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Abstract 1 

Genome-wide association studies (GWAS) identify genetic variants underlying complex 2 

traits but are limited by stringent genome-wide significance thresholds. Here we dramatically 3 

relax GWAS stringency by orders of magnitude and apply GRIN (Gene set Refinement through 4 

Interacting Networks), which increases confidence in the expanded gene set by retaining genes 5 

strongly connected by biological networks from diverse lines of evidence. From multiple GWAS 6 

summary statistics of suicide attempt, a complex psychiatric phenotype, GRIN identified 7 

additional genes that replicated across independent cohorts and retained genes that were more 8 

biologically interrelated despite a relaxed significance threshold. We present a conceptual model 9 

of how these retained genes interact through neurobiological pathways to influence suicidal 10 

behavior and identify existing drugs associated with these pathways that would not have been 11 

identified under traditional GWAS thresholds. We demonstrate that GRIN is a useful community 12 

resource for improving the signal to noise ratio of GWAS results. 13 

Introduction 14 

Genome-wide association studies (GWAS) can identify the genetic basis of complex 15 

phenotypes but interpreting the results of these studies is often challenging. SNP-level results 16 

from GWAS often need gene assignment for understanding downstream functions, but SNP-to-17 

gene assignment is challenging for intergenic SNPs1–4. Moreover, while the resulting gene set 18 

may contain genes that affect the phenotype, these “true positive” genes are often interspersed 19 

with false positives as a consequence of confounding experimental factors and incorrect SNP-to-20 

gene assignments. False positive genes can mislead efforts to understand the genetic architecture 21 

of a trait, so it is important that they are filtered out. This becomes even more crucial for GWAS 22 
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that produce few associated genes at traditional genome-wide significance (i.e., p < 5e-8). For 23 

these cases it is often necessary to investigate SNPs at less stringent p-value thresholds to find 24 

relevant loci, at the risk of introducing false positives. 25 

Polygenic traits are typically influenced by genes from multiple pathways working in 26 

concert with each other within the broader biological system5. Given enough information from 27 

diverse experimental sources, it should be possible to find functional lines of biological evidence 28 

connecting any pair of truly causal genes to each other more strongly than pairs of random genes. 29 

When considered as a set (e.g., from a GWAS or differential gene expression), the true positive 30 

causal genes are very likely to be functionally connected to one another. Conversely, false 31 

positive genes from a GWAS will likely be random and therefore far less functionally connected 32 

to the other genes in the set. Given a gene set, one could conceivably determine which genes are 33 

most likely to be false positives if the gene set can be parsed effectively by including thorough 34 

gene interaction information. 35 

To solve this important biological problem, we present GRIN – Gene set Refinement 36 

through Interacting Networks – an approach that removes biologically disparate, false positive 37 

genes in a gene set based upon biological network topology. GRIN uses a network representation 38 

of system-wide gene-to-gene interactions from diverse experimental sources. Starting from a 39 

user-defined gene set, GRIN explores the network topology to determine how strongly these 40 

genes are interconnected. Next, GRIN compares the connectivity among these genes to the 41 

connectivity found among random genes to determine which of the user’s genes are likely to be 42 

false positives. We validated GRIN by testing its ability to separate well-characterized, 43 

functionally related “gold standard” genes from random genes using a large multiplex network6.  44 
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We then applied GRIN to suicide attempt GWAS summary statistics, a complex 45 

psychiatric phenotype. Even though heritability estimates range from 17-55%7,8, this psychiatric 46 

disorder has elicited few genome-wide significant variants to date8–11. We analyzed independent 47 

suicide attempt GWAS results from the Million Veteran Program (MVP11) and the International 48 

Suicide Genetics Consortium (ISGC9). As few variants were significant at traditional genome-49 

wide significance, we explored SNPs at a less stringent threshold and used multiple SNP-to-gene 50 

assignment methods to elucidate the underlying mechanisms of the heritable components of 51 

suicidality. GRIN identified genes with higher probability of contributing to suicide attempt 52 

pathophysiology, reducing false positive genes. Thus, we demonstrate GRIN’s utility in 53 

identifying key biological mechanisms from GWAS signals, and subsequently identify putative 54 

drug targets for future suicide prevention studies. 55 

Results 56 

GRIN workflow. 57 

A summary of the GRIN workflow is presented in Figure 1. GRIN inputs include a gene 58 

set and a previously generated multiplex network. In Stage 1, all experimentally-derived (e.g., 59 

GWAS) “seed” genes are ranked based upon biological network connectivity. GRIN also 60 

performs this task on random gene sets of equivalent size to produce an empirical null rank 61 

distribution. In Stage 2, a sliding window is used to compare the ordered ranks of 62 

experimentally-derived genes to the equivalent ordered ranks within the null distribution using 63 

the Mann-Whitney U test, and the p-value of the Mann-Whitney U test is plotted for each 64 

window to form a curve. The elbow of this curve indicates the cutoff point at which the ranks are 65 

equivalent between the seed gene set and the null distribution (indicating low functional 66 

interrelatedness), and genes following this cutoff point are filtered out. 67 
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 68 

GRIN accurately removes false positive genes as determined by benchmarking with 69 

biologically interrelated, “gold standard” gene sets. 70 

We first tested GRIN on 30 biologically-interrelated, “gold standard” gene sets mixed 71 

with an equivalent amount of randomly drawn genes (1:1 ratio), and repeated this 100 times per 72 

gold standard gene set (Fig. 2A, Supplementary Table 1). GRIN Stage 1 ranked gold standard 73 

genes more highly than most random genes in any given test set, achieving median area under 74 

the receiver operating characteristic curve (AUROC) and median area under the precision-recall 75 

curve (AUPRC) values of 0.950 ± 0.059 and 0.896 ± 0.084 respectively across the 30 gold 76 

standard gene sets (Fig. 2B-C). This indicated highly accurate gene ranking in GRIN Stage 1, 77 

which is necessary for successful outcomes at Stage 2. GRIN Stage 2 effectively classified true 78 

and false positive genes at the cutoff point (median precision 0.810 ± 0.134; recall 0.914 ± 79 

