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Abstract 
 
Genetic studies of disease progression can be used to identify factors that may influence 
survival or prognosis, which may differ from factors which influence on disease 
susceptibility. Studies of disease progression feed directly into therapeutics for disease, 
whereas studies of incidence inform prevention strategies. However, studies of disease 
progression are known to be affected by collider (also known as “index event”) bias since 
the disease progression phenotype can only be observed for individuals who have the 
disease. This applies equally to observational and genetic studies, including genome-wide 
association studies and Mendelian randomization analyses. In this paper, our aim is to 
review several statistical methods that can be used to detect and adjust for index event bias 
in studies of disease progression, and how they apply to genetic and Mendelian 
Randomization studies using both individual and summary-level data. Methods to detect the 
presence of index event bias include the use of negative controls, a comparison of 
associations between risk factors for incidence in individuals with and without the disease, 
and an inspection of Miami plots. Methods to adjust for the bias include inverse probability 
weighting (with individual-level data), or Slope-hunter and Dudbridge’s index event bias 
adjustment (when only summary-level data are available). We also outline two approaches 
for sensitivity analysis. We then illustrate how three methods to minimise bias can be used 
in practice with two applied examples. Our first example investigates the effects of blood 
lipid traits on mortality from coronary heart disease, whilst our second example investigates 
genetic associations with breast cancer mortality. 
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Introduction 
 
There is a growing interest in performing genetic studies of disease progression, with initial 
studies suggesting that single nucleotide polymorphisms (SNPs) associated with disease 
survival often differ from those associated with disease susceptibility (1-7). ‘Disease 
progression’, also known as disease prognosis, refers to any event occurring subsequent to 
disease incidence, such as changes in severity, and/or survival. Investigating such events 
necessitates performing studies restricted to individuals who have the disease of interest, 
i.e. cases. By design, this involves conditioning on disease incidence, causing it to become a 
so-called ‘collider’ variable within a causal inference framework (8). This leads to biased 
associations between causal risk factors for disease incidence, including inducing 
associations between risk factors which are truly independent of each other (not correlated) 
in the source population. This becomes problematic if any of these risk factors for disease 
incidence, measured or unmeasured, also cause disease progression, because indirect 
associations may be induced between risk factors for disease incidence and disease 
progression (red dashed line in Figure 1). Therefore, a risk factor which is causal only for 
incidence may falsely appear to cause progression entirely through an induced association 
with another causal risk factor for incidence (i.e. a noncausal path) (Risk factor 2 in Figure 1). 
This can result in biased estimates of the true causal associations between risk factors and 
disease progression (8, 9); this bias has been termed index-event bias (defined in Box 1). An 
example of index-event bias is in studies of coronary heart disease (CHD) progression where 
the restriction of analyses to CHD cases only (i.e. conditioning on disease state) could induce 
associations between truly independent CHD risk factors. This could explain the so-called 
‘obesity paradox’ where higher body mass index (BMI) is associated with longer survival 
amongst those with CHD, despite higher BMI being associated with shorter survival in the 
general population. Indeed, lower levels of other risk factors for CHD measured in 
individuals with high BMI may be sufficient to induce an association of higher BMI with 
longer survival (10-12). 
 
The model-dependent nature of the presence and direction of index event bias should be 
noted (13, 14). Where two independent risk factors are causes of a binary collider variable 
C, collider (index event) bias will not be induced by conditioning on C if the two risk factors 
are perfectly multiplicative/log additive in their effect on C on a risk ratio scale (13). In case-
only studies, disease incidence plays the role of the collider C. Different variables may be 
viewed as colliders in other types of studies; for example, studies affected by survival bias 
are effectively conditioned on individuals surviving to study onset and collider (index event) 
bias in such studies is avoided when the two risk factors are multiplicative in their effects on 
survival (15). Moreover, collider (index event) bias is expected to induce a positive 
correlation between the two risk factors if they are supra-multiplicative in their effects on 
disease incidence, and a negative correlation if the two risk factors are sub-multiplicative in 
their effects on disease incidence (15). The extent of the resultant collider (index event) bias 
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will therefore be greater the further away the associations of risk factors with the collider 
are from the multiplicative/log additive risk model (13). In chronic disease epidemiology, 
many causal risk factors may be expected to have a sub-multiplicative impact on the 
incidence of disease. 
 
In the case of a genetic epidemiological study of disease progression, index event bias is 
potentially problematic when a genetic variant causes the onset/incidence of disease, in the 
presence of a measured/unmeasured common cause (i.e. confounder) for disease incidence 
and progression. This situation creates spurious and/or biased associations between that 
genetic variant and the progression phenotype (16, 17). Figure 2a illustrates this: in case-
only studies, when conditioning on disease incidence, and when a confounder for incidence 
and for progression (risk factor 1) is present in the sample being analysed, any genetic 
variant (risk factor 2) which causes incidence will display an induced association with that 
risk factor. Collider bias in this context has opened up the pathway of genetic variant -> risk 
factor 1 -> disease progression and the genetic variant will falsely appear to be associated 
with progression. Importantly, this confounder could be another genetic variant itself, and 
therefore, in a genome-wide association study (GWAS) of case-only samples, more SNPs can 
appear to be associated with progression than truly are (Figure 2b). In another scenario, this 
spurious association through a non-causal pathway could be in addition to the direct true 
effect of the SNP on progression, inducing a biased association between the SNP and 
disease progression, i.e., an overestimate or underestimate of the true causal association 
(Figure 2c). Indeed, a study investigating the association of known common type 2 diabetes 
variants with BMI (a strong risk factor for type 2 diabetes) found three overestimated and 
one underestimated associations among 11 type 2 diabetes risk alleles when comparing to a 
non-diabetic population (16). Another example uses a polygenic risk score to examine 
associations between CHD genetic risk variants and cardiovascular outcomes and found that 
these differ when examined in those with and without prior CHD (18). These studies 
highlight the need to address this bias by detecting and accounting for its presence in case-
only studies. 
 
Index event bias also has implications for applied genetic epidemiological analyses 
downstream of GWAS, such as Mendelian randomization (MR) (19-21). A consequence of 
not adjusting for index event bias at the stage of conducting a GWAS would mean that 
biased association estimates of SNPs with disease progression could be used in MR analyses 
and result in potentially misleading causal estimates of risk factors with disease progression 
outcomes. In a two sample MR setting, only the SNP-outcome (disease progression) 
estimates will be affected by index event bias as the SNP-exposure estimates will be taken 
from a GWAS that is not restricted to cases only. However, in a one sample MR setting of a 
study of case-only only sample if the exposure causes disease incidence, then both the SNP-
exposure and the SNP-outcome (disease progression) estimates will be biased. In addition, 
the MR assumption that the genetic instrument is independent of factors that confound the 
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association of the exposure with the outcome would be violated given that conditioning on 
disease incidence has opened up the pathway of genetic instrument -> risk factor 1 -> 
disease progression (Figure 3). This would be true for a single genetic variant as well as a 
combination of variants within a polygenic risk score (PRS) instrument; the use of such 
scores may increase the potential for this bias. This would invalidate the MR study and lead 
to an over- or under-estimate of the causal effect of risk factors for the disease progression 
outcome of interest (21).  
  
