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Abstract 

Background: Heme oxygenase-1 (HO-1) gene promoter (GT)n dinucleotide repeat length 

variations may modify HIV-associated neurocognitive impairment (HIV-NCI) risk. Among 

adults, short HO-1 (GT)n alleles associate with greater HO-1 antioxidant enzyme inducibility 

and lower rates of HIV-NCI. This pilot study examined associations between HO-1 (GT)n alleles 

and neurocognitive outcomes in a sample of Thai youth (13-23 years) with perinatally-acquired 

HIV (PHIV) and demographically-matched HIV-negative controls. Methods: Participants 

completed neurocognitive testing and provided blood samples for DNA extraction and 

sequencing of HO-1 promoter (GT)n dinucleotide repeat lengths. Allele lengths were assigned 

based on number of (GT)n repeats: <27 Short (S); 27-34 Medium (M); >34 Long (L). 

Relationships between HO-1 (GT)n repeat lengths and neurocognitive measures were examined, 

and differences by HO-1 (GT)n allele genotypes were explored. Results: Nearly half (48%) of 

all HO-1 (GT)n promoter alleles were short. Longer repeat length of participants’ longest HO-1 

(GT)n alleles significantly associated with poorer processing speed (Total sample: r=-.36, p=.01; 

PHIV only: r=-.69, p<.001). Compared to peers and controlling for covariates, SS/SM genotypes 

performed better in processing speed, and SS genotypes performed worse in working memory. 

Conclusions: A high frequency of short HO-1 (GT)n alleles was found among these Thai youth, 

as previously observed in other cohorts of people of Asian ancestry. In contrast to previous adult 

studies, the presence of a short allele alone did not associate with better neurocognitive 

performance, suggesting additional modifying effects among the different alleles. Research is 

needed to determine whether HO-1 (GT)n promoter genotypes differentially influence 

neurocognitive functioning across the lifespan and different ethnic backgrounds. 

 

Keywords: HIV-associated neurocognitive impairment; youth living with HIV; perinatally-

acquired HIV; heme oxygenase-1; HMOX1 
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Heme Oxygenase-1 Promoter (GT)n Alleles and Neurocognitive Functioning in Thai Youth 

with Perinatally-Acquired HIV: A Pilot Study 

 HIV-associated neurocognitive impairment (HIV-NCI) is a common complication of 

HIV infection – particularly among youth living with perinatally-acquired HIV (PHIV)1–3. Upon 

infection, HIV crosses the blood-brain barrier, entering the central nervous system (CNS) 

primarily through transendothelial migration of HIV-infected CD4 T lymphocytes, with 

subsequent adaption to infect brain macrophages.4,5 In the CNS, HIV depletes immune cells and 

causes neural injury, leading to HIV-NCI.5–12 Although widespread access to antiretroviral 

therapy (ART) has reduced rates of classical HIV neuropathology (e.g., encephalitis), ART’s 

protection against HIV-NCI is incomplete.5,13–15 Remarkably, HIV-NCI still occurs in 35-59% of 

youth with PHIV despite long-term ART and well-controlled viremia.16,17 Among ART-treated 

youth, chronic neuroinflammation triggered by low-level viral replication and abnormal immune 

activation may drive ongoing neural injury.6,12,18 Further, in the context of viral suppression, non-

HIV-specific host factors may play critical roles in HIV-NCI.5,19–22  

 Heme oxygenase-1 (HO-1) is a cytoprotective, detoxifying enzyme that may be a critical 

effector in reducing the CNS neuroinflammation, oxidative stress, and cellular injury observed in 