0.167; specificity 0.880 ± 0.197; Fig. 2D, Supplementary Fig. 1). On average, 46.0% of the 80 

gene set was discarded as noise (0.460 ± 0.143), and less than 9% of true positive gold genes 81 

were discarded (median recall 0.914). 82 

 Next, we tested GRIN’s ability to refine gene sets containing varying proportions of 83 

random genes. When gold standard genes outnumbered random genes by 2:1, precision (0.967 ± 84 

0.060), recall (0.735 ± 0.331), and specificity (0.971± 0.088) were consistently high compared 85 

to expected values from random classification (precision = 0.66, specificity = 0.66). Precision, 86 

recall, and specificity values decreased as the ratio of gold genes to random genes in the gene 87 

sets decreased (1:1, 1:2, 1:4) but were consistently better than random chance (Fig. 2E, 88 

Supplementary Fig. 2). 89 
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 Finally, we tested whether GRIN could retain multiple distinct functional groups when 90 

mixed with random genes. This test case is important since a real-world gene set for a complex 91 

trait is likely to contain multiple functional groups. When given gene sets with two distinctive 92 

biological functions (“dopaminergic synaptic signaling” and “myelination”) at 1:1 or 2:1 ratios 93 

of gold standard genes to random genes, GRIN generated much better precision and specificity 94 

compared to random chance while retaining high values for recall (2:1 merged gold 95 

standard:random – precision: 0.931 ± 0.042, recall: 0.742 ± 0.141, specificity: 0.891 ± 0.094; 96 

1:1 merged gold standard:random – precision: 0.789 ± 0.103, recall: 0.930 ± 0.116, specificity: 97 

0.767 ± 0.174; Fig. 2F).  98 

 99 

GRIN retains biologically interrelated genes from the Million Veteran Program (MVP) 100 

suicide attempt GWAS at less stringent significance thresholds. 101 

After benchmarking GRIN on gold standard gene sets, we applied it to suicide attempt 102 

GWAS summary statistics from the Million Veteran Program (MVP11) to understand which 103 

genes contribute to psychiatric pathophysiology in this military veteran population. We utilized 104 

both conventional MAGMA4 and H-MAGMA1 solely for gene assignment from SNPs at 105 

different genome-wide significance thresholds (Fig. 3A). Only five SNPs were significant below 106 

the traditional threshold of genome-wide significance (p < 5e-8) which were assigned to three 107 

total genes (SPATA17, TSHZ2, and ENSG00000227705; Supplementary Tables 2 and 3). In 108 

order to explore additional genes contributing to suicide attempt pathophysiology, we explored 109 

markedly less stringent p-value thresholds which expanded the GWAS-derived gene sets. We 110 

only examined SNPs and resulting genes at the p < 1e-5 threshold since the numbers of genes 111 
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obtained at less stringent thresholds became unwieldy to interpret in a unified context 112 

(Supplementary Table 2).  113 

MVP SNPs were assigned to 122 genes at p < 1e-5 (Supplementary Tables 2 and 4). We 114 

applied GRIN to this gene set in order to limit the higher number of potential false positive genes 115 

introduced at this threshold. GRIN retained 65 genes and removed 57 genes from the gene set 116 

(Fig. 3B-C, Supplementary Table 5). Next, to determine if GRIN successfully retained 117 

biologically interrelated genes we used ToppGene12 to compare a variety of gene set enrichments 118 

(Methods) of MVP genes before and after GRIN. The 122 unfiltered genes were not 119 

significantly enriched for any GO terms but were enriched for 203 combined drug and disease 120 

enrichments, including “substance dependence” (DisGeNET C0038580; Supplementary Table 121 

6). Intriguingly, after refining the gene set with GRIN, 1449 enrichments were significant from 122 

65 retained genes, including 18 transcription factor binding sites and five GO molecular function 123 

enrichments (e.g., “adenyl ribonucleotide binding,” Supplementary Table 7). Conversely, 124 

GRIN removed 57 genes that manifested no significant enrichments. Thus, filtering MVP genes 125 

at a far less stringent GWAS significance threshold with GRIN resulted in a more functionally 126 

enriched gene set by improving the signal-to-noise ratio. 127 

  128 

GRIN retains biologically interrelated genes from multiple International Suicide Genetics 129 

Consortium (ISGC) GWAS at a less stringent significance threshold. 130 

We sought to identify which genes retained by GRIN from MVP were replicated in two 131 

independent, civilian suicide attempt GWAS compiled by the International Suicide Genetics 132 

Consortium (ISGC9). This study contained summary statistics from: 1) a European ancestry 133 

GWAS of suicide attempt in civilians (SA-EUR) and 2) a GWAS of the SA-EUR population 134 
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conditioned by major depressive disorder (MDD) diagnosis status (SA-MDD). At a threshold of 135 

p < 5e-8, only seven SA-EUR genes and three SA-MDD genes were significantly associated 136 

(Supplementary Tables 2-3). 137 

We then applied the same, less stringent significance threshold (p < 1e-5) to identify 138 

additional genes, and applied GRIN to remove potential false positives. Following SNP-to-gene 139 

assignment, 252 genes were identified from SA-EUR and 62 genes were identified from SA-140 

MDD (Supplementary Tables 2 and 4). Prior to GRIN, 25 genes were common to both SA-141 