Here, we aim to review several strategies which are currently available to investigate and 
mitigate index event bias in GWAS and MR studies of disease progression and advise on the 
interpretation of results from such studies. Although other sources of selection bias can be 
an issue when studying disease progression, including loss-to-follow-up and missing data 
(22, 23), this review focuses on index event bias. We start with the need to investigate if 
there is bias in the case-only population. Where index-event bias is detected, we discuss 
three methods which aim to minimise index-event bias, according to the data that are 
available (individual-level or summary-level). We next outline two sensitivity analyses that 
have been developed to determine the magnitude of bias that would have to be present to 
explain any observed associations with progression. We conclude with two applied 
examples of disease progression studies - one concerning blood lipid traits and survival in 
CHD, and the other concerning breast cancer prognosis.  

 
Detecting index event bias 
 
Index event bias can be investigated using negative controls. For example, with access to 
individual-level data in the case-only sample, a GWAS of age and sex can be performed (24) 
as they are both common (almost ubiquitous) risk factors for disease onset. Age is not 
genetically-determined and therefore the presence of strong associations between SNPs 
and age in the case-only sample can only be an artefact of index event bias. The presence of 
associations of autosomal SNPs with sex, reflecting differences in allele frequencies between 
men and women, would be further evidence for index event bias. Identification of sex-
associated autosomal loci has highlighted potential bias due to sex differences in 
participation in large cohort studies (24). It should be noted that these analyses do rely on a 
large enough sample size so that the analyses have sufficient statistical power. If analyses 
are underpowered, one cannot be sure that a lack of association, e.g. between SNPs and 
age, in the case-only population is due to underpowered analyses or the true absence of 
index event bias. Therefore, power calculations should be performed prior to these 
analyses.  Figure 4 is an illustration investigating the presence of collider bias in 11,085 
myocardial infarction cases in UK Biobank. The signal seen in chromosome 5 associated with 
age suggests that index event bias may have been induced in this sample (Figure 4a). When 
known, genetic variants strongly associated with disease incidence could be used as 
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negative controls. For example, in a study involving cases of dementia, a GWAS of the ApoE 
genotype could be performed.  
 
In addition, known risk factors for disease initiation can be used as a diagnostic for index 
event bias. These can be either phenotypic risk factors, such as smoking or BMI, or genetic 
variants strongly associated with disease incidence, or with causes of disease incidence. 
Index event bias will induce spurious associations between such risk factors in the case-only 
population, and these associations can be compared to those from an independent dataset, 
not restricted to cases. Differences between associations in the cases and the independent 
dataset will be suggestive of index event bias. Datasets with large sample sizes and deep 
phenotype data on both cases and non-cases provide external data to explore how 
divergent the association between risk factors is from the multiplicative/log additive model, 
although worth being aware of the effect of confounding or measurement error in these 
exploratory analysis. This can indicate the likely quantitative effect of collider (index event) 
bias. When using this diagnostic, it is worth being aware of the recruitment process in each 
dataset, as this will change the risk factors chosen to test e.g. there will be differences in 
why patients were recruited to a trial versus if they are in a general population-based 
longitudinal study or sampled through hospital data. 
 
Without access to individual-level data, but with the full set of results from a GWAS of both 
incidence and progression of the disease of interest, index event bias can still be examined 
by comparing the magnitude of the effect of a SNP on disease progression with the 
magnitude of the effect of that same SNP on disease incidence. If there is strong evidence 
for an association of a SNP with disease incidence, then we cannot rule out the possibility 
that the association of that SNP with progression is purely an artefact of selection bias 
(Figure 2b) or that the magnitude of association is biased by selection (Figure 2c). 
Associations with progression for SNPs not associated with disease incidence will not suffer 
collider bias . Miami plots can be generated to visually inspect and compare SNP 
associations for disease incidence and disease progression on a genome-wide scale. These 
plots are an extension of a Manhattan plot, where p-values are plotted on the -log10 scale. 
The Miami plot will present the p-values for incidence on the -log10 scale and the p-values 
for progression on a log10 scale, for all available SNPs. These can be produced using publicly 
available code within the software EasyStrata (25). An example is shown in Figure 5 plotting 
the GWAS results of smoking initiation (top) and smoking cessation in a population of 
smokers (bottom). As well as comparing across the genome for a GWAS, this methodology 
can also identify potential index event bias in an MR analysis, with comparisons restricted to 
the instrument(s) for the risk factor of interest. As described for GWAS, a lack of evidence 
for an association between the instrument for the hypothesized risk factor and disease 
incidence is evidence against the presence of index event bias (i.e. the risk factor may be 
specific for disease prognosis), whereas if the instrument is also related to disease incidence 
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we cannot be sure that any relationship with the outcome is not an artefact of index event 
bias.  
 
Even if these methods do not identify any evidence for index event bias in the case-only 
population, the next step would be to perform the sensitivity analyses detailed below, to 
determine the magnitude of bias that would need to be present to explain the observed 
associations. If there is evidence for index event bias, the subsequent section reviews 
methods that can be applied to attempt to overcome this index event bias. 

 
Sensitivity analyses to determine magnitude of bias  
 
Here we present two sensitivity analyses that can be used to examine the magnitude of 
bias. 

Smith and VanderWeele method 
A sensitivity analysis for index-event bias was proposed by Smith and VanderWeele in 2019 
(26). This approach is not specific to genetically informed studies of disease progression but 
can be used in any epidemiological study. Their approach can only be applied in studies 
where the outcome is binary, and the causal parameter of interest is a risk ratio, odds ratio, 
or risk difference. Smith and VanderWeele derive a bound for the true risk ratio (or odds 
ratio or risk difference), which can be computed using the observed risk ratio and an 
additional user-specified variable, which represents a potentially unobserved confounder or 
mediator for the association between the outcome and selection (disease incidence, in case-
only studies). This unobserved confounder, U, must be such that the outcome is 
independent of selection (i.e. disease incidence) conditional on the risk factor and U. This is 
the same as the unmeasured confounders in Figure 2. The effects of the confounder on the 
outcome and selection need to be elicited to compute the bound, but otherwise the 
method makes no parametric modelling assumptions. As an additional diagnostic, Smith and 
VanderWeele describe how to compute E-values for collider bias, which quantify how strong 
the selection effects should be for a risk ratio to take the observed value, if the true effect of 
the exposure on outcome is null. An online calculator to compute risk ratio bounds and E-
values is available at http://selection-bias.louisahsmith.com. The use of risk ratio bounds 
has been advocated in case-control studies with biased selection of controls (27), and the 
method was recently extended to account for confounding bias and measurement error, in 
addition to index-event bias (28). 

