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ABSTRACT 

Objective Optical coherence tomography (OCT) assessment of axonal and neuronal damage 

of the retina in  patients with familial and sporadic multiple sclerosis.  

Methods 45 patients with familial MS (fMS), 58 patients with sporadic MS (sMS) and 35 

healthy controls were included in the study. OCT was performed with the spectral domain 

optical coherence tomography (SD-OCT, Heidelberg Engineering, Germany). The retinal 

nerve fiber layer (RNFL) thickness and macular volume (MV) were measured.  

Results A significant thinning of the global RNFL thickness was detected in both forms of 

MS compared to control group, (86,61 (+/- 14,74) µm in sMS, 85,8 (+/- 12,7) µm in fMS, 

97,96 (+/- 7,6) µm in control group; p <0,001). There was no significant difference in the 

global RNFL thickness between sMS and fMS. A significant reduction of the MV was shown 

in sMS and fMS compared to control group (8,12 (+/- 1,14) mm³ in sMS, 8,1 (+/- 1,12) mm³ 

in fMS, and 8,81 (+/- 0,31) mm³ in control group; p = 0,003). No difference in MV between 

sMS and fMS was found. However, in eyes with history of optic neuritis (ON) MV was 

significantly reduced in sMS versus fMS (8,12 (+/- 2,87) mm³ vs. 8,42 (+/- 0,54) mm³; 

p=0,05). 

Conclusion We confirmed the presence of axonal and neuronal damage of the retina in sMS 

and fMS. ON induced a significantly greater reduction of MV in sMS compared to fMS, 

indicating a stronger neuronal damage in ON eyes in sMS than in fMS. 

 

KEYWORDS familial multiple sclerosis, sporadic multiple sclerosis, optical coherence 

tomography, retinal nerve fiber layer, macular volume 

 

KEY MESSAGES The familial MS accounts for a significant proportion of MS patients 

and there is still ongoing discussion on the distinction between familial (fMS) and sporadic 

(sMS) forms of this disease. Using OCT, we confirmed the presence of axonal and neuronal 

damage in the retina in both forms of MS. We found that optic neuritis (ON) induced a greater 

retinal neuronal damage in sMS than in fMS. These results support the conclusion that there 

are some discrete differences in pathological processes occurring in the retina in sMS and 

fMS. 
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INTRODUCTION 

Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating 

disorder of the central nervous system (CNS). Two major forms of MS have been recognized: 

sporadic (sMS) and familial (fMS). In fMS apart from an index case at least one more family 

member should be diagnosed with MS,[1]. It is estimated that fMS affects about 12.6 - 20% 

of all patients with MS (pwMS),[2-4]. The genetics of MS is complex and correspond to 

polygenic trait. It is believed that MS genetics can explain up to half of the disease's 

heritability,[5, 6]. Classical twin studies showed that unaffected monozygotic twin have much 

higher risk to develop MS, 25-30%, than dizygotic twin, 2-5%,[7, 8]. The average risk of 

developing MS by relatives of pwMS ranged from 3 to 5%, with the highest risk for first-

degree relatives, and was 30 to 50 times higher than the 0,1% risk for the general 

population,[2]. These data suggest that fMS might represent a more genetically driven form of 

MS versus sMS. Clinical phenotyping of these two forms of MS did not reveal any major 

differences,[9-11]. However, some discordance was observed. It was found that pwMS with 

multiple affected relatives had a higher incidence of optic neuritis (ON) as the first relapse, a 

lower risk of another relapse in the first year of disease, a longer interval between the first and 

second relapse, and a longer time to permanent neurological deficit,[3]. Also MRI studies 

have shown some differences between these two forms of MS. In fMS compared to sMS was 

observed a larger T1-lesion volume and a trend toward lower MTR of T1-lesions,[12]. Our 

own earlier studies showed that MTR abnormalities were more widespread in fMS than in 

sMS. MTR values were reduced mainly in the corpus callosum and in the cerebral and 

cerebellar peduncles, primarily involving areas of highly myelinated white matter,[13]. Proton 

magnetic resonance spectroscopy showed a slight decrease in NAA/Cho and NAA/Cr ratios 

in normal appearing white matter in sMS versus fMS, whereas Cho/Cr ratio showed an 

increased trend. These results might indicate more pronounced neurodegenerative injury in 

sMS than in fMS,[14].  

