4 

<2 years (recent) 4 10   

>2 years (remote) 1 1   

Biochemistry
2,5

 

(mean, range) 

CRP (mg/L) 25 (1-94) 1 (1-2)   

ESR (mm) 51 (7-117) 6 (1-21)   

WBC (109/L) 6.5 (3.8-11.8) 6.6 (5.6-9)   

Hb (g/L) 126 (102-149) 145 (118-158)   

Alb
3
 (g/L) 32 (26-38) 41 (39-44)   

 226 
Patient origins; Active TB: Somalia (4) Eritrea (3), Sweden (3), Philippines (2), Peru, Bangladesh, Pakistan, 227 
Mongolia, Poland, China, Afghanistan. Latent TB: Sweden (3), Romania (3), Moldavia (2), Mongolia, Ethiopia, 228 
Eritrea, Ghana, India.  229 
Comorbidities; Active TB: postpartum period, hypertension (2), intestinal schistosomiasis, chronic hepatitis B, 230 
acute thyroiditis. Latent TB: chronic hepatitis B, hypertension (2) 231 
C-reactive protein (CRP), Erythrocyte sedimentation rate (ESR), White blood cell count (WBC), Hemoglobin 232 
(Hb), Albumin (Alb) 233 
1Two patients previously treated for ATB, 1 and 4 years before; one patient not treated 234 
2ATB n=19 LTBI n=9 235 
3ATB n=17 LTBI n=7 236 
4Exposure self-reported or verified  237 
5Normal range; CRP<5, ESR <20, WBC 4.4-10.0, Hb >120 (F),>130 (M), Alb>38  238 
6Healthy controls; one QFT borderline (0.36/0.39), no exposure to TB 239 
 240 
Network construction reveals one module associated with active TB  241 
Following data pre-processing, including quality control, batch correction, and clustering the 242 
relative level (NPX) of each of the 92 proteins was assessed. Proteins with more than 30% of 243 
samples with NPX values below the limit of detection (n = 28) were excluded from further 244 
analysis. Out of those 28 proteins, 25 had no differential expression between the groups 245 
(Figure S3). A weighted protein co-expression network was constructed with the remaining 246 
64 proteins to examine correlations between protein expression profiles in all included 247 
samples (n = 42 individuals). We considered only the links associated with positive 248 
correlations in the network reconstruction and selected power 8 to reach a scale-free topology 249 
(Figure S4). After clustering the network into modules, four modules indicated by distinct 250 
colours in Figure 2 were discovered (Table 2), including 34 proteins. The remaining 30 251 
proteins that were not included in any of the modules, were discarded from further analysis. 252 
We observed that the turquoise module out of the four modules had a significantly stronger 253 
correlation with active TB (Table 2). A visual representation of the protein co-expression 254 
network and the discovered protein modules were then generated using Cytoscape 3.0 (20) 255 
(Figure 2). 256 
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 258 
Figure 2. A visual representation of the protein co-expression network and the protein modules: The protein 259 
modules are surrounded by the colours turquoise, blue, brown or yellow. Nodes are coloured based on protein 260 
abundance (Fold Change) in comparison of active TB vs. control, with a darker red indicating a larger fold 261 
change.  Links are depicted with thickness proportional to the correlation and only links representing Pearson’s r 262 
> 0.6 are shown.   263 
 264 

 265 
Table 2: Details about the modules of the protein co-expression network 266 

Module Number of proteins Correlation pValue 
Turquoise 16 0.85 1E-12 

Blue 7 0.3 5E-02 
Brown 6 0.51 6E-04 
Yellow 5 0.2 2E-01 

 267 
We then assessed how the markers differed between individuals with active TB, latent TB, 268 
and healthy controls (Figure S5). All differentially expressed proteins (log2(FC) ≥ 1 and 269 
FDR-corrected p-value < 0.01) between either active TB and latent TB or active TB and 270 
healthy controls except FGF-21 and EN-RANGE were included in the turquoise module 271 
(Figure 3). Eight of the 16 proteins in the turquoise module were highly expressed in active 272 
TB patients while the remaining 8 proteins were strongly co-expressed with those highly 273 
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 9

expressed proteins (Figure 2). To illustrate how the turquoise module segregated active TB 274 
individuals from latent TB and healthy controls, we performed principal component analysis 275 
(PCA) on the expression profile of proteins of each module and used the first and the second 276 
principal components (PC1 and PC2) to show differences in protein levels (Figure S6). All 277 
active TB samples except one were clearly separated from the other samples by the proteins 278 
in the turquoise module, suggesting that the included proteins can potentially serve as a 279 
signature to identify individuals with active TB.  280 
 281 

