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ABSTRACT

Accurate predictive modeling of pandemics is essential for optimally distributing resources and setting policy. Dozens of case
predictions models have been proposed but their accuracy over time and by model type remains unclear. In this study, we
analyze all US CDC COVID-19 forecasting models, by first categorizing them and then calculating their mean absolute percent
error, both wave-wise and on the complete timeline. We compare their estimates to government-reported case numbers, one
another, as well as two baseline models wherein case counts remain static or follow a simple linear trend. The comparison
reveals that more than one-third of models fail to outperform a simple static case baseline and two-thirds fail to outperform a
simple linear trend forecast. A wave-by-wave comparison of models revealed that no overall modeling approach was superior
to others, including ensemble models, and error in modeling has increased over time during the pandemic. This study raises
concerns about hosting these models on official public platforms of health organizations including the US-CDC which risks
giving them an official imprimatur and further raising concerns if utilized to formulate policy. By offering a universal evaluation
method for pandemic forecasting models, we expect this work to serve as the starting point towards the development of more
sophisticated models.

Introduction
The COVID-19 pandemic (1) has resulted in at least 80.3 million confirmed cases and nearly 1 million deaths in the United
States (US) alone. Worldwide, cases exceed 500 million, with at least 6 million deaths (2). The pandemic has affected every
country and continues to present a major threat to global health. This has caused a critical need to study the transmission of
emerging infectious diseases in order to make accurate case forecasts, especially during disease outbreaks. Case prediction
models are useful for developing pandemic preventive and control methods, such as suggestions for healthcare infrastructure
needs, isolation of infected persons, and contact activity tracking. Accurate models can allow better decision-making about the
degree of precautions necessary for a given region at a particular time, which regions to avoid travel to and the degree of risk in
various activities like public gatherings. Likewise, models can be used to proactively prepare for severe surges in cases by
allocating resources such as oxygen or personnel. Collecting and presenting these models gives public health officials, and
organizations such as the United States Centers for Disease Control and Prevention (US-CDC) (3), a mechanism to disseminate
these predictions to the public, but risks giving them an official imprimatur, suggesting that these models were either developed
by a government agency or endorsed by them.

Since the start of the pandemic, dozens of case prediction models have been designed using a variety of methods. Each
of these models depend on data available about cases in the US, derived from a heterogeneous system of reporting, which can
vary by county and suffer from regional, temporal delays. For example, some counties may collect data over several days and
make it public at once, which creates an illusion of a sudden burst of cases. In counties with less robust testing programs, the
lack of data can limit modeling accuracy. These methods are not uniform or standardized between groups that perform data
collection, resulting in unpredictable errors. Underlying biases in the data, such as under-reporting, can produce predictable
errors in model quality, requiring models to be adjusted to predict future erroneous reporting rather than actual case numbers.
Such under-reporting has been identified by serology data (4; 5). Moreover, there is no universally agreed upon system for
assessing and comparing the accuracy of case prediction models. Often published models use different methods, which makes
direct comparisons difficult. The CDC has taken in data of case prediction models in a standardized way which makes direct
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Figure 1. Visual overlay of real case counts and predicted case counts across all waves examined. Actual case counts are
shown in red, predicted counts are shown in grey with each trace representing a different CDC COVID-19 forecasting model on
the sqrt plot.

comparisons possible (3). In this study, we use Mean Absolute Percent Error (MAPE) compared to the true case numbers
to compare models for normalization purposes. First, we consider which models have the most accurately predicted case
counts with the least MAPE. Next, we divide these models into five broad sub-types based on approach, i.e., epidemiological
(or compartment) models, machine learning approaches, ensemble approaches (which are constructed from the predictions
of multiple individual models), hybrid approaches, and other approaches, and compare the overall error of models using
these approaches. We also consider which exclusion criteria might produce ensemble models with the greatest accuracy and
predictive power.

A few studies (6; 7) have compared COVID-19 case forecasting models. However, the present study is unique in several
aspects. First, it is focused on prediction models of US cases and takes into consideration all CDC models that pass the set
inclusion criterion. Second, since these models were uploaded in a standardized format they can be compared across several
dimensions such as R0, peak timing error, percent error, and model architecture. Third, through the study, we seek to answer
several unaddressed questions relevant to pandemic case modeling. These include- (1) can we establish a metric to uniformly
evaluate pandemic forecasting models? (2) what are the top-performing models during the four COVID-19 waves in the US
and how do these fare on the complete timeline? (3) are there categories or classes of models that perform significantly better
than others? (4) how do model predictions fare with increased forecast horizons? and (5) how do the models compare to two
simple baselines?

Results
Dozens of groups have developed models to predict COVID-19 case-counts (refer Figure 1). When these models are overlaid
real world data, visually several features stand out. On aggregate, models tend to approach the correct peak during various
waves of the pandemic. However, some models undershot, some overshot, and many lagged the leading edge of real-world data
by several weeks.

Direct comparison of error based on the difference from real-world data potentially excludes important dimensions of
model accuracy. For example, a model that accurately predicts the time course of disease cases (but underestimates cases by
20% at any given point) might have greater utility for making predictions about when precautions are necessary when compared
to a model that predicts case numbers with only a 5% error but estimates peak cases two weeks late. To assess the degree of
timing error, the peak of each model was compared to the true peak of cases that occurred within the model time window.
MAPE i.e., the ratio of the error between the true case count and a model’s prediction to the true case count, is a straightforward
way of representing the quality of predictive models and comparing between model types. This measure has some advantages
over other methods of measuring forecast error. Because it deals with negative residuals by taking an absolute value rather than

2/23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.20.22274097doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.20.22274097
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. MAPE values of US CDC Case Prediction models in wave-I to IV. Models are sorted in descending order of MAPE.
The color scheme represents the model category. Here “Baselines” are represented in red.
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a squared value, reported errors are proportional. Percent error is also conceptually straightforward to understand. However,
MAPE has advantages over absolute error. A model that predicts 201,000 cases when 200,000 cases occur has good accuracy
but the same absolute error as a model that predicts 1100 cases when 100 occur. MAPE accounts for this by normalizing
population size.