EUR and SA-MDD (Fig. 4). Following GRIN, 11 genes were commonly retained from both sets 142 

of summary statistics, 8 genes were commonly removed, and 6 genes were removed or retained 143 

from one set only (Fig. 4; Supplementary Tables 8-9). Next, we compared ToppGene gene set 144 

enrichments before and after GRIN to investigate if GRIN functionally refined these gene sets. 145 

At p < 1e-5, 243 enrichments were significant from the unfiltered SA-EUR gene set, including 33 146 

transcription factor binding sites and 114 GO enrichments (Supplementary Table 10). GRIN 147 

retained highly interrelated genes from SA-EUR as demonstrated by 274 significant enrichments, 148 

including 132 significantly enriched GO terms and 44 transcription factor binding sites 149 

(Supplementary Table 11). Conversely, only two enrichments were obtained from removed 150 

SA-EUR genes, indicating little functional interrelatedness among these genes (Supplementary 151 

Table 12). Similarly, 65 enrichments were identified from SA-MDD before GRIN while 247 152 

enrichments were identified in the GRIN retained gene set, including an enrichment for 153 

“schizophrenia,” a mental health disorder which presents an increased risk of suicidality 154 

(DisGeNET C0036341; Supplementary Tables 13-14). Conversely, only 31 enrichments were 155 

identified in the removed gene set (Supplementary Table 15). This strongly indicated that 156 
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GRIN-filtered SA-EUR and SA-MDD gene sets contained highly interrelated genes that were 157 

relevant to neurobiological pathways. 158 

 159 

GRIN retains a majority of genes from the union of the MVP and ISGC summary 160 

statistics, enhancing functional gene set enrichment. 161 

In a process similar to a meta-analysis, we applied GRIN to the union of MVP and ISGC 162 

genes to identify replicated genes across cohorts and identify unified biological mechanisms. 163 

Prior to applying GRIN, at p < 1e-5 one gene (PDE4B) was common among all results, three 164 

genes were common to only MVP and SA-EUR, and 24 genes were common to only SA-EUR 165 

and SA-MDD (Fig. 5). After applying GRIN to the union of all genes, 17 genes common to 166 

multiple summary statistics were retained (over 50%), including PDE4B, 2 out of 3 common 167 

genes between MVP and SA-EUR, and 14 out of 24 common genes between SA-EUR and SA-168 

MDD (Fig. 5, Supplementary Table 16). Conversely, 8 genes between SA-EUR and SA-MDD 169 

and 1 gene between MVP and SA-EUR were commonly removed at this threshold (Fig. 5, 170 

Supplementary Table 16). 171 

Next, we assessed GRIN’s ability to improve gene set enrichment analysis using genes 172 

common to two or more sets of summary statistics. Prior to GRIN there were 1324 significant 173 

enrichments from the 28 genes common to multiple data sets (Fig. 6, Supplementary Tables 174 

16-17). Intriguingly, 1443 significant enrichments were obtained from the 17 genes commonly 175 

retained by GRIN in multiple data sets, including 126 GO terms such as “dopaminergic synapse” 176 

(Fig. 6, Supplementary Table 18). Conversely, only 358 enrichments were significant from the 177 

11 intersecting genes removed by GRIN, indicating lower interrelatedness among these genes 178 

compared to the retained set (Supplementary Table 19). In addition to introducing newly 179 
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enriched terms, GRIN improved the significance of the majority of enriched terms from the pre-180 

filtered gene set. Of the 1324 enrichments obtained from the unfiltered set of genes common to 181 

multiple suicide attempt summary statistics, 1259 of these enrichments were retained; 1168 of 182 

these retained enrichments were more significant following GRIN, strongly indicating that 183 

retained genes constituted a more biologically cohesive set (Fig. 6, Supplementary Tables 18-184 

19). 185 

Similarly, when applying GRIN to each set of summary statistics separately, 13 186 

intersecting genes were commonly retained and 9 intersecting genes were commonly removed 187 

(Supplementary Fig. 3, Supplementary Table 20). This resulted in more numerous and 188 

statistically significant gene set enrichments using intersecting GRIN-retained genes compared to 189 

the unfiltered gene set or GRIN-removed genes (Supplementary Fig. 4, Supplementary Tables 190 

21-22). 191 

 192 

Retained genes from GRIN identify putative pathophysiological pathways involved in 193 

suicide attempt, leading to drug repurposing/side effect candidates. 194 

Using genes retained by GRIN, we identified biological pathways implicated by suicide 195 

attempt GWAS (Fig. 7). Only one of the three genes identified from MVP GWAS at p < 5e-8 196 

(TSHZ2) was retained by GRIN at p < 1e-5. Multiple genes identified in both cohorts were 197 

relevant to dopaminergic signaling, including the dopamine D2 receptor subunit (DRD2) and 198 

phosphodiesterase 4-beta (PDE4B) as well as a protein kinase A subunit (PRKAR2A) from MVP, 199 

which can subsequently modulate cAMP/CREB-mediated transcription of genes important for 200 

synaptic plasticity13. Additionally, SGIP1 was retained by GRIN in MVP and SA-EUR summary 201 

statistics, which affects presynaptic vesicle release and emotional state14,15. Furthermore, genes 202 
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involved in neurotransmitter release (BRSK1) and glutamatergic synapses (CELSR316) were 203 

identified along with ICE2, which is induced by NMDA receptor activity17,18. NCAM1 was also 204 

retained by GRIN, which is a crucial mediator of synaptic plasticity and memory processes19,20. 205 

Multiple genes involved in cytoskeletal reorganization were also identified including 206 

CDC42BPB, MAP4, and MARK3. Moreover, TSHZ2, SMARCC1, and ZNF589 were retained by 207 