Quantitative bias analysis 
As with the E-value approach, one form of quantitative bias analysis attempts to quantify 
the magnitude of bias needed for the observed MR estimates to occur if the association was 
truly null, using simulations.  For the simulations, individual level data are generated for 
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cases and non-cases, based on user-specified assumptions about the factors associated with 
disease incidence and prognosis. Note that, as these data are simulated, this approach can 
be applied to one- or two-sample MR.  By repeating this process for multiple simulated 
samples, investigators can obtain a distribution of estimates that are solely due to the 
effects of index-event bias. This information, presented alongside the main estimates, 
allows those appraising a study to assess whether the MR estimates represent a plausible 
association or are more likely a consequence of bias. This has previously been demonstrated 
in the literature by Noyce et al in their study of the relationship between BMI and risk of 
Parkinson’s disease, where it is referred to as ‘frailty modelling’ as the bias in their example 
was thought to be caused by survival effects (29). 
 
 

Accounting for index event bias 
 
In this section, we review methods to adjust for index-event bias when individual-level data 
are available, and then explore methods for when either summary-level or individual-level 
data are available. A summary of methods described in this section is presented in Table 1. 

Inverse probability weighting (IPW) 
IPW can help to address index event bias in case-only studies through the creation of a 
pseudo-sample where individuals are weighted according to the probability of having the 
disease of interest (30). The weighted pseudo-sample aims to mimic a situation where every 
individual has the same probability of contacting the disease; therefore, the distribution of 
sociodemographic and behavioural factors in the weighted sample will be similar to that in 
the overall population. Consequently, IPW will down-weight over-represented individuals 
(i.e. those most likely to have the disease) and up-weight under-represented individuals (i.e. 
those least likely to have the disease) (31, 32). The probability that an individual is included 
in the case-only sample is estimated by fitting a statistical model (e.g. logistic regression) for 
disease incidence. Individuals in the case-only sample are then weighted by the inverse of 
their estimated probability of disease. To estimate the model used to calculate the 
probability weightings, at least some information about non-cases must be known. IPW can 
only truly overcome index event bias when all causes of disease incidence related to the 
other variables in the analysis model are both known and measured within the target 
population, and when the incidence is correctly modelled (including interactions, non-
linearities, etc.). Thus, IPW involves similarly strong assumptions as used for causal 
inference in conventional observational studies of disease incidence or progression, e.g., 
with multivariable regression models.   	
 
Once a weighted sample has been generated, analysis methods such as MR can then be 
applied. For example, two-stage least squares estimates can be computed using weighted 
linear regression instead of ordinary linear regression. IPW can adjust for index-event bias in 
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MR provided the probabilities of disease are accurately estimated (33, 34). In practice, IPW 
can be useful in case-only studies that are nested within a cohort study (e.g. studies utilizing 
individual-level data from the UK Biobank). However, the reliance on individual-level data 
means that IPW often cannot be used in two-sample MR studies. 

Dudbridge et al method 
The Dudbridge et al method is based on the premise that the association between a SNP 
and progression is proportional to the true effect of the SNP on progression and a bias that 
is linear in the effect of the SNP on incident disease (12). In equation form this can be 
summarised as follows: 

!!"#$ =	!!$%&" +	%!'$%&"  
 
where !!"#$ is the effect estimate for a SNP from a GWAS of progression, !'$%&"  is the effect 
of the SNP on incidence, !!$%&"  is the true effect of the SNP on progression (the effect of 
interest), and % is the slope from a regression of !!"#$ on !'$%&"  for all independent SNPs and 
is the bias correction factor. The true effect of the SNP on progression is therefore a 
combination of the intercept and residual from this regression line (12).  
 
The method developed by Dudbridge et al uses all SNPs available to determine the 
correction factor (12). Linkage disequilibrium (LD) clumping, based on the p-value for the 
SNP effect on incidence, is required prior to analysis to restrict the regression to 
independent SNPs, although the correction factor can then be applied to all SNPs. As well as 
the assumption that the SNPs are independent, this method also assumes a linear effect of 
the SNP on both incidence and progression (with no interactions), that there is no 
correlation between SNP incidence and SNP-progression effects, and that the effect of 
common causes of incidence and progression (genetic and non-genetic confounding) is 
constant across all SNPs. The assumption of no correlation between SNP-incidence and SNP-
progression effects is violated for diseases where the same biological pathways, at least in 
part, contribute to incidence and progression. The assumption of constant confounding 
across all SNPs may not be true if there is a genetic correlation between incidence and 
progression, as the genetic component of the unmeasured confounding will be weaker for 
SNPs that are strongly associated with both incidence and progression. An example where 
these assumptions would not be met is cardiovascular disease, given that lowering LDL 
cholesterol reduces risk of major vascular events in both primary and secondary prevention 
trials (35), and thus for SNPs influencing LDL cholesterol there will be a very strong positive 
correlation between their associations with vascular disease incidence and risk of secondary 
events.   
 
The method can be performed using an open-source R package 
(https://github.com/DudbridgeLab/indexevent) and requires full summary statistics from a 
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GWAS of disease incidence and a GWAS of disease progression, which can be generated 
from independent or overlapping samples. These summary statistics can be used to perform 
downstream analyses, such as two-sample MR. 

Slope-hunter method 
The Slope-hunter method developed by Mahmoud et al (36) is again based on the premise 
that the association between a SNP and progression measured in a GWAS can be estimated 
from the true effect of the SNP on progression and bias linear to the effect of the SNP on 
incidence (12, 36). However, the Slope-hunter method extends the algorithms generated by 
Dudbridge et al and attempts to overcome the limitation of the strong assumption of no 
genetic correlation between incidence and progression (36). Slope-hunter aims to partition 
all independent SNPs affecting incidence into two categories using cluster-based methods: 

1. SNPs only affecting incidence; 
2. SNPs affecting both incidence and progression; 

The correction factor is estimated from category 1 SNPs only, assuming unmeasured 
confounding across these SNPs. The correction factor is estimated as the slope of the 
regression line of disease progression associations on disease incidence associations for this 
restricted set of SNPs. This correction factor can be applied to all SNPs. The Slope-hunter 
method does not assume that disease incidence and progression are not genetically 
correlated, but does assume that the SNP effects on both incidence and progression are 
linear, with no interactions. This is often the case in a logistic model when per-allele effect 
sizes are small. An additional assumption of the Slope-hunter method is that the variance in 
disease incidence explained by category 1 SNPs is at least as large as that explained by 
category 2 SNPs.  
 