HIV-NCI.21–30 HO-1 is rapidly induced in response to cellular injury in the CNS and functions to 

degrade heme, generating carbon monoxide, biliverdin, and bilirubin.31 In turn, these processes 

have anti-oxidative effects and help modulate immune activation,31 protecting the CNS from 

further injury.32,33 Among adults with HIV, decreased HO-1 protein expression associates with 

increased immune activation in the CNS, including interferon responses (i.e., interferon gamma-

soluble cytokine [IFN-γ]).21 Furthermore, reduced HO-1 expression in HIV-infected 

macrophages may augment neurotoxins produced by these macrophages,21,23 suggesting reduced 
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HO-1 expression may promote CNS injury via heightened neurotoxin production.22,23 

Collectively, evidence suggests important relationships between reduced HO-1 in the brain, 

immune activation, and HIV-associated CNS dysfunction.22 Notably, HO-1 expression can be 

induced pharmacologically28,29 – allowing for exciting new possibilities for developing 

biomedical therapies for treating, and perhaps preventing, HIV-NCI.29  

 HO-1 expression is regulated by genetic polymorphisms in the human HO-1 gene 

(HMOX1).22,34 One such polymorphism, the HO-1 (GT)n dinucleotide repeat length in the 

HMOX1 promotor region (i.e., 5′-flanking region), has been shown to modulate HO-1 promoter 

activity.35–37 Specifically, shorter (GT)n repeat lengths associate with higher HO-1 expression in 

response to oxidative stress35–39 and better clinical outcomes in inflammation- and oxidative 

stress-related diseases, including coronary artery disease,35 ischemic heart disease and stroke,37,38 

and rheumatoid arthritis.39 Among adults with HIV, shorter HO-1 (GT)n repeat lengths have 

been associated with lower viral load and soluble CD14,24 a key marker of immune activation 

associated with HIV-NCI.40 Autopsy studies suggest shorter HO-1 (GT)n alleles associate with 

lower rates of HIV encephalitis and lower neuroinflammation markers (i.e., type I interferon 

response, T-cell activation).22 Moreover, in a large well-characterized cohort of adults living 

with HIV, short HO-1 (GT)n allele genotypes were found to associate with lower rates of HIV-

NCI.41 Taken together, evidence suggests HO-1 (GT)n allele repeat length may serve as a unique 

genetic-level modifier of HIV-NCI.20–22 

 However, previous studies have largely focused on middle-aged adults with HIV in the 

United States, and studies among younger samples are needed to determine whether associations 

between HO-1 (GT)n polymorphisms and HIV-NCI are consistent across the lifespan or emerge 

during distinct developmental periods. Such information is critical to informing the timing of 
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future prevention efforts for youth who may exhibit genetic vulnerabilities for developing HIV-

NCI. Likewise, HO-1 (GT)n allele repeat lengths vary significantly across ethnicities, suggesting 

genetic vulnerabilities for HIV-NCI may vary across populations, and there is need for further 

research among additional ethnically distinct samples of people living with HIV.41 For example, 

despite about 10% of the world-wide HIV population living in Asian/Pacific resource-limited 

countries,42 the HO-1 (GT)n polymorphism remains understudied among populations of Asian 

ancestry, limiting our understanding of relative genetic risk of HIV-NCI within distinct Asian 

ethnic groups. That said, studies of HIV-negative adults of Asian ancestry have linked the 

presence of longer HO-1 (GT)n repeats with increased risk for chronic emphysema in smokers,43 

and the presence of short HO-1 (GT)n alleles with decreased risk for coronary heart disease35,44 

and increased susceptibility to cerebral malaria.45  

 To date, no published studies have addressed the role of HO-1 (GT)n promoter alleles in 

clinical outcomes in HIV populations of Asian ancestry, and associations between HO-1 (GT)n 

polymorphisms and neurocognitive outcomes have yet to be examined among young people 

living with PHIV. Considering these research gaps, this pilot study aimed to (1) provide 

preliminary estimates of HO-1 (GT)n allele lengths and genotypes and (2) explore associations 

between HO-1 (GT)n allele lengths and neurocognitive outcomes in a sample of Thai 

adolescents and young adults with PHIV and demographically matched HIV-negative peers. 