 282 
Figure 3. Differential expression analysis of all 64 proteins: Active TB vs. control (left) and active TB vs. latent 283 
TB (right). Red points indicate the significant highly expressed proteins with log2(FC) > 1 and FDR-corrected 284 
P-value < 0.01 in each comparison. 285 
 286 
Validating the turquoise module in independent transcriptomic TB datasets 287 
There is limited overlap in markers between studies investigating protein or gene signatures 288 
aiming to discriminate active TB from latent TB, healthy controls, or other diseases (Figure 289 
S7). Additionally, we did not identify any available pre-processed proteomic dataset 290 
including all proteins of the turquoise module that we could use for validation. For this 291 
reason, we chose to instead evaluate to what extent the proteins of the different modules 292 
could distinguish active TB from latent TB and healthy controls in transcriptomic datasets. 293 
We applied all four modules to several independent cohorts using multiple gene set 294 
enrichment analysis methods. Nine transcriptomic TB datasets were selected based on the 295 
criteria of age >15, number of individuals per group >10 and no anti-TB treatment (Table 296 
S3). The datasets were provided in the curatedTBData R package (21), which also included 297 
the corresponding genes to all proteins included in the four modules. In total the datasets we 298 
selected included >3000 individuals from four continents. Three enrichment methods (ssgsea, 299 
gsva and zscore) demonstrated high enrichment of the turquoise module in active TB and low 300 
enrichment in latent TB and the control group across most of the TB datasets (Figures S8-301 
S10). This was also the case for the blue module, although to a less extent compared with the 302 
turquoise module. In contrast, neither the brown nor yellow modules were found highly 303 
enriched in active TB using the same three methods on the same transcriptomic datasets 304 
(Figures S8-S10).  305 
 306 
Identification of a new 12-protein signature for active TB diagnosis 307 
We identified the turquoise module as having the highest correlation with active TB. 308 
However, two of the 16 proteins in the module, LAP TGF-beta-1 and CSF-1, had low fold 309 
change values (log2(FC) < 0.5) when comparing active TB versus both latent TB and healthy 310 
controls (Figure 3), and were therefore potentially redundant.  311 
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To investigate if the remaining 14 proteins were specific for active TB, we performed 312 
differential expression analysis using multiple transcriptomic datasets including either viral or 313 
bacterial lower respiratory tract infections (LRTI), systemic inflammatory response syndrome 314 
(SIRS) or sarcoidosis (Figure 4). This allowed us to identify genes encoding the signature 315 
proteins that were highly and significantly expressed (log2(FC) > 1 and P-value < 0.05) in 316 
diseases with clinical symptoms overlapping with active TB. To this end, we used three 317 
transcriptomic datasets, GSE42026 (22), GSE40012 (23) and GSE60244 (24), each 318 
containing various types of lower respiratory infections. GSE42026 included (pediatric) 319 
patients with severe LRTI of different etiologies; bacterial, (mostly Streptococcus 320 
pneumoniae), Influenza A/H1N1/09 and Respiratory syncytial virus (RSV) infection. 321 
GSE40012 included adult patients with severe community acquired pneumonia (CAP); either 322 
bacterial or caused by Influenza A/H1N1, and SIRS (25), without evidence of infection. 323 
Finally, GSE60244 included patients hospitalized for bacterial LRTI (Streptococcus 324 
pneumoniae being most common), viral LRTI (Influenza A, B or RSV) and viral/bacterial 325 
coinfection. We also conducted the same experiment using three datasets from two studies 326 
containing sarcoidosis samples (26, 27). Two genes, corresponding to the proteins IL18R1 327 
and CXCL10 (IP-10), stood out in these analyses (Figure 4). IL18R1 was highly expressed in 328 
severe viral and bacterial LRTI and SIR, while CXCL10 was highly expressed in severe viral 329 
LRTI and in one of the sarcoidosis studies. However, most of the proteins of the signature 330 
were only observed to be expressed at high levels in individuals with active TB. Therefore, in 331 
addition to LAP TGF-beta-1 and CSF-1 that were expressed only at very low levels, we also 332 
removed IL18R1 and CXCL10 from the signature, leading to a 12-marker plasma signature 333 
associated with active TB and with low cross-reactivity to other bacterial/viral lower 334 
respiratory infections and sarcoidosis. The final signature consisted of the proteins IFN-335 
gamma, IL6, CDCP1, CXCL9, MMP-1, MCP-3, CCL19, CD40, VEGFA, IL7, IL-12B and 336 
PDL-1. 337 
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 338 
Figure 4. The expression of proteins of the turquoise module in our Swedish cohort compared to other 339 
viral/bacterial infections, SIRS and sarcoidosis from different datasets. The fold-changes of proteins of the 340 
turquoise module in our cohort (active TB vs. controls; x-axis) compared to their fold-changes in other non-TB 341 
diseases (non-TB diseases vs. controls; y-axis). Red points indicate proteins of the turquoise module, which 342 
genes encoding them are significantly highly expressed in either other infections or other diseases (log2(FC) > 1 343 
and P-value < 0.05). Row 1). Pediatric patients with severe respiratory tract infection: Bacterial: (n=18, 344 
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Streptococcus pneumonia (12), Streptococcus pyogenes (4) Staphylococcus aureus (2) including 5 with viral co-345 
infection (non-Influenza A H1N1/RSV); Influenza A/H1N1 (n=19), RSV (n=22) HC (n=33). Row 2) Adult 346 
patients with severe CAP or SIRS requiring ICU-care: Bacterial: (n=16, mixed etiology) Influenza 347 
A/H1N1(n=8), SIRS without infection (n=12), HC (n=18). Row 3) Adult patients hospitalized for LRTI: 348 
Bacterial (n=22; S. pneumoniae (13), Moraxella catarrhalis (4), S. aureus (2), mixed bacterial (3); viral (n=71, 349 
Influenza A (32), RSV (17), Influenza B (9), HMPV (7); mixed bacterial/viral (n=25) HC (n=40). Row 4) 350 
pulmonary sarcoidosis vs controls. RSV = respiratory syncytial virus; CAP = Community acquired pneumonia; 351 
ICU = Intensive Care Unit; SIRS = systemic inflammatory response syndrome; LRTI = Lower respiratory tract 352 
infection; HMPV = human metapneumovirus 353 
 354 
Validating the 12-marker signature in TB and non-TB proteomic and transcriptomic 355 
datasets 356 
To assess the significance of the 12-marker signature in independent TB cohorts, we 357 
performed ssGSEA on transcriptomic TB datasets from the curatedTBData R package (Table 358 
S3). We observed significantly (p < 0.05) higher enrichment scores in the active TB group, 359 
compared with either latent TB or controls in all the transcriptomic TB datasets except one 360 
(GSE19444) (Figure 5A). We then used QuSAGE to compare the enrichment of the 12-361 
marker signature in TB infections with both other bacterial/viral infections and other 362 
pulmonary diseases (Figure 5B). Three different comparisons were done using the 363 
GSE42026, GSE40012 and GSE60244 datasets to assess the signature in respiratory 364 
infections versus healthy controls, and in sarcoidosis disease versus healthy controls using 365 
three transcriptomic datasets (GSE83456, GSE42826 and GSE42830) (Figure 5B). We 366 
observed that the 12-marker signature was significantly overrepresented (FDR corrected P-367 
value < 0.05) in all comparisons between active TB and latent TB or healthy controls but was 368 
not significantly enriched in those gene sets comparing other LRTIs vs. healthy controls. 369 
However, in two of the three sarcoidosis datasets the signature was also enriched, indicating 370 
that the signature might not, on its own, be able to distinguish active TB from sarcoidosis 371 
without also weighing clinical data. 372 