 To address this hypothesis, we applied optic coherence tomography (OCT) technique 

and aimed to study axonal and neuronal damage of  the retina in patients with sMS and fMS. 

OCT is a non-invasive interferometric technique, allowing for assessment of axonal and 

neuronal damage by measurement of retinal nerve fibre layer (RNFL) thickness and macular 

volume (MV). The RNFL is formed by unmyelinated retinal ganglion cell axons, whereas 

ganglion cell neurons are a major component of the macula,[15, 16]. Several studies reported 

a positive correlation of the RNFL thinning with brain atrophy in MS, which suggested that 
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RNFL thickness might be an indirect marker of diffuse axonal damage in the brain,[17-19]. 

The reduction of MV in MS was associated with neurodegenerative neuronal changes. Hence, 

MV might represent a quantitative marker of neuronal damage in the brain,[20-22].  

 We analysed RNFL thickness and MV in a cohort of patients with fMS and sMS and 

healthy volunteers and investigated how ON affected the OCT parameters in patients with 

both forms of MS.  

 
METHODS 

Study design 

 In this prospective study, we analysed data from patients with relapsing-remitting 

multiple sclerosis (pwRRMS) and healthy volunteers of University Hospital in Lodz, Poland, 

between 2012 and 2016. All study participants had OCT examination with RNFL and MV 

measurements of both eyes. Two groups of pwRRMS patients were analysed, sporadic MS 

patients (sMS) and patients with familial history of MS (fMS). To evaluate the effect of ON  

on OCT parameters in sMS and fMS, the examined eyes were divided into three subgroups: 

eyes with a history of ON, eyes contralateral to eyes with  history of ON (Cont-L) and eyes of 

patients without  history of ON (Non-ON).  

The OCT measurements were compared between both MS forms and with healthy 

volunteers.   

 

Participants  

A total of 103 pwRRMS and 33 healthy volunteers, aged 18 – 60, were included in the 

study. 58 patients had sMS and 45 fMS. MS diagnosis was confirmed according to the 

McDonald 2010 criteria,[23]. Patients with fMS required to have at least one more MS case 

within relatives of kinship degree 1-3.  

 We excluded patients with any other neurological disorder, patients with optic neuritis 

(ON) 6 months prior to study entry and patients with other ophthalmic disorders that might  

affect OCT measurements, such as glaucoma, optic nerve damage, retinopathy, severe myopia 

(greater than 6.00 dioptres). The other exclusion criteria involved medication with intraocular 

steroids, intraocular anti-angiogenic drugs and chronic systemic steroids.  

 The study was approved by Ethical Commission of the Medical University of Lodz; 

Ethic Approval/Registration Numbers: RNN/83/13/KE, RNN/178/16/KE. All study 

participants gave written informed consent to participate in the study. 
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Optical coherence tomography (OCT) 

OCT was performed by a certified operator on a spectral domain OCT device in a 

darkened room without using of pharmacological pupil dilators (Heidelberg Spectralis OCT 

software version 4.0.0.0.0). A circular RNFL thickness scan was measured, centred on the 

optic nerve disc. The result was shown as a circular diagram with automatically calculated 

global RNFL thickness and RNFL thickness in 4 quadrants: nasal, temporal, superior and 

inferior and in the papillomacular bundle (PMB), representing the middle 30 degrees of the 

temporal quadrant, relative to a normative database of age, race, and sex. The macula area 

was scanned in 25 sections in 240 µm inter-scan distance. A 6-mm diameter circular macular 

volume scan was performed with the centre located in the fovea. OCT software automatically 

calculated total macular volume of the entire scanned area.  

 

Expanded Disability Status Scale (EDSS) 

Study participants were neurologically examined and their disability was assessed 

according to the Expanded Disability Status Scale (EDSS), which includes 8 functional 

systems: pyramidal, cerebellar, brainstem, sensory, bowel and bladder, visual, cerebral and 

other neurologic findings attributed to MS,[24]. In each functional system, the patient 

received a certain point value from which the final EDSS score was then calculated.  