Based on previous studies, we expected that shorter HO-1 (GT)n alleles and genotypes would 

associate with better neurocognitive outcomes.  

Methods 

Design, Setting, and Participants.  
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 This pilot study recruited fifty Thai adolescents and young adults (13-23 years) with 

PHIV and age- and sex-matched HIV-negative controls from an ongoing parent study at the 

Research Institute for Health Sciences, Chiang Mai University (RIHES-CMU) in Thailand. As 

part of the parent study, participants completed a battery of tablet-based neurocognitive tests. 

Parent study eligibility included: a) 13-23 years old; b) PHIV; c) currently on an ART regimen. 

PHIV participants who previously completed the parent study were recruited to participate in this 

pilot study during regular visits at the ART clinic. Demographically matched (i.e., age, sex) 

HIV-negative control participants were recruited from communities in Chiang Mai city. One 

control participant declined genetic testing, yielding a final sample of 49 participants (25 PHIV; 

24 controls).  

Procedures.  

 This study was approved by the New York State Psychiatric Institute’s IRB and RIHES-

CMU’s Human Experimentation Committee. Written informed consent was collected from 

participants ≥18 years. For participants <18 years, participant assent and written informed 

consent from a parent/guardian were collected. Following informed consent, participants 

completed a blood draw, collecting 2ml of whole blood via venipuncture. Blood samples were 

stored in a -80C freezer and cold-chain shipped in one batch for genetic testing. All study 

materials (e.g., consent forms) were translated into Thai. Demographic, viral load, CD4 count, 

and neurocognitive testing data were provided by the parent study.  

Measures.  

HO-1 (GT)n Promoter Genotype. Genomic DNA was extracted from whole blood 

samples (DNA Extraction Kit, Agilent Technologies), following previously described protocols 

for amplification and determination of genotype.22,41 Briefly, HO-1 (GT)n repeat lengths were 
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determined by polymerase chain reaction (PCR) amplification of the (GT)n repeat region with a 

6-fluorescein amidites (FAM) 5’ labeled forward primer (5′-FAM-

CCAGCTTTCTGGAACCTTCTG-3′), and unlabeled reverse primer (5′-

GAAACAAAGTCTGGCCATAGGA-3′), followed by fragment size determination on a 

capillary sequencer. For a subgroup of samples, PCR products were run on a 2% agarose gel to 

assess amplification of the target sequence predicted sizes (homozygotes and heterozygotes). 

Each sample was run at least twice from independent PCR reactions to confirm accurate and 

reproducible sizing, which was determined to be accurate if within ±1 GT repeats. If identical 

(GT)n repeat lengths were not rendered in duplicate, samples were run additional times to 

confirm repeat lengths. Alleles were classified by the number of (GT)n repeats: <27 (Short [S]); 

27-34 (Medium [M]); >34 (Long [L]). Based on length of each participant’s two HO-1 (GT)n 

alleles, participants were assigned genotypes (i.e., SS, SM, SL, MM, ML, LL). For example, the 

SS genotype was assigned to participants with two short alleles. 

Neurocognitive Measures. As part of the parent study, participants completed 

NeuroScreen, a neuropsychological battery of tablet-based tests measuring processing speed, 

working memory, and motor dexterity. NeuroScreen has been culturally- and linguistically-

adapted for use among Thai-speaking adolescents and young adults.46 This pilot analyzed data 

from 10 NeuroScreen tests: five processing speed tests (Trail Making 1, Trail Making 3, Visual 

Discrimination 1, Visual Discrimination 2, Number Speed), one executive functioning test (Trail 

Making 2), two working memory tests (Number Span Forward, Number Span Backward), and 

two motor tests (Finger Tapping Dominant Hand, Finger Tapping Nondominant Hand). Detailed 

descriptions of NeuroScreen tests have been previously reported.47 Raw test scores were 

converted to demographically-adjusted (i.e., age, sex, education) T scores (M = 50, SD = 10). 
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Analytic Plan.  