Slope-hunter can be performed using an open-source R package 
(https://github.com/Osmahmoud/SlopeHunter/) and, like the Dudbridge et al method, 
requires full summary statistics from a GWAS of disease incidence and a GWAS of disease 
progression. Both methods are robust to sample overlap and therefore can be used with 
summary statistics derived from the same population as well as independent populations. 
Summary statistics from these methods are suitable for use in downstream analyses, such 
as two-sample MR. 
 
 
Applied examples of mitigating index event bias 

Lipid traits and secondary prevention of CHD 
We aimed to examine the existence and mitigation of index event bias in an applied MR 
study using individual-level data from the UK Biobank cohort (UKB, see Methods). We chose 
to estimate the effects of two well-known lipid traits, low-density lipoprotein cholesterol 
(LDL-C) and high-density lipoprotein cholesterol (HDL-C), on the risk of CHD mortality, and 
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potential bias induced by selecting on individuals with a history of CHD (the index event). 
These exposures were chosen because strong evidence exists for both in relation to CHD 
mortality from randomized controlled trials (RCTs) of lipid-modifying drug therapies, which 
were conducted among people with a history of CHD, thus providing a valuable (likely 
unbiased) standard for comparison. This RCT evidence indicates that, among people with 
CHD history, LDL-C raises CHD mortality risk (37), whereas HDL-C does not alter CHD 
mortality risk (38). Because LDL-C causes CHD onset, we expected that conditioning on CHD 
history would induce potential for index event bias for LDL-C estimates (Figure 6). In 
contrast, because HDL-C likely does not cause CHD onset (i.e., no effect on disease 
incidence), we expected that conditioning on CHD history would not induce potential for 
index event bias for HDL-C estimates. We verified a positive effect of LDL-C, and a null effect 
of HDL-C  when adjusting for triglycerides and apolipoprotein B (given expectations of 
pleiotropy) (39), on CHD onset in UKB (Supplementary Information). 
 
Among UKB participants with a history of CHD, we examined the effects of lipids on risk of 
CHD mortality in an MR framework, using two-stage least squares predictor substitution 
regression models, where in a first-stage linear regression model the exposure, e.g., LDL-C is 
regressed on a genetic risk score (GRS) for LDL-C, plus age, sex, and the first ten genetic 
principal components (GPCs). The predicted values from that model were then entered into 
a logistic regression model as an exposure (plus age, sex, GPCs) with CHD mortality as the 
outcome. Standard errors were bootstrapped using 100 replications. We expected these 
prognosis models to create potential for index event bias for LDL-C (because it causes CHD 
onset), but not for HDL-C (because it does not cause CHD onset; Figure 6). The pattern of 
results when conditioning on CHD history was not as expected given the potential for index 
event bias, however (Table 2). Results of these MR models suggest that higher LDL-C (per 
standard deviation, SD) raises the odds of CHD mortality, by 2.12 (95% CI = 1.20, 3.73) times 
higher (Table 2). In contrast, higher HDL-C (per SD) appeared to reduce the odds of CHD 
mortality, and this did not attenuate towards the null upon adjustment for triglycerides and 
apolipoprotein B, e.g., the estimate for HDL-C was 0.88 (95% CI = 0.66, 1.16) before 
adjustment and 0.62 (95% CI = 0.50, 0.78) after adjustment (Supplementary Information). 
This inverse effect for multivariable-adjusted HDL-C is not consistent with null effects on 
CHD mortality risk seen in RCTs of HDL-C modification by drug therapies (37, 38) and may 
reflect a heightened potential for pleiotropy when conditioning on CHD history. 
 
To attempt to mitigate any index event bias induced from conditioning on CHD history, we 
applied IPW adjustments to MR models of LDL-C and HDL-C with CHD mortality (using 
predictors and criteria described in Supplementary Information). Results of these IPW 
adjustments for LDL-C provided estimates which were directionally consistent with IPW-
unadjusted results with modest attenuation towards the null (2.12 (95% CI = 1.20, 3.73) 
before IPW and 1.76 (1.00, 3.11) after IPW). For univariable HDL-C, the point estimate 
changed from negative (0.88) to positive (1.08) upon adjustment, although confidence 
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intervals were imprecise (Table 2). The estimate for multivariable-adjusted HDL-C also 
attenuated towards the null, this being 0.62 (95% CI = 0.50, 0.78) before IPW and 0.89 (95% 
CI = 0.64, 1.23) after IPW (Table 2). 
 
The use of statin medications could potentially complicate the interpretation of effect 
estimates. Statins are commonly prescribed in adulthood to reduce LDL-C (often on the 
basis of total cholesterol and HDL-C values) and are known to influence the risk of CHD 
onset and mortality (37). The overall prevalence of statin use in UKB was 14%, and use was 
far more common among participants with vs. without a history of CHD (at 57.3% vs. 11.3% 
respectively). The prevalence of statin use was also high among participants with a CHD 
history who then died of CHD (68.7%), whereas statin use was lower among those without a 
CHD history who did not die of CHD (11.3%). LDL-C and HDL-C could each plausibly influence 
the likelihood of being prescribed statins among adults with CHD history; this was examined 
and confirmed using one-sample MR in the same UKB data (Supplementary Information 
and Supplementary Table 2), whereby higher LDL-C strongly raised the odds of using statins 
(OR = 5.71, 95% CI = 3.62, 9.00) and higher HDL-C lowered these odds (OR = 0.82, 95% CI = 
0.71, 0.95). Conditioning on statin use via exclusions or stratifications would be problematic, 
however, as this could heighten the potential for index event bias given the likely role of 
statin use as a mediator.  
 