We analysed the MAPE values of all models wave-wise as shown in Figure 2. The MAPE of all models was compared
to two “Baseline” models, which represented either an assumption that case counts would remain the same as the previous week
(Baseline-I) or a simple linear model following the previous week’s case counts (Baseline-II). In the first wave of the pandemic
in the US, ‘Columbia_UNC-SurvCon’ achieved the lowest MAPE = 14%, closely followed by ‘USACE-ERDC_SEIR’ (MAPE
= 17%) and ‘CovidAnalytics-DELPHI’ (MAPE = 25%) models. Here, only 4 models performed better than both baselines.
Three of these were epidemiological models while one was a hybrid model. From the t-test, on MAPE values of models
categorized on the basis of model type (refer Figure 4), it can be inferred that during the first wave, hybrid models performed
the best and attained the lowest MAPE. This was followed by the epidemiological models and those based on machine learning.
On the other hand, ensemble models had the largest MAPE during this wave and none of them surpassed the Baseline-I MAPE,
i.e., 31%. During the second wave, ‘IQVIA_ACOE-STAN’ performed the best with an MAPE score of 5% (see Figure 2).
In this wave, a total of 13 models performed better than both baselines, with MAPE ranging from 5 to 37. These included 5
ensemble models, 4 epidemiological models, 2 machine learning models and 2 hybrid models. All ensemble models exceed
Baseline-I performance (that had MAPE = 37%), with the exception of ‘UVA-Ensemble’. The epidemiological models showed
a staggered MAPE distribution. Followed by the hybrid and the models categorized as ‘other’ model sub-types, these have the
lowest average MAPE in wave-II. In contrast to wave-I, ensemble models provide the best forecasts in wave-II (see Figure 4).
Here, hybrid models are the worst performing models. During wave-III (see Figure 4), ensemble models performed similarly
to wave-I. Baseline models had a relatively elevated high MAPE with Baseline-I and II MAPE scores being 74% and 77%
respectively. In wave-III, ‘USC-SI_kJalpha’ is the best-performed model with MAPE= 32% (see Figure 2). Here, 32 models
performed better than both baseline models. These included 12 compartment models, 3 machine learning models, 4 hybrid
models, 8 ensemble models, and 5 un-categorized models. In wave-IV of the pandemic, a number of models performed similarly
between a MAPE of 28% and baseline of 47% (Figure 2). Ensemble models performed the best whereas epidemiological
models had the highest MAPE during this wave. Baseline-I and II MAPE scores were 47% and 48% respectively. In wave-IV,
‘LANL-GrowthRate’ is the best performed model with MAPE= 28% (Figure 2). In the fourth wave, 17 models performed
better than both baseline models. These included 6 compartment models, 7 ensemble models, 1 machine learning model, 2
hybrid models, and 1 uncategorized model.

The MAPE values of all models over the complete timeline was also analysed (see Figure 3). Here, we find
‘IQVIA_ACOE-STAN’, ‘USACE-ERDC_SEIR’, ‘MSRA-DeepST’, and ‘USC-SI_kJalpha_RF’ achieve the best performance
with low MAPE ranging from 5% to 35%. In a comparison of overall performance, ensemble models performed significantly
better than all other model types (3). However the performance of ensemble models was not “significantly” better than the
baseline models (no change or simple linear model) which performed better than both machine learning and epidemiological
models overall (4). MAPE of the top-10 performing models over all waves were examined (refer Figure 6). Though we
examined 54 models overall (reported 51 in the full timeline), many of these did not make predictions during the first wave of
the pandemic when data was less available and therefore do not appear in the wave-wise analysis. The number of weeks for
which each model provides predictions were highly variable, as seen in Figure 7.

The MAPE of models in the US-CDC database increased each week out from the time of prediction. Figure 5 depicts a
strictly increasing rise in MAPE with the increase in the forecast horizon. In other words, the accuracy of predictions declined
the further out they were made. At one week from the time of prediction, the MAPE of models examined clustered just below
25% MAPE and declined to about 50% MAPE by four weeks. The MAPE in each week was relatively bi-modal, with several
models fitting within a roughly normal distribution and others having a higher MAPE. The distribution of the points indicates
that the majority of models project similar predictions for smaller forecast horizons, while the predictions for larger horizons
are more spread out. The utility of model interpretation would improve by excluding those models that fall more than one
standard deviation (σ ) from the average MAPE of models.

Discussion
Accurate modeling is critical in pandemics for a variety of reasons. Policy decisions need to be made by political entities which
must follow procedures, sometimes requiring weeks for a proposed policy intervention to become law and still longer to be
implemented. Likewise, public health entities such as hospitals, nurseries, and health centers need “lead time” to distribute
resources such as staffing, beds, ventilators, and oxygen supplies. However, modeling is limited, especially by the availability
of data, particularly in early outbreaks (8). Resources such as ventilators are often distributed heterogeneously (9), leading
to a risk of unnecessary mortality. Similarly, the complete homogeneous distribution of resources like masks is generally
sub-optimal and may also result in deaths (10). Likewise, it is important to develop means of assessing which modeling tools
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Figure 3. MAPE values of US-CDC case prediction models on the complete timeline, i.e., Wave-I to IV. The y-axis is sorted
descending from lowest error to highest. The color scheme represents the model category.
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are most effective and trustworthy. For example, a case forecasting model that consistently makes predictions that fare worse
than assuming that case counts will remain unchanged or that they will follow a simple linear model isn’t likely to be useful in
situations where modeling is critical. The use of these baselines allows for the exclusion of models that “fail” to predict case
counts adequately.