GRIN and have been implicated in neurodevelopmental processes while RCOR1 is important for 208 

neural progenitor differentiation into neuronal and glial subtypes13,21–24. Finally, a number of 209 

genes involved in global translation processes were identified (DALRD3, DHX30, and EIF5), 210 

two of which have been previously implicated in neurodevelopmental disorders arising from 211 

missense variants25,26 (Fig. 7). 212 

 Finally, we identified drugs that may modulate suicidal behavior based on GWAS-213 

implicated genes retained by GRIN. Multiple drugs target the dopamine D2 receptor subunit, 214 

including the FDA-approved drugs clozapine (used to prevent suicidal behavior in 215 

schizoaffective individuals27) and amisulpride (Fig. 8, Supplementary Table 23). Roflumilast 216 

and a number of other molecular compounds also directly affect PDE4B. Furthermore, 217 

fostamatinib is known to affect 8 genes implicated in both MVP and SA-EUR suicide attempt 218 

GWAS. These drug-gene target links warrant future studies to ensure that they do not present 219 

increased risk for suicidality as a side effect, and to evaluate candidates for drug repurposing for 220 

suicide prevention. 221 

Discussion 222 

Here we introduced GRIN, a workflow based on networks of biological relationships to 223 

enable the relaxing of GWAS thresholds while reducing the impact of false positives, thus 224 
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producing an expanded prioritized gene set compared to a GWAS using the standard significance 225 

threshold. Genome-wide association studies are subject to statistical challenges that have 226 

historically made it difficult to identify a large proportion of trait-relevant genes. In human 227 

studies, genes that may contribute to disease have traditionally been identified from SNP 228 

associations at a genome-wide significance threshold of p < 5e-8, but for many traits GWAS 229 

often fails to find a comprehensive signal at this stringent threshold, especially complex traits 230 

controlled by many small-effect loci. Yet we know that much of the signal of heritability lies 231 

below this threshold. Relaxing the stringency gives access to more SNPs (and hence more genes) 232 

that may be associated with the trait, at the risk of introducing an increasing proportion of false 233 

positives that will confound downstream analyses. GRIN operates on the concept that genes 234 

affecting the same trait are likely to have some sort of functional relationship, even if based upon 235 

minor and/or indirect effects. Given a set of genes from a GWAS, true positive genes should 236 

therefore be functionally related to each other in some way, while false positive genes will be 237 

functionally distant with respect to each other and with respect to the true positive genes. We 238 

demonstrated that GRIN accurately partitions an input gene set into two subsets based on this 239 

mechanism and used it to boost GWAS signals. In contrast to other network-based propagation 240 

tools for enhancing GWAS (e.g., NAGA28, uKIN29, GWAB30), GRIN simultaneously enhances 241 

GWAS sensitivity while reducing the risk of false positive genes from being included. 242 

The first stage of GRIN requires a representation of known relationships between all 243 

genes in a network format. Here we used a biological multiplex network which captures a wide 244 

variety of relationship types across its 10 layers. One could instead use a pre-existing network 245 

based on the species of interest, such as HumanNet31, YeastNet32, or AraNet33. However, 246 
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GRIN’s capacity to accurately refine gene sets is limited by the connectivity represented in the 247 

network. A poor network lacking sufficient biological relationships would result in reduced 248 

ability to distinguish between functionally related genes and random noise. We therefore 249 

included various experimental data sources and generated a frontal cortex-specific predictive 250 

gene expression network using an explainable-AI methodology (iRF-LOOP34), which can define 251 

relationships that were not present in the literature. This novel, tissue-specific weighted network 252 

is a powerful community resource, as iRF-LOOP-derived networks can contain more informative 253 

relationships compared to traditional gene co-expression networks by an order of magnitude34.  254 

Determining the functional relatedness between the genes in a GWAS gene set can be 255 

performed by many algorithms that operate on a biological network. Network propagation 256 

algorithms use information encoded in the topology of each layer simultaneously, providing a 257 

systems-level view of gene-to-gene relationships. Utilizing one such algorithm (random walk 258 

with restart, RWR), we achieved high AUROC, AUPRC, precision, recall, and specificity. 259 

Future studies are warranted to explore which sources of experimental data (e.g., protein-protein 260 

interaction, transcription factor binding) are most influential for retaining biologically 261 

interrelated genes with GRIN. 262 

We demonstrated that GRIN works with simulated noisy gene sets similar to what is 263 

obtained from a GWAS or differential gene expression experiment. GRIN successfully 264 

partitioned curated gene sets spiked with random genes into signal and noise subsets, even when 265 

given multiple functional groups or a high noise ratio. The results confirm that RWR indeed 266 

ranks the functional group(s) of genes highly while random genes mostly receive poor rankings. 267 

When applied to real-world data, it is up to GRIN’s second stage to determine the optimal cutoff 268 
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point that divides functional genes from false positive genes. The strong simulated test results 269 

provide confidence that when GRIN is applied to GWAS results, the true positive genes should 270 

rise to the top of the rankings as long as they are more functionally related to each other than 271 

random genes are, thus providing a retained set that has a higher signal-to-noise ratio than if 272 

GRIN was not used at all. 273 

After applying GRIN to expanded GWAS results at p < 1e-5, we obtained more gene set 274 

enrichments in the retained set with consistently higher levels of significance, despite this set 275 

being considerably smaller. Thus, GRIN removed false positives that were diluting the functional 276 

signal in the original gene set. The fact that the removed gene set was scarcely enriched supports 277 

this argument. By separating a gene list into retained and removed subsets, the user can identify 278 

additional biologically relevant pathways that may be missed by enrichment analyses on the 279 

whole set alone due to dilution with noise.  280 

While we demonstrated that GRIN achieves high accuracy using gold standard gene sets, 281 

GRIN sometimes discarded true positive genes. This indicates that not all genes removed by 282 