We then compared the 12-marker signature with the other published gene signatures 373 
from the TBSignatureProfiler R package (28) and published protein signatures to investigate 374 
overlap between protein and transcriptional signatures with the proteins of our signature 375 
(Figure 5C). VEGFA, IL6, and IFN-gamma were identified in at least two other proteomic 376 
studies (29-33), while CD274 (also called PD-L1) was observed in several published 377 
transcriptional signatures. IP-10 (also called CXCL10), which was removed due to its high 378 
expression in severe viral LRT and sarcoidosis appears in several proteomic studies (30-33). 379 
The other markers were less common or identified in the current study. Although these 380 
proteins have not been included in protein signatures before, they have been associated with 381 
TB (34-37) and could potentially be generated via similar signaling pathways in response to 382 
mycobacterial infection, such as has been indicated for signal transducer and activator of 383 
transcription 1 (STAT1) in TB (38). To assess if this was the case, we used the StrongestPath 384 
application (39) in Cytoscape to evaluate how the proteins were connected to different STAT 385 
transcription factors based on data from the KEGG database (Figure S11). We observed that 386 
several of the proteins were directly associated with STAT1, consistent with previous 387 
literature (38) to a lesser extent with STAT3 and STAT4, and indirectly with STAT2 and 388 
STAT5A.  389 
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390 