The average MAPE of successful models which we define as lower MAPE than either baseline model varied between
methods depending on the wave they were measured in. In the first wave, epidemiological models had a mean MAPE of 31.11,
and machine learning models had a mean MAPE of 31.97. In the second wave, these were 44.87 and 44.25 respectively. In
the third wave, these were 62.5 and 63.15, and in the fourth wave, these were 91.48 and 43.58 respectively. Therefore, we
notice that the mean MAPE of models got worse with each wave. This is because each model type is susceptible to changing
real-world conditions, such as the emergence of new variants with the potential to escape prior immunity, or a higher R0, new
masking or lockdown mandates, the spread of conspiracy theories, or the development of vaccines which will decrease the
number of individuals susceptible to infection.

In waves-2 and 3, the “best” performing model was a hybrid and machine learning model respectively. In waves 1 and
4, the best model was an other and epidemiological model respectively. In each wave, some examples of each model type were
successful, and some were unsuccessful. No model category did significantly better than baseline models except in wave-3
(Figure 4). In wave-3, compartment models were significantly better than baseline models, although ensemble models had the
lowest overall MAPE. These results do not suggest that either overall modeling technique is inherently superior for predicting
future case counts.

Compartment (or epidemiological) models broadly use several “compartments” which individuals can move between
such as “susceptible,” “infectious,” or “recovered,” and use real-world data to arrive at estimates for the transition rate between
these compartments. However, the accuracy of a compartment model depends heavily on accurate estimates of the R0 in a
population, a variable that changes over time, especially as new virus variants emerge. For example, the emergence of the Iota
variant of SARS-CoV-2 (also known as lineage B.1.526) resulted in an unpredicted increase in case counts (11). Machine
learning models train algorithms that would be difficult to develop by conventional means. These models “train” on real-world
data sets and then make predictions based on that past data. Machine learning models are sensitive to the datasets they are
trained on, and small or incomplete datasets produce unexpected results. Hybrid models make use of both compartment
modeling and machine learning tools. On the other hand, ensemble models combine the results of multiple other models
hoping that whatever errors exist in the other models will “average out” of the combined model. Ensemble models potentially
offer an advantage over individual models in that by averaging the predictions of multiple models, flawed assumptions or
errors in individual models may “average out” and result in a more accurate model. However, if multiple models share flawed
assumptions or data, then averaging these models may simply compound these errors. An individual model may achieve a
lower error than multiple flawed models in these cases.

The “baseline” models had a MAPE of 48 and 54 over the entire course of the pandemic in the US. Most models did
not perform better than these. Among those that did, we discuss the five with the best performance (in increasing order of their
performance). First, “QJHong-Encounter” is a model by Qijung Hong, an Assistant professor at Arizona State University.
This model uses an estimate of encounter density (how many potentially infectious encounters people are likely to have in
a day) to predict changes in estimated R (reproduction number), and then uses that to estimate future daily new cases. The
model uses machine learning. It had a MAPE of 38 over all waves. Second, “USC-SI_kJalpha_RF” is a hybrid model from
the University of Southern California Data Science Lab. This model also uses a kind of hybrid approach, where additional
parameters are modeled regionally for how different regions have reduced encounters, and machine learning is used to estimate
parameters (12). It had a MAPE of 35 over all waves. Third, “MSRA-DeepST” is a SIR hybrid model from Microsoft Research
Lab-Asia that combines elements of SEIR models and machine learning. It had a MAPE of 34. Next, “USACE-ERDC_SEIR”
is a compartment model developed by the US Army Engineer Research and Development Center COVID-19 Modeling and
Analysis Team. It adds to the classic SEIR model, adding additional compartments for unreported infections and isolated
individuals. It used Bayesian estimates of prior probability based on subject matter experts to select initial parameters. It had
a MAPE of 31. Lastly, “IQVIA_ACOE_STAN” is a machine learning model from IQVIA-Analytics Center of Excellence
and has the highest apparent performance on the overall timeframe. The calculated MAPE for this model was 5. Notably, the
MAPE of 5 is much lower than the MAPE of 31 of the next closest model.

Although MAPE is superior to other methods of comparing models, there are still some challenges. For example,
“IQVIA_ACOE_STAN” appears to be the lowest model by far, but the only data available covers a relatively short time frame,
and does not include any changes in case direction from upswings and downswings. This advantages the model compared to
other models which might cover time periods where case numbers peak or new variants emerge. This highlights a potential
pitfall of examining this data: the models are not studying a uniform time window.

Data reporting is one of the sources of error affecting model accuracy. There is significant heterogeneity in reporting of
COVID-19 cases by state. This is caused by varying state laws, resources made available for testing, the degree of sequencing
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Figure 4. Bar graph showing the paired t-test results. Category-wise error achieved by the models on both overall and
wave-wise from wave-1 to wave-4.

being done in each state, and other factors. Additionally, different states have heterogeneity in vaccination rate, population
density, implementation of masking and lockdown, and other measures which may affect case count predictions. Therefore, the
assumptions underlying different models and the degree to which this heterogeneity is taken into account may result in models
having heterogeneous predictive power in different states. Although this same thinking could be extended to the county level,
the case count reporting in each county is even more variable and makes comparisons difficult.

To make the comparison between models more even, we used multiple times segments to represent the various waves
during the pandemic. Models that have made fewer predictions, particularly avoiding the “regions of interest” such as a
fresh wave or a peak, would only be subjected to a less challenging evaluation than the models that covered most of the
timeline. Further, the utility of models with only a few predictions within “regions of interest” is also questionable. Considering
these aspects, we define 04 time segments corresponding to each of the major waves in the US. Within each of these waves
of interest, we consider only models that made a significant number of predictions for the purpose of comparison. Such a
compartmentalized comparison is now straightforward, as all models within a time segment can now have a common evaluation
metric.