GRIN are necessarily irrelevant to the trait or disease, and the removed set should be considered 283 

but with lower confidence than the retained set. It is also important to consider the possibility for 284 

false positives and false negatives to be re-classified as new experimental data sources become 285 

available. For example, some genes removed by GRIN currently have few experimental gene-286 

gene network relationships (e.g., the non-coding RNA RP11-839D17.3 and pseudogene 287 

MRPS21P1). However, future experiments may identify their capacity to modulate 288 

transcriptional or post-transcriptional processes with pathophysiological implications. Therefore, 289 
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GRIN output should be considered as guidance rather than a definitive determination of what is a 290 

true or false positive. 291 

Combined with multiple SNP-to-gene assignments, incorporating SNPs at a less stringent 292 

significance threshold and applying GRIN elucidated additional suicide-associated genes and 293 

pathways. In addition to conventional MAGMA, we leveraged frontal cortex-specific chromatin 294 

accessibility and H-MAGMA which refined SNP-to-gene assignment. While certain variants 295 

have been previously described (e.g., variants in DRD2, PDE4B, and SPATA178,9,11), the present 296 

study characterizes additional genes contributing to dendritic structure and multiple key 297 

neurotransmitter pathways associated with suicidality. Among these additional genes, missense 298 

variants in CDC42BPB35, DALRD326, DHX3025, SMARCC122, and ZNF58936 are known to 299 

impair behavioral and neurodevelopmental processes. While the genetic variants in the present 300 

study did not include these missense or loss-of function variants, it is possible that the variants 301 

implicated in the present suicide attempt summary statistics may alter the transcription of these 302 

genes. For example, the retained gene sets were enriched for multiple transcription factor binding 303 

sites, including an NFAT transcription factor binding site enrichment common to each GWAS 304 

based on different genes (TGGAAA, TRANSFAC NFAT_Q4_01; Supplementary Tables 7, 305 

11, and 14). Variants leading to differential gene transcription may have downstream 306 

developmental or behavioral consequences leading to increased impulsivity and ultimately an 307 

increased risk of suicidality. In addition, multiple genes were implicated in cytoskeletal 308 

reorganization. CDC42BPB encodes MRCKbeta, a protein kinase that is induced by long-term 309 

potentiation in rodent models and mediates dendritic spinogenesis by actin-myosin filament 310 

phosphorylation37,38. MAP4 is a microtubule-associated protein (MAP) and MARK3 has been 311 

shown to phosphorylate tau (MAPT), another MAP which accumulates in multiple 312 
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neurodegenerative disorders39,40. Moreover, RCOR1 is a subunit of the REST/CoREST complex 313 

and has been shown to affect CELSR3 and SMARCC1 transcription in mouse models16,22, and 314 

SMARCC1 has been implicated in autism as a core component of the SWI/SNF complex23,41. 315 

These findings point to the possible pleiotropic nature of these genes being associated with 316 

multiple neurological disorders. 317 

By lowering the significance threshold and applying GRIN to refine suicide GWAS gene 318 

sets, we identified previously characterized drug targets (DRD2, MARK3, and PDE4B) and drug 319 

repurposing/side effect candidates that would not have been detected otherwise. Notably, the 320 

DRD2 antagonist clozapine is the only FDA-approved drug with on-label use to prevent suicidal 321 

behavior27. Amisulpride is also a DRD2 antagonist that has been shown to exhibit antipsychotic 322 

and antidepressant activities42. Intriguingly, fostamatinib targets 8 genes implicated by suicide 323 

attempt GWAS including MARK3 and PDE5B, a different phosphodiesterase than the PDE4B 324 

gene implicated in suicide attempt GWAS43. Moreover, it is important to understand if drugs can 325 

present adverse side effects modulating suicidal behavior. For example, the PDE4B inhibitor 326 

roflumilast has a rare adverse side effect of increased suicidality in some individuals44. Further 327 

studies are warranted to understand how pharmacological manipulation of these GWAS-328 

implicated drug targets affect the propensity of suicidal behaviors in at-risk individuals. 329 

GRIN is a powerful tool for identifying biologically interrelated genes and for identifying 330 

true positive variants and associated genes from GWAS. In effect, GRIN synthesizes multiple 331 

lines of evidence to determine which genes should be investigated further, automating a task that 332 

researchers usually do manually post-GWAS. By applying this tool to multiple GWAS results, 333 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2022. ; https://doi.org/10.1101/2022.04.20.22273895doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.20.22273895
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

we identify new genes involved in suicide pathophysiology that may lead to important clinical 334 

insights. 335 
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 362 

Online Methods 363 

Multiplex biological network generation. 364 

In order to capture biological relationships from diverse types of biological evidence, a 365 

multiplex network was assembled from weighted network connections (edges) from a 366 

combination of publicly available and newly generated monoplex (single layer) networks. A 367 

multiplex network has an advantage over aggregate multilayer networks in that the unique 368 

topology of each layer is maintained, resulting in generally higher functional predictive ability45. 369 

Multiple component networks from HumanNet v231 were used (co-functional links by co-370 

citation, co-essentiality46, co-expression, molecular pathway databases, gene neighborhood, 371 

phylogenetic profile associations, and orthologous protein-protein interactions transferred from 372 

model organisms [CC, CE, CX, DB, GN, PG, IL]), and a protein-protein interaction (PPI) 373 

network was generated by merging the following networks into a single monoplex layer: 374 

HumanNet v2 component PPI networks (HT, LC), and high-confidence physical protein-protein 375 

interactions from STRING version 11.047 (taxa = 9606, protein.actions.v11.0, mode=binding, 376 

min score = 700). A transcription factor-gene network layer was included based on a previously 377 

published, human brain-specific transcription factor binding site network48. Newly generated 378 