Altogether, the results of this applied example of MR using individual-level data suggest that 
the impact of index event bias from conditioning on disease status can be modest. Indeed, 
the extent of induced bias will depend on how divergent the joint effect of lipid traits with 
other causal risk factors are from the multiplicative/log-additive model, with substantial 
index event bias expected the more divergent they are. In UKB, higher LDL-C appeared to 
raise CHD mortality risk among adults with a history of CHD, in line with results of RCTs. If 
index event bias were severe in this situation, we might expect an inverse effect, e.g., with 
LDL-C appearing protective against CHD mortality risk among adults with CHD history. Index 
event bias may still alter the magnitude of a true effect, however, and so we applied IPW 
adjustments to LDL-C estimates. This resulted in modest attenuations of effect size, with 
95% CIs that overlapped those of initial estimates. Modest attenuations towards the null 
may be more expected than full attenuations following such IPW adjustments given the 
necessarily incomplete set of predictive factors on which they are based. In contrast to LDL-
C, conditioning on CHD history is not expected to induce index-event bias for HDL-C with 
CHD mortality, because HDL-C is likely non-causal for CHD onset. Our MR effect estimates 
for HDL-C (univariable and with multivariable adjustment for triglycerides and 
apolipoprotein B) with CHD mortality were inverse among adults with CHD history, 
however, which is unexpected given null results from RCTs. These estimates were 
substantially attenuated upon IPW adjustment. This may reflect a heightened potential for 
pleiotropy when making such stratifications, suggesting that confounding and other forms 
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of selection bias given the unrepresentativeness of UKB may be greater concerns than index 
event bias in this applied example. 

Breast cancer susceptibility PRS and breast cancer-specific mortality  
We evaluated the association of a breast cancer susceptibility PRS with subsequent disease 
progression using summary genetic association data on breast cancer susceptibility in 
122,977 cases and 105,974 controls and breast-cancer specific mortality in 96,661 cancer 
cases (7,976 events) (5, 40). A PRS for breast cancer susceptibility was constructed using 339 
SNPs associated with breast cancer risk at genome-wide significance (p < 5.0 x 10-8, r2 < 
0.10). Summary statistics for SNPs comprising this PRS were then extracted from the breast 
cancer progression GWAS and harmonised across datasets by orienting effect estimates in 
relation to the same allele, resulting in 318 SNPs. In this case-only analysis, the PRS was 
associated with a lower risk of breast cancer-specific mortality (per unit increase in natural 
log odds breast cancer liability: HR 0.90, 95% CI 0.86-0.96).  
 
To explore whether this finding was influenced by index event bias, we used two methods 
to detect and account for this bias: the Dudbridge et al method and Slope-hunter method. 
Summary statistics for breast cancer risk and breast cancer progression were harmonised 
across datasets then pruned for LD (r2 < 0.10), resulting in 94,744 SNPs. SNP-progression 
effects were then regressed on SNP-risk effects using a SIMEX adjustment for regression 
dilution to generate a correction factor for SNP-progression effects (under the assumption 
of no genetic correlation between breast cancer risk and breast cancer-specific mortality). 
SNP effects on progression were then adjusted using this correction factor (-0.013, 95% CI -
0.014 to -0.013) and PRS analyses were re-performed which generated a revised estimate of 
HR 0.92 (95% CI 0.87-0.97) for the effect of the breast cancer susceptibility PRS on breast 
cancer-specific mortality.  
 
Using the Slope-hunter method, a correction factor was also generated using a subset of the 
94,744 SNPs that only influenced breast cancer risk (i.e. that have no effect on breast 
cancer-specific mortality, termed “hunted” SNPs), thus being robust to the presence of 
genetic correlations between disease incidence and progression (Slope-hunter fitted model 
showing cluster assignment of each SNP provided in Figure 7). In contrast to the Dudbridge 
et al method, use of Slope-hunter generated a larger adjustment factor of -0.243 (95% CI -
0.361 to -0.126). When PRS analyses were re-performed using SNP-progression effects 
adjusted for this correction factor, this generated a revised estimate of HR 1.15 (95% CI 1.09 
to 1.22) for the effect of the breast cancer susceptibility PRS on breast cancer-specific 
mortality. Sensitivity analyses performed using different p-value thresholds to generate 
correction factors for both Dudbridge et al and Slope-hunter methods (along with 
corresponding changes to distributions of cluster sizes and “entropy” values for the Slope-
hunter method) are presented in Table 3.  
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This example demonstrates the potential for large differences in findings when using 
Dudbridge et al and Slope-hunter methods to correct for index event bias and we 
recommend further examination of the assumptions behind each method, and sensitivity 
analyses. For example, the Dudbridge method is more sensitive to the presence of genetic 
correlation between disease incidence and progression, whereas the Slope-hunter method 
assumption is that there are no common causes of incidence and prognosis that explain 
more of the variance in incidence than the SNPs that only affect incidence. Neither of these 
assumptions can be verified with the observed data, so sensitivity analyses could explore 
their implications. Sensitivity analyses using the methods described earlier in this review 
could be used to either suggest plausible selection effects (i.e. provide estimates of the 
effects of U on incidence and prognosis) and re-estimate the effects of interest, or to 
investigate what magnitude of selection bias would be needed to have observed the 
negative effect of PRS for breast cancer on mortality, if in fact there was no effect. 
 
Conclusions 
We have highlighted the potential for bias in genetic studies of disease progression due to 
their case-only design. We reviewed methods available to detect this index event bias 
(‘Detecting index event bias’), using either individual-level or summary-level data, and 
showed how access to individual-level data allows a more thorough investigation of biased 
associations between risk factors for disease incidence. Next, we outlined two sensitivity 
analyses (‘Sensitivity analyses’) to assess the magnitude of bias that would have to be 
present to explain observed associations in an MR analysis; we recommend that results of 
these analyses are presented alongside causal effect estimates for any case-only MR 
analysis. We then discussed methods to account for this bias (‘Accounting for index event 
bias’) in both GWAS and MR analyses and highlighted the assumptions associated with each 
method, such as knowledge and availability of all risk factors for IPW analysis in a single-
sample setting and assumptions of linearity for the summary-level methods. Finally, we 
applied methods that account for and minimise bias (IPW, Dudbridge, Slope-hunter) to two 
real-data examples.  
 
Our first application was an individual-level data analysis of the effect of LDL-C and HDL-C on 
CHD mortality in which we applied the IPW method. We showed how the magnitude of the 
estimated effect of LDL-C on CHD mortality is reduced, albeit modestly, when using IPW to 
account for index event bias, in the opposite direction to that predicted from the likely 
direction of collider bias. This analysis is complicated by two factors, namely statin use, and 
the fact that the incident event (CHD onset) happened before data on the exposures were 
collected. Thus, the IPW may in fact be modelling variables affected by CHD onset, rather 
than vice versa. Similarly, earlier LDL-C/HDL-C measures affect statin use at baseline, which 
is likely to also have been affected by the index event, and to cause later mortality. This 
highlights how it may be difficult to generate accurate causal effect estimates in realistically 
complex situations. In this example, a two-sample MR (rather than one sample) might avoid 
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some of the issues around LDL-C/HDL-C being affected by the index event. Further methods 
are needed to address the issue of bias due to pre index event statin use being both caused 
by pre-index event measures of exposure and being a cause of the index event, and 
subsequent statin use to be caused by pre-index event exposure and the index event (and 
likely an interaction between them). These situations are potentially further complicated by 
the fact that the data used here (UKB) are known to be highly selected from the general 
population via non-representative participation, and are thus subject to other forms of 
selection bias.   
 