We focus on evaluating the performance of models for their 4-week ahead forecasts. A larger forecast horizon provides
a higher real-world utility in terms of policy-making or taking precautionary steps. We believe this to be a more accurate
representation of the predictive abilities of models as opposed to smaller windows in which desirable results could be achieved
by simply extrapolating the present trend. Therefore, due to the time delays associated with policy decisions and the movement
of critical resources and people, the long-term accuracy of models is of critical importance. To take an extreme example, a
forecasting model that only predicted one day in advance would have less utility than one that predicted ten days in advance.

The failure of roughly one-third of models in the CDC database to produce results superior to a simple linear model
should raise concerns about hosting these models in a public venue. Without strict exclusion criteria, the public may not
be aware that the are significant differences in the overall quality of these models. Each model type is subject to inherent
weaknesses of the available data. The accuracy of compartment models is heavily dependent on the quality and quantity of
reported data and also depends on a variable that might change with the emergence of new variants. Heterogeneous reporting of
case counts, variable accuracy between states, and variable early access to testing resulted in limited data sets. Likewise, it
seems that since training sets did not exist, machine learning models were unable to predict the Delta variant surge. Robust
evidence-based exclusion criteria and performance-based weighting have the potential to improve the overall utility of future
model aggregates and ensemble models.
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Figure 5. Predictions are most accurate closest to the time of prediction. The MAPE in predictions of all models for different
forecast horizons is shown. The dots in each box plot represent the MAPE over all the predictions of a certain model for the
corresponding forecast horizon. The y-axis is the MAE between the predicted case count and the reported case count. The
x-axis is the forecast horizon.

Because the US-CDC has a primary mission focused on the United States, the models included are focused on United
States case counts. However, globally the assumptions necessary to produce an accurate model might differ due to differences
in population density, vaccine availability, and even cultural beliefs about health. However, identifying the modeling approaches
that work best in the United States provides a strong starting point for global modeling. Some of the differences in modeling
will be accounted for by different input data, which can be customized by country or different training sets in the case of
machine learning models.

The ultimate measure of forecasting model quality is whether the model makes a prediction that is used fruitfully to
make a real-world decision. Staffing decisions for hospitals can require a lead time of 2-4 weeks to prevent over-reliance on
temporary workers, or shortages (13). Oxygen has become a scarce resource during the COVID-19 pandemic, and also needs
lead time (14). This has had real-world policy consequences as public officials have ordered oxygen imports well after there
were needed to prevent shortages (15). Indeed for sufficient time to be available for public officials to enact new policies and
for resources to be moved, a time frame of eight weeks is preferable.

The need for accurate predictions weeks in advance is confounded by the declining accuracy of models multiple weeks
in advance, especially considering the rise time of new variant waves. During the most recent wave of infections, news media
reported on the potential for the “omicron” variant of SARS-CoV-2 to rapidly spread in November of 2021, however in the
United States, an exponential rise did was not apparent in case counts until December 14th, when daily new case counts
approximated 100k new cases per day, and by January 14th, 2022, new cases exceed 850,000 new cases per day. The time
when accurate predictive models are most useful is ahead of rapid rises in cases, something none of the models examined were
able to predict, given the rise in SARS-CoV-2 cases that occurred during the pandemic.

Although forecasting models have gained immense attention during the COVID-19 pandemic, many challenges are
faced in developing forecasting models that serve the needs of governments and organizations. Since COVID-19 has a long
incubation period of up to 14 days, identifying patients beforehand presents its own set of challenges. Patients can infect those
in close contact with them throughout the virus incubation period when they may be asymptomatic and unaware that they are
infected. In a real-world scenario, it is very difficult to implement a complete lockdown or define a metric for evaluating the
effectiveness of a lockdown. Relating the optimal time period of the lockdown, taking into consideration the incubation period
of the virus, is a complex task. The lack of clean, structured, and accurate datasets also affects the performance of the case
prediction models, making the estimation of patient mortality count and transmission rate significantly harder.

We found that most models are not better than CDC baselines. The benchmark for resource allocation ahead of a wave
remains the identification and interpretation of new variants and strains by biologists. We, therefore, propose a reassessment of
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Figure 6. The MAPE of the top-10 best performing models in decreasing order of predictions performance over complete
timeline (Wave 1-4 combined), as well as two “Baselines” that either followed a simple linear model based on the previous
week’s case counts (Baseline-II), or that case counts would remain the same (Baseline-I). Most prediction models did little
better than control models.

the role of forecasting models in pandemic modeling. These models as currently implemented can be used to predict the peak
and decline of waves that have already been initiated and can provide value to decision-makers looking to allocate resources
during an outbreak. Prediction of outbreaks beforehand however still requires “hands-on” identification of cases, sequencing,
and data gathering. More robust sources of data on true case numbers, variants, and immunity would be useful to create more
accurate models that the public and policy makers can use to make decisions.

Methods
This work compares various US-CDC COVID-19 forecasting models by their quantitative aspects evaluating their performance
in strictly numerical terms over various time segments. The US-CDC collects weekly forecasts for COVID cases in four
different horizons: 1-week, 2-weeks, 3-weeks and 4-weeks, i.e., each week, the models make a forecast for new COVID cases
in each of the four consecutive weeks from the date of the forecast. The forecast horizon is the length of time into the future for
which forecasts are to be prepared. In the present study, we focus on evaluating the performance of models for their 4-week
ahead forecasts.

The data for the confirmed case counts are taken from the COVID-19 Data Repository (https://github.com/CSSEGISandData/COVID-
19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports_us), maintained by the Center for Systems Science and
Engineering (CSSE) at the Johns Hopkins University (JHU). The data for the predicted case counts, of all the models, is
obtained from the data repository for the COVID-19 Forecast Hub (https://github.com/reichlab/covid19-forecast-hub), which is
also the data source for the official US-CDC COVID-19 forecasting page. Both these datasets were preprocessed to remove
unwanted data items. For plotting Figure 1, the Pyplot module from the Matplotlib library in Python was used.