 

Statistical analysis 

 Shapiro-Wilk and D'Agostino-Pearson tests were used to assess the normality of 

distributions. Student's t test and Mann-Whitney test (after Fisher-Snedecor test) were used to 

compare OCT parameters between both groups of pwRRMS and healthy controls. The 

analysis of variance (ANOVA) method was used to compare multiple groups. A p value of 

<0.05 was considered significant. We performed all statistical analyses using the MedCalc 

software (V.18.2). 

 

RESULTS 

Patients characteristics 

Demographic and clinical data are shown in Table 1. The median disease duration in 

sMS and fMS was 8,27 (+/-7,56) and 11,2 (+/-8,2) years. In sMS, 36 patients were females 
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and 22 were men, and in fMS the gender distribution was 34 and 11, respectively. The mean 

EDSS was 1,68 (+/-1,23) in sMS and 2,1 (+/-1,07) in fMS. The number of relapses in the last 

2 years before OCT examination in sMS was 1,1 (+/-0,83) and in fMS 1,07 (+/-0,96). The 

percentage of patients with previous ON was 43% in sMS and 56% in fMS. The mean time 

from ON was 8,55 (+/-7,69) years in sMS and 10,24 (+/-7,56) year.  

 

Table 1 Demographics of study participants 

  fMS sMS Control group  

Number of participants in the study  45 58 33 

Age (+/- SD)  39,82 (9,5) 38,28(10,49) 36,76 (9,11) 

Number of women 34 36 23 

Number of men 11 22 10 

Duration of MS (years) (+/- SD)   11,2 (8,2) 8,27 (7,56)   

EDSS (+/- SD) 2,1 (1,07) 1,68 (1,23)   

Number of relapses in the last 2 years 

before OCT examination 
1,07 (0,96) 1,1 (0,83) 

  

Percentage of patients with a history of ON 56% 43%   

Time since ON (years), (+/- SD)   10,24 (6,96) 8,55 (7,69) 

fMS, familial multiple sclerosis; sMS, sporadic multiple sclerosis; ON, optic neuritis; SD, 

standard deviation 

 

Comparison of RNFL thickness between sMS, fMS and control group 

 The global RNFL thickness in sMS was 86,61 (+/- 14,74) μm, and in fMS 85,8 (+/- 

12,7) μm. For both sMS and fMS, these values were significantly lower compared to the 

control group, in which the global RNFL thickness was 97,96 (+/- 7,6) μm, (p<0,001 for both 

forms of pwRRMS). Segmental analysis showed the RNFL thinning in all segments in sMS 

and fMS compared to control group, reaching the greatest differences in the papillomacular 

bundle (PMB), temporal and inferior segments (p<0,001). Comparative analysis of sMS with 

fMS showed no significant difference in global and segmental RNFL thickness (Table  2). 

 

Table 2 Comparison of RNFL thickness (µm) between sMS, fMS and control group 

 
OCT parameters (+/-SD) p - value  
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fMS sMS control 

group 

fMS vs. 

sMS 

fMS vs. 

control group 

sMS vs. 

control group 

Global RNFL  85,8 

(12,7) 

86,61 

(14,74) 

97,95 

(7,6) 

0,77 <0,001 <0,001 

RNFL in the 

temporal segment  

54,98 

(1,12) 

56,95 

(14,98) 

68,32 

(9,43) 

0,48 <0,001 <0,001 

RNFL in the 

papillomacular 

bundle (PMB)  

41,19 

(10,02) 

43,98 

(11,1) 

52,67 

(7,53)  

0,19 <0,001 <0,001 

RNFL in the 

superior segment  

222,26 

(32,15) 

222,06 

(40,24) 

245,35 

(21,37)  

0,98 0,004 0,004 

RNFL in the 

nasal segment  

66,21 

(13,56) 

65,94 

(13,43) 

72,12 

(10,56)  

0,92 0,062 0,062 

RNFL in the 

inferior segment  

230,48 

(32,44) 

225,01 

(40,71 

257,67 

(24,91) 

0,46 <0,001 <0,001 

RNFL, retinal nerve fiber layer; fMS, familial multiple sclerosis; sMS, sporadic multiple 

sclerosis; SD, standard deviation 

 

Comparison of MV between sMS, fMS and control group 

 The MV was significantly lower in sMS and fMS patients compared with controls 

(8,12 (+/- 1,14) mm³ and 8,1 (+/- 1,12) mm³ vs. 8,81 (+/- 0,31) mm³, respectively), p=0,003. 