 Descriptive statistics were generated to summarize demographic and genotype data. 

Histograms and bar charts were produced to visualize the frequency distributions of HO-1 (GT)n 

repeat lengths and allele genotypes. Spearman’s rho correlations were assessed associations 

between HO-1 (GT)n allele repeat lengths as continuous variables and neurocognitive outcomes 

for the total sample and PHIV participants only, bootstrapping 5,000 samples and calculating 

95% confidence intervals (95% CI). As exploratory analyses, preliminary nonparametric Mann-

Whitney U tests and general linear models (GLM), controlling for age, sex, education, and HIV 

status, explored differences between HO-1 (GT)n allele genotypes on neurocognitive outcomes. 

Considering Mann-Whitney U tests and GLMs yielded similar results, GLM results are reported. 

In preliminary analyses, no genotype by HIV status interactions were found; thus, the full sample 

was used to preserve sample size, entering HIV status as a covariate. Parameter estimates with 

robust standard errors (HC4 method) were produced for planned contrasts of interest, comparing: 

a) participants with and without at least one short allele (SS/SM/SL vs. MM/ML), b) the two 

shortest genotype groups and all other genotypes (SS/SM vs. SL/MM/ML), c) participants with 

two short alleles and all other genotypes (SS vs. SM/SL/MM/ML). Effect sizes were calculated 

(𝑟 = #𝑡! 𝑡! + 𝑑𝑓⁄ ).48 For completeness, GLMs were also run restricting analyses to PHIV 

participants only. 

Results 

Participant Characteristics.  

 Participants’ demographics are summarized in Table 1. The average age of participants 

was 18.29 years old; 53.1% were female, and 83.7% were right-handed. PHIV and control 

participants did not differ regarding age, biological sex, or handedness. Years of education were 
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higher among control participants (M = 12.21) than PHIV participants (M = 10.56). On average, 

PHIV participants have 13.90 years of ART duration, with 95% having ≥9 years of ART. 

Regarding PHIV participants’ most recent viral loads and CD4 counts, 79.2% had viral loads 

<200 copies/mL and 72% had CD4 counts >500 cells/mm3. 

HO-1 (GT)n Allele Length and Genotypes.  

 Figure 1 depicts the distribution and prevalence of HO-1 (GT)n promoter allele lengths in 

the current sample. A high number of short alleles was found, with nearly half (48.0%) of all 

HO-1 (GT)n promoter allele lengths characterized as short. Conversely, few long alleles (8.2%) 

were found in the current sample.  

 Figure 2 depicts the frequency of HO-1 (GT)n genotypes. Nearly three-fourths (73.5%) 

of participants had at least one short allele (SS/SM/SL), and 22.4% had two short alleles (SS 

genotype). Only 16.3% of participants had a long allele (SL/ML), and no participants had two 

long alleles (LL). Regarding genotype prevalence, SM (42.9%) and SS (22.4%) genotypes were 

most prevalent. Among genotypes present in the sample, SL (8.2%) and ML (8.2%) genotypes 

were the least common. Similar prevalence of HO-1 (GT)n genotypes was found between the 

PHIV and control groups.   

Correlations between HO-1 (GT)n Allele Length and Neurocognitive Measures.  

 Analyzing HO-1 (GT)n allele lengths as continuous variables, in the total sample, longer 

repeat lengths of participants’ longest allele (i.e., number of repeats in participants’ least 

expressive HO-1 promoter) was significantly associated with worse performance on Trail 

Making 3 (r = -.36, p = .01), a measure of simple processing speed. Among the total sample, 

longest allele length also trended toward significance for Trail Making 1 (p = .06); no significant 

associations were found between shortest allele length and neurocognitive measures. Restricting 
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analyzes to PHIV participants, longer repeat lengths of participants’ longest allele was also 

significantly associated with worse performance on Trail Making 3 (r = -.69, p < .001). 