The models are categorized into five different categories- Ensemble, Epidemiological, Hybrid, and Machine Learning.
The models which did not broadly fall into these categories were kept in ‘others’. These models use very different methods to
arrive at predictions. We are comprehensively looking at 51 models. The CDC also uses an ensemble model, and we looked at
whether this was better than any individual model. For each model uploaded to the CDC website, MAPE was calculated and
reported in this study, and the models were compared wave-wise as shown in various figures. For each model, the model type
was noted, as well as the month proposed. The term “wave” here implies a natural pattern of peaks and valleys. As part of their
National Forecasts for COVID cases, CDC has reported the results from a total of 54 different models at various instances of
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Figure 7. Bar plot depicting frequency of 04 week ahead predictions made by models. Here, models were ordered
alphabetically on the y-axis. The x-axis represents target dates for which the predictions were made. Dates range from July
2020 to Jan 2022.
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time during the pandemic. We define the waves, i.e., Wave-I: July, 6th 2020 to August 31st, 2020, Wave-II: September, 1st
2020 to February, 14th 2021, Wave-III: February, 15th 2021 to July, 26th 2021 and Wave-IV: July, 27th 2021 to January, 17th
2022, corresponding to each of the major waves in the US.

The performance of the models was evaluated against two simple baselines. Baseline-I is the ‘CovidHub-Baseline’ (or
CDC’s baseline), i.e., the median prediction at all future horizons is the most recent observed incidence. Baseline-II is the
linear predictor extrapolation using slope of change in reported active cases between the two weeks preceding date of forecast.
These baselines are included in the bar charts (shown in Figure 2 and Figure 3). Within each of the waves of interest, only
models that made a significant number of predictions are considered for the purpose of comparison. We only consider models
that have made predictions for at least 25% of the target dates covered by the respective time segment for all comparisons in
this section. The MAPE was calculated on the four-weeks forecast horizon. Figure 3 illustrates the performance of models
across all the waves. Same procedure, as in Figure 2, was followed for plotting Figure 3.

The performance of all the models are compared, wave-wise and on the complete timeline based on the MAPE (or
mean absolute percent error). MAPE is defined as the ratio of absolute percentage errors of the predictions. Error refers to the
difference between the confirmed case counts and the predicted case counts. Here, n = number of datapoints, At is the actual
value and Pt denoted the predicted value.

MAPE = (1/n)
n

∑
t=1

|(At −Pt)/At | (1)

Figure 4 shows the paired t-test results on the category-wise errors, achieved by the models on overall as well as wave-wise.
The mean of the MAPE values is calculated for each category in model-type, for overall and each wave separately. The
mean is calculated by adding the MAPE values of all the models in a category and dividing it by the number of models in
that category for the corresponding wave. Then, pairwise t-test is performed to determine if there is a significant difference
between the means of two groups. We used the ttest_ind function of the statsmodels module in Python to perform the test. The
statistical significance is determined by the p-value given as the output. In null-hypothesis significance testing, the p-value
is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the
null hypothesis is correct. A p-value less than 0.05 (typically ≤ 0.05) is statistically significant. It indicates strong evidence
against the null hypothesis, as there is less than 05% probability that null-hypothesis is correct. The null hypothesis is a typical
statistical theory which suggests that no statistical relationship and significance exists in a set of given single observed variable,
between two sets of observed data and measured phenomena. So, the bar pots having p-value less than 0.05 (statistically
significant), are joined using an asterisk.

In Figure 5, box-plots are made representing the MAPE over all the predictions of a certain model for the corresponding
forecast horizon. A box-plot is a standardized way of displaying the distribution of data based on a five number summary
(“minimum”, first quartile (Q1), median, third quartile (Q3), and “maximum”). We used the boxplot function (of seaborn
library) in python to plot it. Seaborn is a Python data visualization library based on Matplotlib.
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Data and Code Availability

The data used in this study is publicly available from the COVID-19 Data Repository, maintained by the Center for Systems Sci-
ence and Engineering (CSSE) at Johns Hopkins University (https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports_us).
The data for the predicted case counts, of all the models, is obtained from the data repository for the COVID-19 Forecast Hub
(https://github.com/reichlab/covid19-forecast-hub), the data source for the official US-CDC COVID-19 forecasting page. The
source code that supports the findings of this research is available from the corresponding author upon request.
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Figure 8. Plots depicting the peak predictions of US-CDC models- ‘BPagano-RtDriven’, ‘CEID-Walk’,
‘Covid19Sim-Simulator’, ‘CovidAnalytics-DELPHI’, ‘Columbia_UNC-SurvCon’, ‘COVIDhub-baseline’,
‘COVIDhub-ensemble’, ‘COVIDhub-4_week_ensemble’, ‘COVIDhub_CDC-ensemble’, ‘CU-nochange’,
‘COVIDhub-trained_ensemble’, over complete timeline