There was no significant difference in the MV between sMS and fMS (Table 3). 

 

Table 3 Comparison of macular volume (mm³) between sMS, fMS and control group 

 

OCT parameters (+/-SD) p-value 

fMS sMS control 

group 

fMS vs. 

sMS 

fMS vs. 

control group 

sMS vs. 

control group 

 MV  8,1 

(1,12) 

8,12 

(1,14) 

8,81 

(0,31) 

0,96 0,003 0,003 

MV, macular volume; fMS, familial multiple sclerosis; sMS, sporadic multiple sclerosis; SD, 

standard deviation 
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Impact of ON on RFNL in sMS and fMS 

 RNFL was measured in eyes with history of optic neuritis (ON) in sMS (n=33) and in 

fMS (n=36), in eyes contralateral to eyes with history of ON (Cont-L) in sMS (n=17) and in 

fMS (n=14), in eyes of patients without history of optic neuritis (Non-ON), in sMS (n= 66) in 

and in fMS (n=40), and in eyes from control subjects (n= 66). For both sMS and fMS the 

RNFL thickness in ON vs. Non-ON eyes was significantly lower in ON. Similarly RNFL in 

ON vs. control eyes in sMS and fMS was significantly lower in ON (Table 4). When directly 

comparing, how ON affected RNFL in sMS and fMS we found no significant difference in 

RFNL thickness of ON eyes between sMS and fMS, p=0,37. The only observed trend for 

thinner RNFL  occurred  in papillomacular bundle in patients with fMS, p=0,09 (Table 5). 

 

Table 4 Impact of ON on global RNFL thickness (µm) in sMS and fMS 

 OCT parameters in sMS  

(+/-SD)   

p - value  

Eyes  

Non-

ON 

Cont-L ON control 

group 

Non-

ON 

vs. 

Cont-

L 

Non-

ON vs. 

ON 

Cont-L 

vs. ON 

Non-

ON vs. 

control 

group 

Cont-L 

vs. 

control 

group 

ON vs. 

control 

group 

Global 

RNFL  

91,46 

(13,36) 

90,29 

(12,39) 

78  

(10,86) 

97,95 

(7,6) 

0,24 <0,001 <0,001 0,02 0,0007 <0,0001 

 OCT parameters in fMS  

(+/-SD)   

p - value    

Eyes  

Non-

ON 

Cont-L ON control 

group 

Non-

ON 

vs. 

Cont-

L 

Non-

ON vs. 

ON 

Cont-L 

vs. ON 

Non-

ON vs. 

control 

group 

Cont-L 

vs. 

control 

group 

ON vs. 

control 

group 

Global 

RNFL  

91,28 

(9,37)  

89,29 

(13,03) 

80,86 

(13,58) 

97,95 

(7,6) 

0,53 <0,001 0,21 0,056 0,001 <0,0001 

RNFL, retinal nerve fiber layer; fMS, familial multiple sclerosis; sMS, sporadic multiple 

sclerosis; SD, standard deviation; Non-ON, eye of patient without history of optic neuritis; 

Cont-L, eye contralateral to eye with history of ON; ON, eye with history of ON 

 

Table 5 Comparison of RNFL thickness between fMS and sMS in different subgroups of eyes  
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 OCT parameters 

 

p-value  

fMS vs. sMS 

Non-ON Cont-L ON 

Global RNFL  0,94 0,83 0,37 

RNFL in the temporal segment  0,57 0,27 0,53 

RNFL in the papillomacular bundle 

(PMB)  