Additionally, among PHIV participants, the association between shortest allele length and Trail 

Making 3 approached significance (p = .054), with repeat length inversely related to processing 

speed performance. Correlation coefficients with 95% CIs are presented in Table 2.  

Comparing Neurocognitive Outcomes by HO-1 (GT)n Genotype Groups.  

 Table 3 presents parameter estimates exploring differences between HO-1 (GT)n 

genotype groupings. Controlling for age, sex, education, and HIV status, membership in the 

shortest genotype groups (SS/SM) had a significant effect on Trail Making 3 performance, F(1, 

43) = 5.12, p = .03, and this effect approached significance for Number Span Forward, F(1, 43) = 

3.91, p = .054. On Trail Making 3, planned contrast revealed SS/SM genotypes (M = 48.25, SD = 

8.51) exhibited better simple processing speed than SL/MM/ML genotypes (M = 41.82, SD = 

9.13), t(43) = -2.19, p = .03, r = .32. Conversely, on Number Span Forward, participants with 

SS/SM genotypes (M = 43.09, SD = 11.10) exhibited worse working memory than SL/MM/ML 

genotypes (M = 47.94, SD = 8.27), t(43) = 2.15, p = .04, r = .31. Separately, the presence of two 

short alleles (SS) has a significant effect on Number Span Forward performance, F(1, 43) = 

11.66, p = .001, with SS genotypes (M = 38.09, SD = 11.87) exhibiting worse working memory 

than other genotypes (M = 46.71, SD = 9.20), t(43) = 2.87, p = .006, r = .40. 

 Restricting analyses to PHIV participants, membership in the shortest genotype groups 

(SS/SM) was also significantly associated with Trail Making 3 performance, F(1, 20) = 10.39, p 

= .004; PHIV participants with SS/SM genotypes (M = 47.40, SD = 6.56) exhibited better simple 

processing speed than SL/MM/ML genotypes (M = 39.10, SD = 5.74), t(20) = -3.45, p = .003, r 

= .61, representing a large effect size. Separately, the presence of two short alleles was also 
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associated with Trail Making 3 performance, F(1, 20) = 6.58, p = .02; PHIV participants with SS 

genotypes (M = 51.40, SD = 7.16) exhibited better simple processing speed than other genotypes 

(M = 42.25, SD = 6.37), t(20) = -2.17, p = .04, r = .44. The presence/absence of at least one short 

allele (SS/SM/SL vs. MM/ML) was not significantly associated with neurocognitive measures in 

models using either the total sample or restricted to PHIV participants. 

Discussion  

 In this Thai adolescent and young adult sample, the prevalence and distributions of HO-1 

(GT)n promoter alleles and genotypes were distinct compared to those from White American and 

African American samples of adults with HIV.41 In our sample, most participants had at least one 

short allele, and no participant had two long alleles. This high frequency of short alleles is 

similar to previous reports in HIV-negative adults from Myanmar, bordering Thailand.45 These 

data add to the evidence that HO-1 allele lengths may vary significantly across geographic 

region, highlighting the need for further genetic studies with ethnically and regionally diverse 

populations of young people with HIV. Moreover, data suggest genetic risk of HIV-NCI may 

vary across distinct ethnic groups, with populations with a greater prevalence of longer alleles 

potentially carrying relatively higher risk.  

 Associations between HO-1 (GT)n genotypes and neurocognitive outcomes were also 

distinct. Even in this small sample, we found significant associations between HO-1 (GT)n allele 

lengths and neurocognitive outcomes. Specifically, longer repeat lengths of participants’ longest 

(GT)n allele (i.e., number of repeats of participant’s least expressive/inductive HO-1 promoter) 

associated with worse simple processing speed. This association represented a large effect size 

when analyses were restricted to PHIV participants. Additionally, associations between allele 

length and a separate measure of processing speed and a measure of working memory 
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approached significance, suggesting further investigation of these relationships in larger sample 

size is warranted.  