391 
Figure 5. Validation and overlap of the 12-marker protein signature.  392 
A) ssGSEA indicating enrichment score for the 12-marker signature in different transcriptomic datasets. Blue 393 
indicates individuals with active TB, orange indicates latent TB and grey indicates healthy controls. The p 394 
values show the statistical significance for the enrichment score difference between either active TB and Latent 395 
TB or Active TB and healthy controls using the wilcox.test. B) QuSAGE analysis with -log(FDR) indicating 396 
capacity of the 12-marker signature in separating active TB from healthy controls (open boxes), active TB from 397 
latent TB (open circles), non-infectious inflammatory disease from healthy controls (+) and other LRTIs or 398 
SIRS from healthy controls (×). The red line indicates FDR<0.05. C) Overlap between individual proteins in the 399 
12-marker signature with other proteomic signatures (left) and transcriptomic signatures (right) from the 400 
TBSignatureProfiler R package identifying active TB. 401 
 402 
 403 
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Association between the 12-marker signature and disease severity 404 
Principal component analysis of the 12-marker signature (Figure 6A) showed that, similar to 405 
the turquoise module (Figure S6), active TB was primarily separated from latent TB and 406 
healthy controls by principal component 1 (PC1). We therefore hypothesized that PC1 could 407 
represent a proxy for the magnitude of the inflammatory response and disease severity. To 408 
evaluate if this was the case, we stratified the individuals with active TB based on their PC1 409 
values and a set of clinical features (Figure 6B). The heatmap shows that samples with a 410 
smaller PC1 value, located towards the left side of heatmap, were associated with several 411 
biochemical markers indicating more extensive inflammation, such as lower hemoglobin 412 
(Hb) and albumin (Alb), and higher erythrocyte sedimentation rate (ESR) and C-reactive 413 
protein (CRP). The presence of any systemic symptoms (fever, night sweats and weight loss) 414 
and smear positivity were also associated with a lower PC1 value. We next performed a 415 
regression analysis to see if individual or combinations of the clinical variables could explain 416 
the PC1 values. A standard least squares model including ESR (estimate: –0.03, 95% CI: –417 
0.016 - –0.044, p = 0.0008) and Alb (estimate: 0.21, 95% CI: 0.08-0.34, p = 0.006) were 418 
highly associated with PC1 (r2 = 0.74, p < 0.0001), clearly associating the signature with 419 
clinical presentation (40).  420 
 The three active TB cases with the weakest PC1 signal had few symptoms and limited 421 
disease activity and inflammation (Figure 6A). One patient had a culture-confirmed lymph 422 
node TB. Another patient had a PCR positive but culture-negative lymph node and 423 
pulmonary TB. The active TB case with the lowest inflammatory signal was found through 424 
contact investigation very early in active disease progression with cough as the only symptom 425 
but with no inflammation in laboratory tests. This suggests that the signature has the potential 426 
to identify active TB very early on in the progression from latent TB. 427 