Predictive Expression Networks (PENs) were obtained using the Iterative Random Forest - 379 
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Leave One Out Prediction (iRF-LOOP) method34,49 using individual-level RNA-seq expression 380 

data from the Genotype-Tissue Expression (GTEx) project50 from the frontal cortex (Brodmann 381 

area 9). The resulting multiplex network was built using RWRtoolkit 382 

(https://github.com/dkainer/RWRtoolkit), which incorporates command-line scripts and an R 383 

library for generating multiplex networks and running the network exploration algorithm random 384 

walk with restart (RWR) by building upon the RandomWalkRestartMH R package45. The 385 

multiplex network used for all analyses comprises 10 layers, 51,183 unique genes, and 3,419,975 386 

edges using δ = 0.5, where δ is the probability of the random walker remaining in the current 387 

network layer or moving to a different layer. The multiplex network used for all analyses is 388 

publicly available at 389 

https://github.com/sullivanka/GRIN/tree/main/test/suicide_weighted_Multiplex_0.5Delta.RData. 390 

 391 

GRIN process. 392 

GRIN leverages the hypothesis that false positive genes in gene sets are likely to be 393 

functionally random with respect to the rest of the gene set, while true positive genes are likely to 394 

share function with other members of the gene set. Using this theory, GRIN partitions a gene set, 395 

such as from differential gene expression analysis or SNP-to-gene assignment from GWAS, into 396 

retained and removed genes in a two-stage process. 397 

In Stage 1, every gene in the network is ranked according to how connected it is to the 398 

genes in the user-specified gene set (e.g., GWAS-derived genes). This includes ranking the user-399 

specified genes themselves by using leave-one-out cross-validation (LOOCV). GRIN can make 400 

use of any network exploration algorithm that can provide gene rankings. We chose RWR for its 401 

robustness, but other propagation methods (e.g., PageRank, heat diffusion) can also achieve 402 
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this28,29,51. RWR provides each gene with a rank that is a proxy for how easily each gene in the 403 

network can be reached from the starting set of GWAS genes, including a rank for the GWAS 404 

genes themselves. Genes with many paths and interactions to one or more of the GWAS genes 405 

rank strongly, while genes that are isolated or distant from the GWAS genes rank poorly. In the 406 

current implementation, this RWR-based ranking occurs based on network propagation of 407 

probabilities of visiting a given gene in the multiplex network, which is based on a matrix 408 

representation of the edge weights between genes in the multiplex network (i.e., the supra-409 

adjacency matrix composed of all intra- and inter-layer connections). Random walks are then 410 

simulated many times by propagating the probability of the random walker exploring a given 411 

gene beginning from the seed genes, and this process continues until the combined network 412 

probabilities no longer change between simulated random walks by a given threshold (1e-10), 413 

thereby achieving convergence based upon an asymptotic number of simulated random walks. 414 

The advantage of using a propagation algorithm like RWR is that genes that are not direct 415 

neighbors of GWAS genes may still rank highly due to indirect paths. Additional parameters can 416 

be used to tune RWR to favor certain network layers (τ) or adjust the probability of restart (r) at 417 

seed genes. In all analyses in the present study, we used r = 0.7, equivalent τ values for all 418 

network layers, and a multiplex network with δ = 0.5 based on previous work that achieved good 419 

performance using these parameters45. 420 

To obtain accurate rankings for each gene in a gene set of size n, we chose to implement 421 

random walk with restart leave-one-out cross validation (RWR-LOOCV) n times, where in each 422 

run one gene is left out and the other n-1 genes are used as seed genes (starting points) for the 423 

random walker in the multiplex network. Each run of RWR-LOOCV generates a ranking of 424 

every non-seed gene in the multiplex, including the left-out gene from the original seed gene set, 425 
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so that each gene in the user’s  obtains n-1 rank values after n runs. Stage 1 then orders the genes 426 

in the set from best to worst according to their median rank values. GRIN also needs a 427 

representation of what Stage 1 results should look like for purely random gene sets of size n. 428 

This empirical null distribution is generated by running RWR-LOO for 100 gene sets, each 429 

containing n randomly sampled genes from the multiplex. The median rank at each position in 430 

the order from 1 to n thus represents the empirical null distribution of ranks for this specific 431 

multiplex and gene set size.  432 

In Stage 2, a cutoff C between 1 and n is determined below which all gene set members 433 

are considered the equivalent of random and can be discarded. A two-sided Mann-Whitney U 434 

test from the R stats base package (“wilcox.test”) is performed over a sliding window of size 435 

𝑤𝑖𝑛𝑠𝑖𝑧𝑒 = 0.15 × 𝑛  to see if the RWR-LOOCV ranks for the gene set members come from the 436 

same distribution as the null distribution RWR-LOOCV ranks. The expectation is that a gene set 437 

window containing functional groups of genes will have a very different ranking distribution to 438 

the random genes in the equivalent null window, resulting in very small (significant) p-values. 439 

On the other hand, if the window contains genes with little functional relatedness, the ranking 440 

distribution will appear to be drawn from the null distribution and the p-value tends towards 1. 441 

This test is run for each window sliding by 1, producing a p-value vector of length n-winsize. 442 

The cutoff C is chosen by finding an elbow in the p-values using the open source R package 443 

“Knee Arrower” with the method = “first” parameter set 444 

(https://github.com/agentlans/KneeArrower). The output is a retained gene set and a removed 445 

gene set. 446 

 447 
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Validation of GRIN using well-characterized gene sets. 448 

 To determine the ability of GRIN to effectively remove noise genes from a gene set, we 449 

obtained a variety of well-characterized (“gold”) biologically interrelated gene sets and spiked 450 

them with random genes drawn from the full multiplex network. Given our application of this 451 

method to suicide GWAS summary statistics, we chose 20 gene sets related to diverse brain 452 

functions. We included an additional 10 gene sets related to other organ systems (lung and 453 

kidney) in order to demonstrate that GRIN could be adapted to other biological contexts. These 454 

thirty “gold standard” gene sets of functionally interrelated genes (see Supplementary Table 1), 455 

ranging in size from 10 to 225 genes, were derived from the following sources: Gene Ontology 456 