 Previous studies of adults with HIV have found that the presence of a short HO-1 (GT)n 

allele associates with a lower prevalence of HIV-NCI;41 however, in our sample, the presence of 

a short allele alone was not significantly associated with neurocognitive outcomes. That said, 

short HO-1 genotypes SS and SM performed better in simple processing speed (i.e., Trail 

Making 3) than other genotypes, and this difference represented a large effect size among PHIV 

participants. Notably, grouping participants by presence/absence of a short allele sorted those 

with both a short and long allele (i.e., SL) in the “short” group, and associations with cognitive 

outcomes failed to reach significance. However, when the “short” group was restricted to the two 

shortest genotypes (i.e., SS and SM), excluding SL genotypes, we found membership in the 

“short” group significantly associated with better processing speed. Taken together, findings 

suggest that the presence of a short allele benefited participants’ processing speed if also in the 

absence of a long allele. 

 Unexpectedly, SS genotypes performed worse than peers in working memory. 

Considering these participants have two short HO-1 (GT)n alleles, which associates with greatest 

HO-1 expression,35–39 we would expect these participants are afforded the greatest 

neuroprotection. Thus, we expected SS genotypes to associate with better neurocognitive 

functions. Intriguingly, we found the opposite in our total sample, with SS genotypes performing 

worse than peers with genotypes that less readily express HO-1. In contrast, a study of 276 adults 

of African ancestry living with HIV showed that those with at least one short allele had a 

significantly reduced risk of HIV-NCI (defined across seven neurocognitive domains).41 

Discrepancies between current and previous findings could be related to the current sample 
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including both PHIV and HIV-negative participants, whereas previous adult studies have not 

included HIV-negative controls. That said, discrepancies could also be related to variations 

across the lifespan and between ethnic groups. Although the scarcity of literature precludes 

robust comparisons, one study of 28 Ugandan adolescents with PHIV found SS genotypes 

associated with worse executive functioning and complex processing speed.49 Thus, additional 

studies are needed to determine how HO-1 (GT)n promoter genotypes may differentially 

influence neurocognitive functioning across the lifespan and within different ethnic backgrounds. 

 This study has several limitations. This was a pilot study with a small sample size, which 

precluded examining differences across all genotype groups. Additionally, analyses were 

exploratory, and analyses restricted to only PHIV participants were likely insufficiently powered. 

Considering that we found several associations that approached significance, additional 

associations between genotypes and specific neurocognitive outcomes may exist in this 

population that exploratory analyses were not adequately powered to detect. Studies with larger 

sample sizes are needed to corroborate these preliminary findings and examine additional 

comparisons of interest. 

 Despite limitations, this pilot study significantly contributes to the literature. To our 

knowledge, it is among the first to examine the prevalence of HO-1 (GT)n alleles and 

associations with neurocognitive functions in a Thai sample. It is also among the first to explore 

these relationships in adolescents and young adults living with PHIV. Likewise, a strength of this 

pilot was its use of standardized neurocognitive measures, extending the literature in identifying 

specific neurocognitive domains that may be particularly sensitive to variations in HO-1 (GT)n 

alleles, as well as a comparator group that was demographically similar and from the same 

region. These preliminary findings are hoped to inform new and exciting veins of research that 
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have the potential to drive advancements in treating HIV-NCI, specifically among youth living 

with PHIV in resource-limited settings. Additional larger studies examining HO-1 (GT)n 

genotype distributions among other distinct Asian populations of young people living with HIV 

are warranted. 
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Table 1. Demographic Characteristics of Study Participants (N=49) 

 PHIV (n=25) Controls (n=24) Total (N=49) 
 % (n) % (n) % (n) 