15/23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.20.22274097doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.20.22274097
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9. Plots depicting the peak predictions of various US-CDC models - ‘CU-scenerio_low’, ‘CU-scenario_mid’,
‘CU-scenerio_high’, ‘CWRU-COVID_19Predict’, ‘DDS-NBDS’, ‘CU-select’, ‘FRBSF_Wilson-Econometric’,
‘Geneva-DetGrowth’, ‘FDANIHASU-Sweight’, ‘IEM_MED-CovidProject’, ‘IowaStateLW-STEM’, ‘IBF-TimeSeries’,
‘USACE-ERDC_SEIR’, ‘USC-SI_KJalpha’, ‘UpstateSU-GRU’, over complete timeline
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Figure 10. Plots depicting the peak predictions of various US-CDC models - ‘IUPUI-HkPrMobiDyR’, ‘JBUD-HMXK’,
‘IQVIA_ACOE-STAN’, ‘JHUAPL-Bucky’, ‘JHU_CSSE-DECOM’, ‘JCB-PRM’, ‘Karlen-pypm’,
‘KITmetricslab-select_ensemble’, ‘JHU_IDD-CovidSP’, ‘LNQ-ens1’, ‘Microsoft-DeepSTIA’,
‘LANL-GrowthRate’,‘MIT_ISOLAT-Mixtures’, ‘MOBS-GLEAM_COVID’, ‘MIT-Cassandra’, over complete timeline
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Figure 11. Plots depicting the peak predictions of various US-CDC models - ‘MUNI-ARIMA’, ‘MUNI-VAR’,
‘MSRA-DeepST’, ‘OneQuietNight-ML’, ‘prolix-euclidean’, ‘OliverWyman-Navigator’, ‘RobertWalraven-ESG’,
‘SDSC_ISG-TrendModel’, ‘QJHong-Encounter’, ‘TTU-squider’, ‘UCF-AEM’, ‘SigSci-TS’, ‘UCLA-SuEIR’,
‘UMich-RidgeTfReg’ and ‘UChicagoCHATTOPADHYAY-UnIT’ over complete timeline
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Table S1. Various US-CDC COVID-19 case prediction models- their description, features employed for case prediction,
the method used, assumptions made related to public health interventions.

No. Model Features employed for Case Predictions Proposed
by

Method
Used

Assumptions

Epidemiological/ Compartmental Models
01. TTU-Squider (16) Takes into account power-law incident rate, separate compart-

ments for silent spreaders, quarantine/hospital isolation of con-
firmed infected individuals, restrictions on social contact, possi-
ble loss of immunity for recovered individuals.

Hussain Lab,
Texas Tech
University

SIR
Assumes that effects of in-
terventions are reflected in
observed data and will con-
tinue going forward.

02. JHU-IDD (17) Accounts for uncertainty in epidemiological parameters includ-
ing R0, spread of more transmissible variants, infectious period,
time delays to health outcomes and effectiveness of state-wide
intervention policies.

John Hop-
kins ID
Dynamics
Working
Group

Metapopulation
SEIR

Assumes that current inter-
ventions will not change
during the period fore-
casted.

03. IowaStateLW-STEM
(18)

A non-parametric space-time disease transmission model for
epidemic data to study the spatial-temporal pattern of COVID-
19.

Iowa State -
Lily Wang’s
Research
Group

Non-
parametric
spatiotempo-
ral model

No specific assumptions.

04. BPagano-RtDriven
(19)

The effective transmission ratio, Rt, drives the model’s projec-
tions. To forecast how Rt will change with time, the model
analyzes Rt change data through the pandemic and applies a
model of that characteristic behavior to forecast infections.

BPagano SIR Assumes that effects of in-
terventions are reflected in
observed data and will con-
tinue going forward.

05. UCLA-SuEIR (20) An updated variant of the SEIR Model that takes into consider-
ation the effects of reopenings. It assumes a transition from a
virtual ‘Quarantined’ group to the ‘Susceptible’ group at a spe-
cific rate for the states that have reopened/ partially reopened.
It’s most notable feature is that it can infer the untested cases as
well as unreported cases.

UCLA
Statistical
Machine
Learning
Lab.

Modified
SEIR

Assumes contact rates will
increase as states reopen
and calculates the increase
in contact rates for each
state.

06. COVID19Sim-
Simulator (21)

Uses a validated compartment model defined using SEIR
with continuous-time progression to simulate the trajectory
of COVID-19 at the state level.

COVID-19
Simulator

SEIR Based on assumptions
about how in the future, the
levels of social distancing
may evolve.

07. CovidAnalytics-
DELPHI (22)

Introduces new states to accommodate for cases that remained
unnoticed, as well as an explicit death state. A nonlinear curve
that reflects the government reaction is used to adjust the in-
fection rate. Also, a meta-analysis of 150 factors is used to
determine key illness parameters, while epidemiological param-
eters are fitted to historical death counts and identified cases.

CovidAnalytics
at MIT

Augmentation
of the SEIR
model

−

08. Columbia_UNC-
SurvCon (23)

Takes into consideration transmission throughout the pre-
symptomatic incubation phase, employing a time-varying ef-
fective R0 to capture the temporal trend of transmission and
change in response to a public health intervention, and uses
permutation to quantify uncertainty.

Columbia_UNC − −

09. CU-select (24) Produces several different intervention scenarios, each assum-
ing various interventions and rates of compliance are imple-
mented in the future. This submission selects the weekly sce-
nario believed to be most plausible given current observations
and planned intervention policies.

Columbia
University

Metapopulation
county-level
SEIR

−

10. CU-nochange (24) Assumes that current contact rates will remain unchanged in
the future.

Columbia
University

Metapopulation
county-level
SEIR

−
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continued table ...

11. CU-scenario_low (24) This projection assumes relatively low transmission. Columbia
University

Metapopulation
county-level
SEIR

−

12. CU-scenerio_mid (24) This projection assumes relatively moderate transmission. Columbia
University

Metapopulation
county-level
SEIR

−

13. CU-scenerio_high
(24)

This projection assumes relatively high transmission. Columbia
University

Metapopulation
county-level
SEIR

−

14. USACE-
ERDC_SEIR (25)

Bayesian Inference is used to calculate model parameters from
observations of the total number of cases. Information from
subject matter experts is used to develop a prior probability
distribution over the model parameters. The accumulated ob-
servations and subject matter knowledge are then coupled with
a statistical model of the model-data mismatch to generate a
posterior probability distribution across the model parameters.
To make forecasts, the parameters that maximize the posterior
probability density are utilized.