(GO52); Online Mendelian Inheritance in Man (OMIM53); and DisGENET54. Random genes were 457 

inserted into each gold set to create gene sets with a 1:1 signal-to-noise ratio (i.e. Ngold : Nrandom). 458 

For each of the 30 gold sets we generated 100 test gene sets using varying samples of random 459 

genes. GRIN was then used to filter out random genes from each test gene set and the 460 

effectiveness of the filter was evaluated using receiver operator characteristics (ROC) and 461 

precision/recall (PR) measured at every possible cutoff point, C, in each rank-ordered gene set.  462 

For evaluation purposes, “true positive” genes were labeled as genes belonging to a gold 463 

gene set that were correctly retained by GRIN; “true negative” genes were randomly added genes 464 

that were correctly removed by GRIN; “false positive” genes were randomly added genes that 465 

were incorrectly retained by GRIN; and “false negative” genes were gold genes that were 466 

incorrectly removed by GRIN. ROC (false positive rate vs true positive rate), and PR curves 467 

(precision vs recall) were generated and area under ROC (AUROC) and area under PRC 468 

(AUPRC) values were calculated for each test gene set. Median AUROC and AUPRC were 469 

calculated for each of the 30 gold standard gene sets to indicate whether Stage 1 of GRIN ranked 470 
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gold genes more highly than random genes in general. After estimating the optimal cutoff C at 471 

Stage 2, precision, recall, and specificity (true negatives / true negatives + false positives) were 472 

calculated for the genes removed and the genes retained by Stage 2. Median precision, recall, and 473 

specificity values were calculated across the 100 test gene sets for each of the 30 gold standard 474 

gene sets. Values are presented as median +/- interquartile range (IQR).  475 

GRIN was also tested on unequal ratios of gold standard genes and random genes using 476 

the dopaminergic synaptic signaling gene set from GO (GO:0001963) and Acute Kidney Failure 477 

gene set from DisGeNET (C0022660) – 2:1 gold genes to random genes, 1:2 gold genes to 478 

random genes, and 1:4 gold genes to random genes. For each ratio of gold standard genes to 479 

noise, 100 test sets were generated. Notably as precision increases (reduction of false positives), 480 

there is a compensatory decrease in recall, as there is the possibility of throwing out too many 481 

true positives, leading to an increased number of false negatives. Since there is a higher precision 482 

value at lower noise levels, there is an inverse trend of decreasing recall at lower noise levels. 483 

Finally, to test whether GRIN could remove random genes from gene sets containing 484 

multiple groups belonging to biological processes that were functionally distinct, multiple gold 485 

gene sets were combined and random noise also added. Dopaminergic synaptic transmission 486 

(GO:0001963; 23 genes) and central nervous system myelination (GO:0022010; 20 genes) were 487 

mixed with two ratios of random to gold standard genes – 2:1 gold genes:noise and 1:1 gold 488 

genes:noise. This process was repeated to generate 100 gene sets of gold standard and random 489 

genes for each ratio examined. 490 

 491 
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Million Veteran Program (MVP) suicide attempt genome wide association study (GWAS) 492 

summary statistics. 493 

Suicide attempts were identified from United States veterans as described previously11. 494 

Suicide attempts were characterized by using a combination of Veterans Healthcare 495 

Administration (VHA) databases from the VA: the Suicide Prevention Application Network 496 

(SPAN) database, electronic health record (EHR) information from the VA Corporate Data 497 

Warehouse (CDW), and the CDW Mental Health Domain survey. For the MVP diagnosis, 498 

suicide attempt was determined by the presence of one or more of the following International 499 

Statistical Classification of Diseases and Related Health Problems (ICD)-9 and ICD-10 500 

diagnostic codes in a subject’s EHR: ICD-9: E950-959; ICD-10: T14.91, X60-62, X64, X66-501 

X83, Y87.0, Z91.5. Control patients were obtained from veterans enrolled in MVP without a 502 

history of suicide attempt or suicidal ideation as determined by a combination of SPAN survey, 503 

Mental Health Domain survey, and ICD diagnostic codes in the CDW database (suicidal ideation 504 

codes: ICD-9: V62.84; ICD-10: R45.851). A total of 410,464 controls from various ancestries 505 

(African, Asian, European, and Hispanic) were included for genome-wide association along with 506 

14,535 cases of non-fatal suicide attempt and 294 fatal attempts. Genome-wide association 507 

analyses were conducted using DNA from whole blood samples from subjects enrolled in MVP 508 

using a custom Affymetrix Biobank Array. Quality control and imputation was performed as 509 

previously described10. All subjects provided informed consent and the activities used to 510 

generate the GWAS summary statistics were approved by the VA Central Institutional Review 511 

Board and all activities were approved by the Oak Ridge National Laboratory Institutional 512 

Review Board. 513 

 514 
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International Suicide Genetics Consortium (ISGC) suicide attempt GWAS summary 515 

statistics. 516 

Suicide attempt summary statistics were analyzed from two sets of suicide attempt 517 

summary statistics derived from civilian populations compiled by the ISGC9. SNPs were 518 

included from a general population of European ancestry (SA-EUR) as 26,590 cases of suicide 519 

attempt and 492,022 control subjects. Furthermore, additional summary statistics were derived 520 

from this general population conditioned on diagnosis status for major depressive disorder (SA-521 

MDD) to generate an additional set of suicide attempt summary statistics. Thus, while the SA-522 