Although the Dudbridge and Slope-hunter methods can be applied to both individual and 
summary level data, we chose to illustrate them in our second applied example using 
summary-level data. We showed how the Slope-hunter and Dudbridge et al correction 
factors produced different estimates of the effect of a breast cancer PRS on breast cancer-
specific mortality. This highlights the need to carefully examine assumptions of each 
method, perform both, and follow up with sensitivity analyses. 
 
It should be noted that in this paper we have focused on one type of selection bias, index 
event bias, and there are other forms of selection bias to consider in genetic studies of 
disease progression, which were beyond the scope of this review. For example, studies of 
disease progression require a population of individuals who have survived long enough to 
have developed disease and to allow sufficient time for disease to progress, meaning that 
such studies are often restricted to an older population and can be susceptible to survival 
bias. Some of the methods presented in this review could also be applied in the context of 
survival bias, for example IPW can be applied so long as data are available for those 
individuals who did not survive (although this assumes that every factor predicting survival 
has been measured) (41). Further methods to deal with survival bias in MR studies have 
been discussed previously (41-44). Additionally, analyses of disease progression require 
longitudinal data, therefore they can be vulnerable to bias due to missing data and loss-to-
follow-up. Equally, bias can arise in MR studies when the genetic variants differ in their 
association to the exposure in cases of the disease versus the general population (45). An 
additional consideration when performing a MR analysis with disease progression as the 
outcome would be to verify that the SNP-exposure associations are the same in cases as in a 
healthy population as there may be effect modification by factors relating to having the 
disease. As a consequence, the SNP-exposure estimates from a healthy population would 
not be correct.   
 
In conclusion, our review summarizes established approaches for detecting and adjusting 
for index event bias in genetic studies of disease progression. We hope that our work will 
provide a useful resource to applied researchers working on such studies. 
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Methods 
We used individual-level data from the UK Biobank (UKB), a prospective cohort study in 
which 502,549 adults aged 38-69 years were recruited between 2006-2010 via 22 
assessment centres across England, Wales, and Scotland (46) (~5% response rate (8, 47)). 
The study design, participants, and quality control (QC) are detailed elsewhere (48). 
Participants provided written informed consent. Ethical approval was obtained from the 
Northwest Multi-centre Research Ethics Committee (11/NW/0382). Data were accessed via 
application number 16391.  
 
Nearly all participants provided blood samples at the 2006-2010 clinic for genotyping and 
biochemistry analyses. Genotype was measured from serum samples using a genome-wide 
array (UK Biobank Axiom Array) with imputation to the Haplotype Reference Consortium 
panel. Pre-imputation QC, phasing, and imputation are described elsewhere (49). Our 
analyses were restricted to autosomal variants using graded filtering with varying 
imputation quality for different allele frequency ranges (50). 814 individuals with a 
mismatch between genetic and reported sex, and with sex-chromosome aneuploidy, were 
excluded. We further restricted to individuals of ‘European’ ancestry as defined by k-means 
clustering using the first 4 principal components provided by UKB (50). We included the 
largest cluster from this analysis (n=464,708 eligible for subsequent analyses). 
 
We constructed genetic risk scores (GRS) for LDL-C and HDL-C from a published genome-
wide association study (GWAS) that excludes UKB (51), including 33 and 44 single nucleotide 
polymorphisms (SNPs), respectively (52). For the purposes of multivariable MR adjustments 
for HDL-C, we additionally constructed a GRS for triglycerides based on 16 SNPs (51) and for 
apolipoprotein B based on 14 SNPs from targeted metabolomics (nuclear magnetic 
resonance spectroscopy) that also excludes UKB (52). GRSs were made using PLINK 2.0, with 
GWAS effect alleles and betas as weightings. Standard scoring was applied by multiplying 
the effect allele count (or probabilities if imputed) at each SNP (values 0, 1, or 2) by its 
weighting, summing these, and dividing by the total number of SNPs used. The score 
therefore reflects the average per-SNP effect on the exposure. GRSs and their respective 
exposure traits were each standardised into z-score (SD) units for analyses. 
 
CHD history was defined using inpatient ICD-10 codes as having developed before the date 
of baseline clinic assessment a primary or secondary diagnosis of CHD (I20, I200, I201, I208, 
I209, I21, I210, I211, I212, I213, I214, I219, I22, I220, I221, I228, I229, I23, I230, I231, I232, 
I233, I234, I235, I236, I238, I24, I240, I241, I248, I249, I251, I252, I255, I256, I258, I259). 
Mortality with CHD as a primary or secondary cause was defined using the same ICD-10 
codes, with a median (range) follow up time of 11.2 (0.01 - 14.1) years. Among 357,840 
participants eligible for current analyses (i.e., who had data on either lipid exposure and its 
GRS, plus age, sex, genetic PCs, CHD history status, CHD mortality status, and weightings for 
IPW adjustments), 20,552 (5.7%) had a pre-baseline history of CHD, and 2,625 (0.7%) later 
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had a recorded death from CHD. Of those who died of CHD, 44.5% had a recorded CHD 
history, whilst 55.5% did not. 
 
To verify expectations of the causality of lipids for CHD incidence, we estimated the effects 
of LDL-C and HDL-C on the risk of CHD onset, with CHD onset defined using inpatient ICD-10 
codes as having developed after the date of baseline exposure assessment a primary or 
secondary diagnosis of CHD (coded as above), among adults without those diagnosis codes 
at the time of baseline exposure assessment. Two-stage least squares (predictor 
substitution) regression models were used for this, where in a first-stage linear model, e.g., 
LDL-C is regressed on the GRS for LDL-C, plus age, sex, and the first ten genetic principal 
components (GPCs). The predicted values from that model were then entered into a logistic 
model as an exposure (plus age, sex, GPCs) with CHD onset as the outcome. 
 
IPW was performed by weighting each regression stage (first stage linear and second stage 
logistic) for the inverse probability of having had CHD (and survived) before the date of 
baseline clinic assessment based on predicted values from a separate logistic model of CHD 
case status regressed on sex, age, highest educational qualification, smoking status, alcohol 
status, body mass index, waist-to-hip ratio, and relative grip strength (maximum grip divided 
by weight in kg). Weightings therefore took the form of ‘1 / predicted values’ for those with 
CHD history. 
 