0,83 0,31 0,09 

RNFL in the superior segment  0,29 0,89 0,17 

RNFL in the nasal segment  0,91 0,8 0,5 

RNFL in the inferior segment  0,49 0,67 0,22 

RNFL, retinal nerve fiber layer; fMS, familial multiple sclerosis; sMS, sporadic multiple 

sclerosis; Non-ON, eye of patient without history of optic neuritis; Cont-L, eye contralateral 

to eye with history of ON; ON, eye with history of ON 

 

Impact of ON on MV in sMS and fMS 

 MV was measured in eyes with ON in sMS (n=33) and in fMS (n=36), in Cont-L eyes  

in sMS (n=17) and in fMS (n=14), in Non-ON eyes in sMS (n= 66) and in fMS (n=40) and in 

eyes from control subjects (n= 66). For sMS the MV was significantly lower in ON than in 

Non-ON and control eyes, p<0,001 and p=0,0003, respectively. For fMS, MV in ON eyes was 

significantly lower only in comparison to control eyes, p=0,007 (Table 6), and did not differ 

from Non-ON eyes. Most importantly, when directly comparing MV in sMS with fMS it was 

found that MV in sMS was significantly reduced versus fMS, p=0,05 (Table 7). 

 

Table 6  

Impact of ON on MV (mm³) in sMS and fMS 
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OCT parameters in sMS 

(+/-SD)   

p-value  

Eyes  

Non-

ON 

Cont

-L 

ON control 

group 

Non-

ON vs. 

Cont-

L 

Non-

ON vs. 

ON 

Cont-L 

vs. ON 

Non-

ON vs. 

control 

group 

Cont-

L vs. 

control 

group 

ON vs. 

control 

group 

MV  8,59 

(1,55) 

8,45 

(2,83)   

8,12 

(2,87) 

8,81 

(0,31) 

0,37 <0,001 0,07 0,02 0,008 0,0003 

 

OCT parameters in fMS 

(+/-SD)   

p-value  

Eyes  

Non-

ON 

Cont

-L 

ON control 

group 

Non-

ON vs. 

Cont-

L 

Non-

ON vs. 

ON 

Cont-L 

vs. ON 

Non-

ON vs. 

control 

group 

Cont-

L vs. 

control 

group 

ON vs. 

control 

group 

MV  8,46 

(0,42)  

8,48 

(0,34) 

8,42 

(0,54) 

8,81 

(0,31) 

0,67 0,83 0,74  0,002 0,04 0,007 

MV, macular volume; fMS, familial multiple sclerosis; sMS, sporadic multiple sclerosis; 

Non-ON, eye of patient without history of optic neuritis; Cont-L, eye contralateral to eye with 

history of ON; ON, eye with history of ON 

 

Table 7 

Comparison of MV (mm³) between fMS and sMS in different subgroups of eyes  

OCT parameters 

p-value  

fMS vs. sMS 

Non-ON Cont-L ON 

MV  0,12 0,88 0,05 

MV, macular volume; fMS, familial multiple sclerosis; sMS, sporadic multiple sclerosis; 

Non-ON, eye of patient without history of optic neuritis; Cont-L, eye contralateral to eye with 

history of ON; ON, eye with history of ON 

 

DISCUSSION 

We have found that RNFL thickness and MV in sMS and fMS were significantly 

diminished in comparison to control subjects. These findings confirmed the presence of 

axonal and neuronal damage of the retina in patients with sMS and fMS. The global and 
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segmental thickness of  RFNL and MV were similar in both sMS and fMS. However, we have 

found that the impact of previous optic neuritis on MV was bigger in sMS than in fMS, 

suggesting more pronounced neuronal damage of the retina in sMS.  

 OCT offers non-invasive and relatively simple method to assess axonal and neuronal 

changes of the retina. RNFL measures axonal thickness of ganglion cells and MV corresponds 

to the count of two or more layers of ganglion cells,[16, 17, 25]. Over the last several years 

numerous studies demonstrated diminished RNFL in pwMS,[26-28]. Most importantly, 

RFNL thickness correlated to diffuse axonal changes throughout the CNS of pwMS,[18,19]. 