Age (years) M=18.28 (SD=3.09) M=18.29 (SD=3.09) M=18.29 (SD=3.06) 
   13-17 years 44.0% (11) 45.8% (11) 44.9% (22) 
   18-23 years 56.0% (14) 54.2% (13) 55.1% (27) 
Biological Sex    
 Female 52.0% (13) 54.2% (13) 53.1% (26) 
 Male 48.0% (12) 45.8% (11) 46.9% (23) 
Education (years) M=10.56 (SD=2.74) M=12.21 (SD=2.92) M=11.37 (SD=2.92) 
 ≤9 years 36.0% (9) 20.8% (5) 28.6% (14) 
 10-12 years 24.0% (6) 12.5% (3) 18.4% (9) 
 ≥12 years 40.0% (10) 66.7% (16) 53.1% (26) 
Handedness    
 Right 84.0% (21) 83.3% (20) 83.7% (41) 
 Left 16.0% (4) 16.7% (4) 16.3% (8) 
ART Duration (years)c. M=13.90 (SD=2.75) – – 
Current ART Regimenc.    
 EFV+TDF+FTC 57.1% (12) – – 
 Other Regimen 42.9% (9) – – 
Recent Viral Loada.    
 <200 copies/mL 79.2% (19) – – 
 >200 copies/mL 20.8% (5) – – 
Recent CD4 Countb.    
 <200 cells/mm3 8.0% (2) – – 
 200-500 cells/mm3 20.0% (5) – – 
 >500 cells/mm3 72.0% (18) – – 
Participant demographic data was provided by the parent study.  

a. Recent viral load data was available for 24 PHIV participants. On average, there were 190 

days between most recent viral load and neurocognitive testing.  

b. Recent CD4 count data was available for 25 PHIV participants. On average, there were 201 

days between most recent CD4 count and neurocognitive testing. 

c. ART start date and current ART regimen data was available for 21 PHIV participants. 

EFV+TDF+FTC = Efavirenz + Tenofovir + Emtricitabine 
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Table 2. Correlation Coefficients between Shortest and Longest HO-1 (GT)n Allele Lengths 

and Neurocognitive Outcomes. 