We estimated the prevalence of statin use based on medication codes for self-reported use 
of any of 13 drugs (atorvastatin, crestor, eptastatin, fluvastatin, lescol, lipitor, lipostat, 
pravastatin, rosuvastatin, simvador, simvastatin, zocor, zocor heart-pro) as defined in 
previous genetic analyses of UKB (53). We used this composite statin variable (yes/no) to 
estimate the effects of LDL-C and HDL-C on statin use using the same two-stage one-sample 
MR modelling approach described above with logistic regression as the second stage. 
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Box 1: Terminology commonly used in relation to the bias induced in the case-only setting 
Collider bias: Bias induced in the association between two variables when conditioning on their 
common effect (a “collider”).  
Selection bias: Bias in the estimated effect of exposure on outcome caused by non-random 
participation in/selection into a study. Collider bias will induce associations between all causes of 
participation in/selection into a study. 
Index event bias: Bias in the estimated effect of exposure on outcome caused by restricting the 
analysis to cases only. Collider bias will induce associations between all causes of the disease. 
Survival bias: Bias in the estimated effect of exposure on outcome caused by conditioning on those 
who have survived long enough to be in the study. Collider bias will induce associations between 
all causes of survival. 
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Figure 1: Directed acyclic graph demonstrating the introduction of collider bias in observational case only studies. Conditioning on disease 
incidence iduces the association between previously independent causal risk factor 1 and causal risk factor 2, shown by the dashed line. 
Because risk factor 1 is also a causal risk factor for disease progression, a case-only setting has led to a biased association between risk factor 2 
and disease progression via the path RF1-> RF2->DP. The association of the risk factor 2 with disease progression when conditioning on 
incidence is entirely due to collider bias. 
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Figure 2: Directed acyclic graph demonstrating the introduction of collider bias in genetic case only studies. (A) Conditioning on disease 
incidence induces the association between a previously independent casual risk factor and causal genetic variant for disease incidence, shown 
by the dashed line. Because risk factor 1 is also a casual risk factor for disease progression (a confounder of disease incidence and progression), 
a case-only setting has led to a biased association between the genetic variant and disease progression via the path Genetic variant-
>Measured/unmeasured confounder->Disease progression. The association of the genetic variant with disease progression when conditioning 
on incidence is entirely due to collider bias. (B) Collider bias will induce an association between genetic variants that both cause disease 
incidence. This will make a non-causal genetic variant (risk factor 2) to appear associated with disease progression. (C) A third scenario is 
where this induced path is in addition to the direct effect of the genetic variant on disease progression. 
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Figure 3: Directed acyclic graph demonstrating the introduction of collider bias in Mendelian Randomization case only studies. In Mendelian 
Randomization analyses, the exposure is proxied by a causal genetic instrument. Conditioning on disease incidence induces the association 
between the previously independent genetic instrument and a common cause for disease incidence and disease progression, shown by the 
dashed line. This would violate the independence MR assumption invalidating the analysis. 
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Figure 4: (A) Manhattan plot of GWAS for age at recruitment in myocardial infarction (MI) incidence cases only in UK Biobank.		Cases were 
defined as individuals who had had an acute MI event using the International Classification of Diseases 10th Revision codes (ICD-10: I21.0-
I21.9). GWAS was performed using Plink. This plot illustrates one genetic signal on chromosome 5 that is shown to be strongly associated with 
age at recruitment (P < 5×10-8). This signal could potentially be induced due to collider bias as, in a general random population a GWAS for age 
should not show any signal. However, this signal could also be due to biases other than collider bias. (B) Manhattan plot of GWAS for sex in 
MI incidence cases only in UK Biobank. Cases were defined as individuals who had had an acute MI event using the ICD10 codes I21.0-I21.9. 
This plot does not show any strong signal associated with sex, suggesting that no evidence of collider bias is detected.			
(a) 

	
(b) 
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Figure 5: An example of a Miami plot comparing results from a GWAS of smoking initiation (top) and a GWAS of smoking cessation (bottom) 
in a population of smokers. Plotted using publicly available summary statistics of Liu et al (54). There are several loci strongly associated with 
smoking cessation where there is no strong evidence for an association with smoking initiation (e.g. chr11, 19), suggesting that the association 
between these loci and smoking cessation is not the product of collider bias. However, further inspection of the magnitude of effect and 
confidence intervals is required to determine that these loci are not associated with initiation. The locus on chromosome 20 reaching genome-
wide significance also appears to be associated with smoking initiation, albeit not at genome-wide significance, suggesting that the association 
of this locus with smoking cessation may be affected by collider bias. 
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Figure 6. Contrasting scenarios in which index event bias is or is not expected,  
based on the likely causality of exposures for disease onset. Solid black lines indicate assumed causality. Light grey lines indicate assumed 
lack of causality. Dashed black line indicates induced association. Dashed light grey line indicates lack of induced association. Boxes indicate a 
variable which has been conditioned on. 
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Figure 7. Slope-hunter fitted model showing assignment of each SNP to “hunted” or “pleiotropic” clusters for an analysis examining the 
effect of a breast cancer susceptibility PRS on breast cancer-specific mortality. “Hunted” refers to SNPs that only affect incidence (here, 
breast cancer risk) and “pleiotropic” refers to SNPs that affect both incidence and prognosis (here, breast cancer risk and breast cancer-specific 
mortality). In this example there were 5 hunted SNPs (i.e. those used to generate a “correction factor” for index event bias) and 171 
pleiotropic SNPs. 

 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.22274166doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.22.22274166
http://creativecommons.org/licenses/by/4.0/


   
 

8 
 

Table 1: Summary of methods for detecting and accounting for index event bias and sensitivity analyses to determine the magnitude of bias 
required to negate observed effect estimates 
 

Method Data required Theory Strengths Limitations 
Detecting index event bias 

Negative control 
GWAS (e.g. age, 
sex) 

Individual-level 
phenotype and genotype 
data for case-only 
population 

Associations of SNPs with age and sex 
likely to reflect index event bias if age 
and/or sex cause the disease 

• Straightforward GWAS 

analysis with no 

knowledge of risk factors 

for the disease required 

• Uses variables available 

in all datasets 

• Requires access to individual-

level data 

• Requires sufficient sample 

size to assume that lack of 

observed associations is due 

to absence of bias instead of 

insufficient power 

Determination of 
associations 
between risk 
factors for 
incidence and their 
instruments 

Individual-level 
phenotype and genetic 
data for case-only and 
comparator (unselected) 
population 

Presence of associations between risk 
factors (and/or their instruments) of a 
different magnitude/ direction of effect 
to an unselected sample likely to reflect 
index event bias 

• Straightforward 

regression analyses 

• Does not necessarily 

require access to 

genotype data (although 

PRS are beneficial) 