Although the signature was not optimized for the detection of latent TB, the visually 428 
apparent separation of latent TB from healthy controls (Figure 6A) could possibly indicate a 429 
TB-specific immune response detectable in the plasma of these individuals. Two of the three 430 
latent TB cases clustering with the healthy controls had no recent exposure to TB and were 431 
clinically classified as remotely acquired infections (i.e., no known exposure to a TB case for 432 
> 2 years). In summary, these data suggest that the signature could be helpful in identifying 433 
TB disease progression or cure. 434 
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435 
Figure 6. Association between the first principal component (PC1) and clinical characteristics of active TB. A) 436 
PC1 and PC2 indicate variation in concentrations of the 12-marker signature for individuals with active TB 437 
(blue dots), latent TB (orange dots) and healthy controls (grey dots). B) Clinical characteristics (rows) of all 438 
active TB donors (columns) stratified by the negative value of PC1 (the more to the left indicating a stronger 439 
signature). TB manifestation: Pulmonary: (including 3 with pleuritis); 2 disseminated 440 
(pulmonary/abdominal/lymphnode and liver/lymphnode) and 2 extrapulmonary (lymphnode and soft 441 
tissue/osteitis), CRP = C-reactive protein, ESR = erythrocyte sedimentation rate, Hb = hemoglobin, Alb = 442 
albumin. Smear.positive; sputum smear microscopy positive (5 of 14 with sputum); Cough: as reported by 443 
patient; Presence of systemic symptoms (fever, weight loss, night sweats); No.S.Sympt = number of systemic 444 
symptoms; night sweats, fever, and weight loss.  445 
 446 
Discussion 447 
The purpose of this study was to identify a protein signature in plasma that was enriched in 448 
individuals with active TB compared to those with latent infection and healthy controls. We 449 
used the Olink PEA method to simultaneously measure 92 proteins in plasma. Using co-450 
expression analysis, we could identify 16 proteins that were co-expressed and highly 451 
correlated with active TB. To test the validity of these findings, we used publicly available 452 
transcriptomic datasets. First, we removed two proteins with very low differential expression 453 
between active TB and controls. We then refined the signature by excluding two additional 454 
proteins that were highly expressed in other lower respiratory tract infections. This allowed 455 
us to generate a 12-protein signature that was highly specific when applied to independent TB 456 
datasets. When retesting the signature on our own data it also retained a similar 457 
discriminatory capacity as the initial 16-protein signature. 458 

 459 
Albeit small, the study cohort is well defined, with microbiological verification of all active 460 
TB cases, a wide range of disease severity and with large variation in patient origin, 461 
reflecting the TB population in Sweden and thus increasing the likelihood of generalizability 462 
to other geographic regions. Further, results were validated in nine transcriptomic data sets 463 
including over 3000 individuals from four continents. 464 

On an individual patient level, the signature was associated with disease activity with 465 
a stronger protein signature significantly related to perturbations in common clinical 466 
inflammatory markers (ESR and albumin) and reported symptoms. 467 
 468 
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We have shown that the identified signature is differentially expressed in independent TB 469 
transcriptomic datasets and importantly, it is not expressed in patients with other lower 470 
respiratory tract infections, which is essential if the signature is to be used as a diagnostic 471 
screening test in a clinical setting as intended. However, when testing the signature in a 472 
sarcoidosis dataset (27),  we observed a significant enrichment of the proteins. Sarcoidosis 473 
and TB have previously been shown to have similar gene expression patterns (27). Both 474 
diseases demonstrate an interferon-driven gene up-regulation, although as shown by Blankley 475 
et al, on a group level this pattern is more strongly expressed in active TB, reflecting disease 476 
activity (27). We were not able to directly compare sarcoidosis versus active TB to assess if 477 
the signal is higher in one group or the other. However, if the signature was to be used as a 478 
screening test this potential overlap will likely not pose a significant diagnostic problem in a 479 
clinical setting as symptoms and other clinical information such as radiology will help 480 
separate the two conditions. Further, in TB high-endemic countries where a screening test is 481 
most urgently needed, the prevalence of sarcoidosis is very low compared to pulmonary TB 482 
(41, 42). 483 
 484 
Lack of overlap between protein signatures for active TB has been previously described, and 485 
the methods used to quantify proteins in different studies also vary (14). When comparing the 486 
12-marker signature to recently published protein signatures (29-33, 40, 43-51) some 487 
biomarkers reappear, although the overlap is limited. Additionally, in the published 488 
proteomic studies there were none with processed data that included all the proteins of our 489 
signature in their dataset, making us unable to use them to validate the signature proposed in 490 
this study. 491 
 VEGF and IL-6, present in the 12-protein signature, together with IL-8 and IL-18, 492 
constitute a 4-protein signature identified by Ahmad et al. (29). They analyzed 47 proteins 493 
with Luminex and the 4 selected proteins were validated in serum from three different patient 494 
cohorts collected through the FIND initiative. The sensitivity for active TB in TB suspects 495 
was 80% (95% CI, 73 to 85%), and the specificity was 65% (95% CI, 57-71%). Interestingly, 496 
there was quite a large overlap between the Olink inflammation panel we used and their 47-497 
protein Luminex panel. Although IL-8 and IL-18 were more abundant in active TB patients 498 
compared with healthy controls in our dataset (Figure S5), the fold-change values were low 499 
compared with the proteins included in the 12-protein signature and were not significantly 500 
higher when compared with latent TB individuals. 501 