US Army
Engineer
Research
and Develop-
ment Center

Process-
based math-
ematical
model simi-
lar to classic
SEIR with
additional
compart-
ments for
unreported
infections/
isolated
individuals.

Assumes that current inter-
ventions will not change
during the forecast period.
Further assumptions simi-
lar to compartmental mod-
els (i) modeled populations
are large enough that fluctu-
ations in the disease states
grow slower than average
(ii) recovered individuals
are neither infectious nor
become susceptible to fur-
ther infection.

15. Microsoft-DeepSTIA
(26)

Deep Spatio-temporal network with intervention under the as-
sumption of Spatio-temporal process in the pandemic of differ-
ent regions.

Microsoft SEIR model
on spa-
tiotemporal
network

Assumes that current inter-
ventions will not change
during the period fore-
casted.

Machine Learning models
16. QJHong-Encounter

(27)
Uses (1) Reproductive Number (R) and Encounter Density (D)
relation in the past as a training set, (2) future D as input, and
(3) ML/regression, the model predicts future R, and ultimately
future Daily New Cases.

QJHong ML Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

17. OneQuietNight-ML
(28)

Uses high-level features of daily case reports and movement
trends data to make predictions about future Covid-19 cases.

OneQuietNight ML Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

18. JHU_CSSE-DECOM
(29)

County-level, empirical ML model driven by epidemiological,
mobility, demographic, and behavioral data.

JHU Center
for Systems
Science and
Engineering

ML Assumes that current inter-
ventions will not change
during period forecasted.

19. UpstateSU-GRU (30) A Sequence-to-sequence learning framework which is a feed-
forward recurrent neural network. The Seq2Seq algorithm
trains a model to convert sequences from the input to sequences
in the output. The model takes ‘m’ days data and demographic
and health risk indices as input for case predictions. Inputs daily
smoothed incident cases and deaths count google mobility index
and daily reproduction number. It also aggregates the county
demographic and health risk indices to model the baseline risk
score.

SUNY Up-
state and SU
COVID-19
Prediction
Team

County-level
forecast
using RNN
seq2seq
model with
gated recur-
rent units.

Assumes that current inter-
ventions will not change
during period forecasted.
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continued table ...

Ensemble models
20. USC-SI_kJalpha (12) Considers the influence of parameters learnt via rapid linear

regressions, with a focus on reducing hardware requirements
and making quicker predictions without compromising perfor-
mance. A logistic regression model is used to fit the number of
samples for each variation on a given day. The model takes into
account changing patterns by focusing more on data that has
recently been examined. It makes use of a Random Forest to
reflect empirical errors in quantile projections, accounting for
future trend changes.

University of
Southern Cal-
ifornia

SIR Assumes that current inter-
ventions will not change
during period forecasted.

21. COVIDhub-ensemble
(31)

An ensemble, or model average, of submitted forecasts to the
COVID-19 Forecast Hub.

COVID-19
Forecast Hub

− −

22. UCF-AEM (32) Combines a traditional SEIR model with mixture modeling and
uses ensemble neural networks to extract information from a
complicated mixture modeling system.

University
of Central
Florida

SEIR model
informed
with ensem-
ble neural
networks.

Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

23. LNQ-ens1 (33) Uses an ensemble of three models; two fit with LightGBM, and
the third being a neural net. Ensemble weights are chosen each
week manually based on performance in the previous week.

LockNQuay Ensemble of
three differ-
ent models.

Assumes that intervention
effects are reflected in ob-
servable data and will con-
tinue in the future.

24. COVIDhub-baseline
(34)

Baseline model for predictions. The most recent observed
incidence is the median projection for all future horizons. From
one week to the next, the slope of the predicted medians for
cumulative values will be constant and equal to the previously
observed slope. The model looks at how much incidence has
varied from week to week in the past to generate a distribution
around the median, and it allows for the possibility that similar
fluctuations will occur again in the future.

COVID-19
Forecast Hub

− −

25. COVIDhub-
trained_ensemble
(35)

A weighted ensemble combination of all component model
forecasts.

COVID-19
Forecast Hub

Ensemble −

26. UVA-Ensemble (36) Combines models using Bayesian model averaging. The
auto-regressive method with features including mobility, other
county case counts time-series, an LSTM model with mobility
data as an additional predictor, and PatchSim, an SEIR variant
with the interaction between counties modeled using commuter
data and calibrated on new confirmed cases.

University of
Virginia, Bio-
complexity
COVID-19
Response
Team

Ensemble of
three differ-
ent models.

Impact of interventions is
represented in observed
data in two of three mod-
els, while the third as-
sumes that interventions
will change in the future.

27. Caltech CS156 Based on the Ensemble of 14 different ML models including-
a) Feedforward Neural Network, b) Quantile Neural Network,
c) LSTM, d) Conditional LSTM, e) Encoder-Decoder Condi-
tional LSTM, f) Autoregressive, g) Sessional Autoregressive, h)
Decision Tree, i) Gradient- Boosted Decision Tree, j) K-NN, k)
Gaussian Process, l) Bayesian epidemiological, m) Two-group
epidemiological, n) Curve-fitting Model.

California
Institute of
Technology

Ensemble of
fourteen dif-
ferent models

−

28. MIT-Cassandra (37) Based on the ensemble of predictions from four models, in-
cluding 1) MDP feature representation, 2) KNN time-series, 3)
Bi-LSTM time-series, 4) C-SEIRD epidemiological.

MIT Cassan-
dra Ensemble
of four differ-
ent models

Assumes
that current
interventions
will remain
in place
indefinitely.

Others/ Not Defined

29. FDANIHASU-
Sweight (38)

An ensemble of submitted forecasts to the COVID-19 Forecast
Hub. The ensembles are formed by weighting the individual
model forecasts with their past performances

FDANIHASU Ensemble −
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continued table ...