• Requires access to individual-

level data 

• Case-only populations are 

likely to be smaller than 

unselected populations and 

therefore differences in 

magnitude of relationships 

could reflect lower statistical 

power in the case-only 

population 

• Requires a comparator 

population which is not 

subject to selection bias 

Comparison of 
incidence and 
prognosis GWAS 
results 

Summary-level data 
from a GWAS of disease 
incidence and a GWAS of 
disease prognosis 

SNPs associated with incidence may 
have biased associations with prognosis 
but associations of SNPs with prognosis 
only are not biased by index event bias  

• Requires summary-level 

data which are often 

publicly available 

• Easy to visually inspect 

using a Miami plot 

• Identifies SNPs that may be 

biased by index event bias 

but does not identify if index 

event bias is present 

Accounting for index event bias 
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Inverse-probability 
weighting 

Individual-level data for 
all known disease 
incidence risk factors for 
all individuals in target 
population (not just 
disease cases) 

Unbiased estimates (e.g. for a SNP effect 
on prognosis) can be estimated from a 
regression model weighted by the 
inverse-probability of an individual being 
a case 

• Can be applied to GWAS 

and one-sample MR 

• Requires data for non-cases 

• Requires knowledge of all 

known risk factors for 

disease incidence 

• Requires individual-level 

data 

Dudbridge method Summary-level data for a 
GWAS of disease 
incidence and a GWAS of 
disease prognosis 

The bias correction factor can be 
estimated as the slope of the regression 
line of SNP-prognosis on SNP-incidence 
associations using all independent SNPs 

• Generates a bias-

correction factor that can 

be applied to all SNPs 

• Only requires summary-

level data 

• Incidence and prognosis 

GWAS can be performed 

on overlapping or 

independent samples 

• Assumes no shared pathways 

between disease incidence 

and disease prognosis 

• Assumes linear effects of 

SNPs on incidence and 

prognosis, with no 

interactions 

Slope-hunter Summary-level data for a 
GWAS of disease 
incidence and a GWAS of 
disease prognosis 

The bias correction factor can be 
estimated as the slope of the regression 
line of SNP-prognosis on SNP-incidence 
associations using independent SNPs 
associated with incidence only 

• Generates a bias-

correction factor that can 

be applied to all SNPs 

• Only requires summary-

level data 

• Incidence and prognosis 

GWAS can be performed 

on overlapping or 

independent samples 

• Doesn’t rely on 

assumption of no shared 

biological pathways 

contributing to incidence 

and prognosis 

 

• Assumes that the variance in 

incidence explained by SNPs 

associated with incidence 

only is at least as great as the 

variance explained by SNPs 

associated with incidence 

and prognosis 

• Assumes linear effects of 

SNPs on incidence and 

prognosis, with no 

interactions 

Determining magnitude of bias required to explain observed results 
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Smith and 
Vanderweele 
method 

No data required, but 
need to specify a factor 
U such that incidence 
and progression are 
rendered independent 
conditional on U and the 
exposure. The effects of 
U on incidence and 
progression must be 
elicited. 
 

Computes bounds for the magnitude of 
selection bias using simple expressions 
that depend on the effects of U on 
incidence/progression. The bounds can 
then be used to assess how strong the 
selection effects should be for an 
observed association to be fully 
explained by selection bias. 
 

• Easy to implement using 

existing software. 

• Does not require 

modelling assumptions 

about the selection 

mechanism (other than 

identifying U). 
• Works with both 

individual and summary-

level data. 

• Only works with a binary 

outcome.  

• Requires U to be identified 

and its effects on incidence 

and progression elicited, 

which can be difficult and/or 

subjective.  
• Does not provide a point 

estimate. 

Quantitative bias 

analysis 

No data are required but 
it can be useful to inform 
the simulation. 

By simulating individual level data and 
an indicator of case status, investigators 
can obtain a distribution of estimates 
that are solely due to a given magnitude 
of index event bias. Comparison of these 
effects with those observed informs 
whether the observed effect is likely to 
be a consequence of this bias. 

• No data are required to 

implement the method 

so it can be applied 

regardless of whether 

you have performed your 

main analysis using 

individual- or summary-

level data 

• Simulated data may not 

reflect reality and so be 

misleading 

• No formal recommendations 

on how to compare the 

observed effect in your main 

analysis with those obtained 

from the simulation 
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Table 2 One-sample MR estimates of the effect of lipid traits on CHD mortality risk among 
adults with a history of CHD in UK Biobank (N=20,552 eligible) 
 

 OR (95% CI) for 

CHD mortality  

per SD higher 

exposure 
Index event bias expected (exposure 

likely causes CHD onset)  

 

  

LDL-C  
Without IPW 2.12 (1.20, 3.73) 

With IPW  1.76 (1.00, 3.11) 
    
Index event bias not expected 

(exposure likely does not cause onset) 

 

    
HDL-C   

Without IPW 0.88 (0.66, 1.16) 
With IPW 1.08 (0.79, 1.48) 

  
HDL-C, adj. for trig. and apoB  

Without IPW 0.62 (0.50, 0.78) 
With IPW 0.89 (0.64, 1.23) 

    
Estimates are among adults of European ancestry and are 
adjusted for age, sex, and the first ten genetic principal 
components. Models are two-stage prediction substitution 
regression models with bootstrapped standard errors (100 
replications). 
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Table 3. Sensitivity analyses employing different p-value thresholds to generate correction 
factors across Dudbridge et al and Slope-hunter methods examining the effect of a breast 
cancer susceptibility PRS on breast cancer-specific mortality 

Method p-value 
threshold* 

Cluster 
distribution 

(SH) 

Entropy (SH) Adjustment factor 
(95% CI) 

Dudbridge et al 1.0 x 10-3 - - -0.013  
(-100.011, 99.909) 

Slope-hunter 1.0 x 10-3 5 (H), 171 (P) 0.577 -0.243  
(–0.361, –0.126) 

Dudbridge et al 1.0 x 10-4 - - N/A 
Slope-hunter** 1.0 x 10-4 0 (H), 42 (P) NaN -0.207  

(-0.318, -0.097) 
Dudbridge et al 5.0 x 10-8 - - N/A 
Slope-hunter 5.0 x 10-8 5 (H), 4 (P) 0.971 -0.154 

(-0.228, -0.079) 
*p-value threshold used to generate correction factor. SH=Only applicable to Slope-hunter 
method. H=Hunted, P= Pleiotropic. **Note: It is advised that users of the Slope-hunter 
package interpret findings with caution when no SNPs are assigned to the “hunted” cluster 
(e.g. findings obtained using a p-value threshold < 1.0 x 10-4 in this example) and that users 
explore multiple p-value thresholds as a sensitivity analysis. 
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