VEGF was also included in a 4-protein signature (CCL1, CXCL10, ADA-2, VEGF) 502 
proposed by Delemarre et al. (30), where they compared active TB to treated and untreated 503 
latent TB. The signature was validated in two separate patient cohorts with a sensitivity of 504 
95% and a specificity of 90%. CXCL10 was also highly expressed in our analysis but was 505 
removed due to its high expression in other lower respiratory tract infections. CCL1 and 506 
ADA-2 were not analyzed in the current study. 507 

Although VEGF was not included in the Chegou et al. (31) 7-protein signature, it was 508 
increased in active TB patients in their cohort. Of their 7 proteins, IFN-gamma overlaps with 509 
our 12-protein signature. CXCL10 (IP-10) again appears in their signature while the other 510 
proteins (CRP, TTR, CFH, APO-A1, SSA) were not part of the proteins evaluated in our 511 
study. 512 
In 2021, Morris et al. (32) and Mutavhatsindi et al. (51) investigated the same 22 proteins as 513 
Chegou et al. (31) and attempted to validate the 7-protein signature in patients with suspected 514 
TB. In the first study, the sensitivity was very high (98%) while the specificity was low 515 
(12%). They argued that this might be due to the different patient cohorts – primary care level 516 
versus hospital care level. Instead, they identified a 9-protein signature (fibrinogen, alpha-2-517 
macroglobulin, CRP, MMP-9, transthyretin, complement factor H [CFH], IFN-gamma, IP-518 
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10, and TNF-alpha) where IFN-gamma and IP-10 reappear. In the test set, the sensitivity was 519 
92% (95% CI, 80-98%) and specificity 71% (95% CI, 56-84%) for diagnosing culture 520 
verified TB from other diseases in TB suspects. Their second study (51) failed to validate the 521 
7 marker signature. Instead, they proposed CRP and CCL1 as a signature that performed 522 
equally well in both HIV– and HIV+ individuals. Trying to design a protein signature based 523 
on previous findings, Pedersen et al. (33) evaluated 9 proteins in pulmonary TB patients 524 
compared to healthy controls. They found that IL-6, VEGFA, (and IP-10) are significantly 525 
increased in active TB. Their proposed signature consists of IP-10 and 4 miRNA molecules, 526 
including miR-29a, miR-146a, miR-99b and miR-221.  IP-10 is also part of the 5-protein 527 
signature identified by Luo et al. (52). 528 

Garay-Baquero et al., analyzed more than 5000 peptides using Mass spectrometry on 529 
a relatively small discovery cohort (10 individuals with active TB and 10 healthy controls) 530 
(44).  They identified 46 proteins to be overexpressed in active TB and selected 9 and 7 531 
proteins for validation in larger populations in South Africa and the UK, respectively. They 532 
used Luminex or ELISA and compared active TB to other respiratory diseases (ORD) and 533 
healthy controls. The proposed 5 protein signature; CFHR5, LRG1, CRP, LBP, and SAA1, 534 
performed well with an AUC > 0.8 in both settings for active TB vs ORD. There was no 535 
overlap with the 12-protein signature identified here, and none of the proteins were among 536 
the 136 proteins identified as associated with active TB (46 more abundant and 90 less 537 
abundant) in their discovery phase, although the use of different methods makes direct 538 
comparison difficult. 539 

Another large proteomic study by de Groote et al., (53) used SOMAscan to measure 540 
over 4000 proteins in 1470 patient samples from pulmonary TB patients and other TB suspect 541 
cases and resulted in a 6-protein signature. Although their signature did not overlap with our 542 
12-protein signature, IL-6 and MMP-1 were overexpressed in their active TB cases.  543 

In summary, IFN-gamma, IL-6, and VEGF, together with IP-10 were identified as 544 
markers for active TB in several previous studies, as well as identified in our study. These are 545 
all regulated by STAT-1, which has previously been identified as an important immune 546 
response pathway in Mtb infection (38), and potentially explains why these proteins are 547 
identified in different studies. However, as found here, IP-10 is also highly expressed in other 548 
severe infectious diseases and as such is likely not specific for TB in the absence of Mtb-549 
specific stimulation (54). 550 

 551 
To conclude, we identified a plasma biomarker signature associated with active TB 552 
progression that was further corroborated in several independent datasets. Although the 553 
signature can likely be optimized further by testing it in independent protein datasets, the 554 
included biomarkers warrant further investigation and development for diagnostic purposes, 555 
which will be critical to stopping the TB pandemic. 556 
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