Hybrid models
30. JHUAPL-Bucky (39) Uses public mobility data to build a Spatial compartment model. JHUApplied

Physics Lab
Spatial com-
partment
model

−

31. FRBSF_Wilson-
Econometric (40)

An econometric model that connects the current transmission
rate with the fraction of the population that is vulnerable to the
shift in new infections from now until a future horizon. The
current transmission rate is assumed to be caused by people’s
mobility and the weather. Mobility, weather, and acquired natu-
ral immunity are significant components of the model; there are
two additional important parts of the econometric model. The
first component includes infection growth lag, which implies
that infection growth lag predicts future infection growth. The
second component is country-specific intercepts (fixed effects),
which allow each county to have a distinct mean level of infec-
tion increase regardless of the other model features.

Federal Re-
serve Bank
of San Fran-
cisco/Wilson

SIR-derived
econometric
county panel
data model
with trans-
mission rate
assumed to
be a function
of weather
and mobility

Assumes that intervention
effects are reflected in ob-
servable data and will con-
tinue in the future.

32. IEM_MED-
CovidProject (41)

Uses an AI model to fit data from various sources and project
new cases of COVID-19. Assumes that the R-value (average
number of secondary infections) changes quite rapidly over time
due to changes in human behavior and uses a sliding window
that fits the data and finds the best R values for each window.

IEM MED SEIR model
with ML

Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

33. MOBS-
GLEAM_COVID
(42)

A metapopulation method is used. The world is divided into
geographical subpopulations, and human mobility between sub-
populations is depicted on a network. This data layer on mo-
bility identifies the number of persons travelling from between
sub-populations. The mobility network is made up of many
mobility processes, ranging from short-distance commuting to
intercontinental travel. Superimposed on the globe population
and mobility layers is an agent-based epidemic model that de-
scribes the infection and population dynamics.

MOBS Lab
at Northeast-
ern

Metapopulation
age-
structured
SLIR

Assumes that social dis-
tancing policies in place
at the date of calibration
are extended for the future
weeks.

34. DDS-NBDS (43) Jointly modeling daily deaths and cases using a negative bino-
mial distribution based non-parametric Bayesian generalized
linear dynamical system (NBDS).

Team DDS Bayesian
hierarchical
model

Assumes that intervention
effects are reflected in ob-
servable data and will con-
tinue in the future.

Other models
35. IBF-TimeSeries (44) Combines mechanistic disease transmission model with a curve-

fitting approach.
Institute of
Business
Forecasting

Modified
Time Series
Model

Do not make any specific
assumptions.

36. RobertWalraven (45) Uses a skewed Gaussian distribution with four empirical param-
eters: height, position, left growth rate, and right decay rate.
The model makes no epidemiological assumptions and has no
epidemiological parameters.

Robert Wal-
raven

Skewed
Gaussian
distribution

Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

37. UMich-RidgeTfReg
(46)

This model is based on ridge regression (penalized Ordinary
Least Squares regression) to make predictions without rely-
ing on external assumptions. The model uses Finite Impulse
Response filtering to forecast confirmed cases each day as a
function of prior day numbers.

The Univer-
sity of Michi-
gan

Ridge regres-
sion

Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

38. Karlen-pypm (47) Uses Discrete-time difference equations with long periods of
the constant transmission rate.

Karlen Work-
ing Group

Discrete-
time dif-
ference
equations

Assumes that intervention
effects are reflected in ob-
servable data and will con-
tinue in the future.
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continued table ...

39. LANL-GrowthRate
(48)

Two processes are represented by the model. The first step
is to create a statistical model that depicts how the number
of COVID-19 infections varies over time. The second model
correlates the number of infections with the reported data. The
underlying numbers of susceptible and infected cases in the
population at the preceding time step, scaled by the size of the
state’s initial susceptible population, are used to map the rise of
new instances. These two components’ weights are dynamically
adjusted to the observed data.

Los Alamos
National
Labs

Statistical
dynamical
growth
model (ac-
counts for
population
susceptibil-
ity)

Assumes that interventions
implemented on the first
day of the forecast will con-
tinue over the following
four weeks.

40. JCB-PRM (49) Built on observations of macro-level societal and political re-
sponses to COVID19 characterized only in terms of infections
and deaths. Assumes that although individuals and policy-
makers have responded to the epidemic with a wide variety of
behavioral modifications and policy actions, the actual net im-
pact of the measures taken, though not identical across time or
geography, is predictable. The model identifies ‘acceptability’
ranges from observation of the epidemic up to the current time.

John Burant
(JCB)

Phenomenological
statistical
model

The incidence of COVID-
19 in the population deter-
mines the strength and im-
pact of control measures in
the future.

41. SigSci-TS (50) Time series forecasting using ARIMA for case forecasts and
lagged cases for death forecasts.

Signature
Science
FOCUS

Autoregressive
time-series
model

Assumes that current inter-
ventions will not change
during the forecasted pe-
riod.

42. CEID-Walk (51) The model is based on a random walk with no drift. The
variance in step size of random walk is estimated using the
last few observations of a target time series.

University
of Georgia
Center for
the Ecology
of Infectious
Diseases
Forecasting
Working
Group

Statistical
random walk
model

Assumes that social dis-
tancing policies in place
at the date of calibration
are extended for the future
weeks.

43. MIT_ISOLAT-
Mixtures (52)

A non-mechanistic, non-parametric forecasting model that fore-
casts time series as a sum of bell curves. The confidence inter-
vals are calculated by applying a multiplicative log-Gaussian
perturbation to the observed time series.

IDSS
COVID-19
Collabora-
tion (Isolat)
at MIT Mix-
ture model

− Assumes that current in-
terventions will remain in
place indefinitely.
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