 Shortest Allele Length Longest Allele Length 
 r [95% CI] p r [95% CI] p 

TM 1 
Total: -.04 [-.32, .24] ns -.27 [-.53, .03] .06 

PHIV Only: .22 [-.26, .62] ns -.22 [-.66, .30] ns 

TM 2 
Total: .12 [-.18, .41] ns .04 [-.24, .32] ns 

PHIV Only: .26 [-.19, .64] ns .03 [-.41, .44] ns 

TM 3 
Total: -.16 [-.45, .14] ns -.36 [-.61, -.08] .01 

PHIV Only: -.39 [-.75, .07] .054 -.69 [-.88, -.40] <.001 

VD 1 
Total: .15 [-.11, .40] ns .10 [-.18, .36] ns 

PHIV Only: .11 [-.27, .49] ns .15 [-.23, .50] ns 

VD 2 
Total: -.05 [-.31, .23] ns -.08 [-.36, .22] ns 

PHIV Only: -.10 [-.49, .31] ns -.10 [-.53, .35] ns 

NSPD 
Total: -.13 [-.45, .20] ns -.17 [-.43, .12] ns 

PHIV Only: .19 [-.24, .56] ns -.02 [-.41, .36] ns 

NSPN F 
Total: .04 [-.27, .33] ns .25 [-.04, .52] .08 

PHIV Only: .18 [-.30, .57] ns .26 [-.21, .67] ns 

NSPN B 
Total: .06 [-.25, .35] ns .02 [-.27, .31] ns 

PHIV Only: -.11 [-.53, .32] ns .04 [-.38, .44] ns 

FT D 
Total: -.11 [-.38, .17] ns .01 [-.27, .31] ns 

PHIV Only: .12 [-.31, .57] ns .04 [-.39, .49] ns 

FT ND 
Total: -.12 [-.40, .17] ns -.10 [-.37, .19] ns 

PHIV Only: .05 [-.40, .51] ns -.13 [-.50, .32] ns 
Note. Spearman rho correlation coefficients were conducted bootstrapping 5,000 samples for 
the total sample and for PHIV participants only (shaded grey). Significant p-values (p<.05) are 
bolded and underlined. 95% CI = 95% confidence intervals; ns = non-significant p-values 
≥.10. Processing speed: TM 1 = Trail Making 1; TM 3 = Trail Making 3; VD 1 = Visual 
Discrimination 1; VD 2 = Visual Discrimination 2; NSPD = Number Speed.  
Executive functioning: TM 2 = Trail Making 2. Working memory: NSPN F = Number Span 
Forward; NSPN B = Number Span Backward. Motor dexterity: FT D = Finger Tapping 
Dominant Hand; FT ND = Finger Tapping Nondominant Hand. 
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Table 3. Differences in Neurocognitive Measures by HO-1 (GT)n Genotypes. 

 
SS/SM vs. SL/ML/MM SS vs. SM/SL/MM/ML 

 t p r (ES) t p r (ES) 
TM 1 Total: -1.08 ns – 0.14 ns – 

PHIV Only: -0.21 ns – -0.86 ns – 
TM 2 Total: 0.42 ns – 1.35 ns – 

PHIV Only: 1.42 ns – 0.32 ns – 
TM 3 Total: -2.19 .03 .32 (M) -1.02 ns – 

PHIV Only: -3.45 .003 .61 (L) -2.17 .04 .44 (M) 
VD 1 Total: 1.74 .09 .26 (S/M) 1.85 .07 .27 (S/M) 

PHIV Only: 1.35 ns – 0.85 ns – 
VD 2 Total: -0.21 ns – 0.96 ns – 

PHIV Only: -0.50 ns – 0.28 ns – 
NSPD Total: -0.18 ns – -0.78 ns – 

PHIV Only: 0.30 ns – 0.58 ns – 
NSPN F Total: 2.15 .04 .31 (M) 2.87 .006 .40 (M) 

PHIV Only: 1.01 ns – 0.74 ns – 
NSPN B Total: 0.49 ns – 1.75 .09 .26 (S/M) 

PHIV Only: -0.09 ns – 2.02 .06 .42 (M) 
FT D Total: -0.94 ns – 0.87 ns – 

PHIV Only: -0.13 ns – 0.73 ns – 
FT ND Total: -0.89 ns – 1.30 ns – 

PHIV Only: -0.44 ns – 0.81 ns – 
Note. Differences by genotype groups for the total sample and PHIV participants only (shaded 

gray). General linear models entered age, sex, education, and HIV status as covariates. 

Significant p-values (p < .05) are bolded. Effect sizes (r) are presented for results with p <.10. 

Effect sizes of .10, .30. and .50 were considered small, medium, and large, respectively.50 

ES = effect size; ns = non-significant p-values ≥.10 

Processing speed: TM 1 = Trail Making 1; TM 3 = Trail Making 3; VD 1 = Visual 

Discrimination 1; VD 2 = Visual Discrimination 2; NSPD = Number Speed. 

Executive functioning: TM 2 = Trail Making 2. Working memory: NSPN F = Number Span 

Forward; NSPN B = Number Span Backward. Motor dexterity: FT D = Finger Tapping 

Dominant Hand; FT ND = Finger Tapping Nondominant Hand. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.22.22274113doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.22.22274113
http://creativecommons.org/licenses/by-nc-nd/4.0/


HO-1 ALLELES AND COGNITION IN THAI YOUTH 27 

A.  

 
 
B. 

 
Figure 1. Distribution (A) and frequency (B) of HO-1 (GT)n alleles. Allele lengths were 

classified based on (GT)n repeats as short “S” (<27 repeats), medium “M” (27–34 repeats), and 

long “L” (>34 repeats). 
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Figure 2. Frequency of HO-1 (GT)n genotypes. The SM genotype was most prevalent. No 

participant had two long alleles (i.e., LL genotype).  
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