In particular RNFL correlated with global and regional brain atrophy,[18-22], with MRI 

lesion load,[18, 29], MTR measures,[30], with NAA/Cho ratio in proton brain MRI 

spectroscopy,[31], as well as with cerebrospinal fluid neurofilament light chain levels,[32]. 

On the other hand measurements of MV and ganglion cell-inner plexiform layer (GCIPL) 

thickness were suggested to be more reliable at detecting neuronal degenerative processes in 

MS,[26, 28]. Similarly to RNFL thinning in pwMS reduction of MV and GCIPL thickness 

correlated with brain pathology and enhanced brain atrophy,[20,22]. 

 The unique ability to monitor axonal and neuronal injury in vivo using OCT 

contributed to better understanding of global pathological processes in MS. The reported  

correlation of RNFL thickness and MV with MRI parameters, particularly with markers of 

brain atrophy in pwMS, makes OCT a useful method for monitoring neurodegenerative 

changes in this disease,[19, 22]. The findings that ON induced a larger reduction of MV in 

patients with sMS should be interpreted from the mechanistic point of view how ON affects 

the retinal pathology. Changes in the retina caused by inflammation in the optic nerve in the 

classical interpretation represents a consequence of its demyelination, leading to retrograde 

axonopathy as thinning of RNFL. This pattern of RNFL changes we observed in both sMS 

and fMS. However, in sMS ON induced significantly greater reduction of MV than in fMS 

and in this latter form reduction of MV was quite limited. Since MV corresponds to number 

of neuronal ganglion cells and it is recognized as a marker for neuronal cell pathology,[20-22, 

34] one might suggest that ON in sMS has a particular impact on neuronal damage of the 

retina. This observation might be of interest from the perspective of the role of primary 

neuronal damage in the CNS of pwMS. It has been suggested that MS pathology apart from 

demyelination and secondary axonopathy also involves neuronal damage,[35, 36]. Its 

relationship to inflammation is still under discussion. Differences in the degree of neuronal 

damage in the retina after ON between sMS and fMS might suggest discordance in 
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inflammation-induced tissue damage in these two forms of MS. Whether this would be related 

to specific genetic background in sMS and fMS remains for further investigations. 

Nevertheless these results might indicate that retinal changes in pwMS might have more 

complex pattern influenced by genetic trait.  

There is still ongoing discussion on the distinction between familial and sporadic  

forms of MS. The major issue is how much these two forms might differ in terms of genetic 

background leading to some differences in pathologic mechanisms. The attempt to 

characterize fMS by genetic screening is not available yet. However, in that context, of 

interest might be results of studies on MRI findings in asymptomatic relatives of patients with 

sMS and fMS. The 11% of asymptomatic siblings of MS patients showed demyelinating brain 

lesions similar to that seen in MS,[37]. Our own earlier study with MTR assessment of 

normal appearing white matter reported diminished MTR histogram peak heights in 

asymptomatic relatives of MS patients,[38]. Similarly a study with proton magnetic resonance 

spectroscopy showed lower NAA/Cho and higher Cho/Cr ratio in asymptomatic relatives of  

pwMS,[15]. In the large cohort of first degree asymptomatic relatives of sMS and fMS 

patients a higher prevalence of MRI lesions was found in fMS, 10% compared with 4% in 

sMS,[39]. The demonstrated differences in brain imaging in relatives of patients with fMS 

and sMS may perhaps support the existence of some genetic differences between these two 

forms of MS.   

Our results have some obvious limitations related to the definition of fMS. However, 

the cohort of pwMS used in this study was derived from prospective analysis  reducing  biases 

related to the development of new cases in relatives over time. In addition the mean age of 

pwMS in this study, 39,86 for fMS and 38,28 years for sMS, was clearly above pooled mean 

age of fMS onset of 15 studies reported as 28,7�years,[40].  Also, the affected members of 

the family were carefully evaluated with medical records and neurological examinations.  

In conclusion, our findings on a different impact of ON on MV in sMS and fMS and 

more pronounced neuronal injury of the retina in sMS patients might support discrete 

differences in pathologic mechanisms between sMS and fMS. 
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