MDD summary statistics are not independent of the SA-EUR summary statistics as they are 523 

comprised of the same set of controls and cases of suicide attempt, both SA-EUR and SA-MDD 524 

summary statistics were analyzed in order to determine the overlap between these results and 525 

results from the MVP cohort. All subjects involved in the ISGC provided informed consent and 526 

the activities used to generate the GWAS summary statistics were approved by local institutional 527 

review boards as previously described9 and by the Oak Ridge National Laboratory Institutional 528 

Review Board. 529 

 530 

SNP to gene assignment. 531 

SNPs were assigned to genes using two separate methods. H-MAGMA1 was used in 532 

combination with publicly available Hi-C data from adult dorsolateral prefrontal cortex 533 

(dlPFC)55 to improve intergenic SNP-to-gene assignment based on three-dimensional chromatin 534 

structure in this brain region. Adult prefrontal cortex Hi-C data was used as this brain region is 535 

known to be involved in executive function and impulsivity processes, which are disrupted in 536 

individuals with a history of suicide attempt56,57Additionally, conventional MAGMA4 was used 537 
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as an alternate method of SNP-to-gene assignment. Thus, H-MAGMA and conventional 538 

MAGMA were applied only as methods of assigning SNPs to genes only using SNPs at given 539 

significance thresholds, rather than using these tools as gene-based tests on the entire set of 540 

summary statistics. 541 

SNPs were assigned to genes from MVP, SA-EUR, or SA-MDD summary statistics at 542 

multiple thresholds (p < 5e-8, p < 1e-5, p < 1e-4, p < 1e-3, p < 1e-2, and p < 1e-1; Supplementary 543 

Table 2). The union of conventional MAGMA and H-MAGMA-assigned genes (i.e., all genes 544 

assigned from either method) from MVP, SA-EUR, or SA-MDD suicide attempt summary 545 

statistics were subsequently used as gene set inputs to GRIN at a threshold of p < 1e-5 and were 546 

filtered into retained and removed gene sets (Supplementary Tables 5, 8, and 9).  547 

 548 

Gene set enrichment analysis. 549 

Gene sets from MVP and ISGC summary statistics were tested for multiple enrichments 550 

using the online ToppGene suite using ToppFun12. Gene set enrichments were analyzed using the 551 

following enrichment categories: GO: Molecular Function; GO: Biological Process; GO: 552 

Cellular Component; Human Phenotype; Pathway (all databases selected); Transcription Factor 553 

Binding Site (all databases selected); Drug (all databases selected); Disease (all databases 554 

selected). Enrichments were considered significant using a Benjamini-Hochberg false discovery 555 

rate (FDR)-adjusted p-value threshold < 0.05. 556 

 557 

Drug to gene target networks for putative drug repurposing and side effect evaluation. 558 

Genes identified as contributing to suicide attempt pathophysiology from MVP and ISGC 559 

summary statistics were used to construct drug to gene target networks from information derived 560 
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from DrugBank58. Drug to gene target networks were visualized in Cytoscape59 (version 3.8.2, 561 

Cytoscape Consortium) to identify drugs known to target genes of interest from MVP and ISGC 562 

summary statistics using GRIN-retained genes at p < 1e-5 (Supplementary Table 20). ISGC 563 

GWAS genes were compared to genes from the MVP cohort using Venn diagrams generated 564 

from the open source R package Vennerable (https://github.com/js229/Vennerable). 565 

 566 

Software. 567 

 GRIN is available as an open-source, command-line R script for public use. The code, 568 

installation instructions, and user manual can be found at https://github.com/sullivanka/GRIN.  569 
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Figures 570 

 571 

Figure 1. Overview of GRIN –  Gene set Refinement through Interacting Networks. 572 
In stage 1, GRIN requires a network composed of gene-gene connections, preferably assembled 573 
from multiple experimental data sources. Next, the network is explored starting from all genes in 574 
the user’s gene set using the random walk with restart algorithm, resulting in a rank-ordered list 575 
of all genes in the network based on the frequency in which they were visited. The ordered ranks 576 
of the user’s genes are used for stage 2, where they are compared to ordered ranks obtained from 577 
running Stage 1 on 100 random gene sets of the same size (empirical null distribution). Using the 578 
Mann-Whitney U test, a window of the user’s gene set ranks is compared to the empirical null 579 
distribution of ranks to determine if the user’s gene rankings come from the same distribution as 580 
random genes’ rankings. After using a sliding window to compare the gene ranks in this manner, 581 
GRIN identifies a set of biologically related genes at the point at which the ranks of the user’s 582 
gene list begin to approximate the ranks of the null distribution (elbow point of the curve). Genes 583 
prior to the sliding window at the elbow point are retained as their ranks deviate from the null 584 
distribution, while genes beyond this point are removed. 585 
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Figure 2. GRIN retains biologically interrelated genes.  586 
A. Workflow for assessing the capacity of GRIN to identify biologically related genes from well-587 
defined, “gold standard” gene sets (GO, OMIM, DisGeNET) mixed with random genes. Figure 588 
made with BioRender.com. B. Receiver-operating characteristic (ROC) curve and precision-589 
recall curves (PRC) for GRIN. The blue line represents the mean of GRIN performance over 100 590 
sets of glutamatergic signaling genes (GO:0035249) intermixed with an equivalent number of 591 
random genes from the multiplex network. Gray values indicate maximum and minimum values 592 
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over 100 sets, and dotted lines indicate classification values based on random chance. C. Median 593 
area under ROC (AUROC) and PRC (AUPRC) values for 100 sets of  random genes intermixed 594 
with a gold standard gene set for 30 distinct gold standard gene sets. D. Median precision, recall, 595 
and specificity values for 100 sets of a gold standard gene set intermixed with an equivalent 596 
number of random genes, repeated for 30 distinct gold standard gene sets. E. Violin and box 597 
plots of precision, recall, and specificity values for 100 sets of dopaminergic synaptic signaling 598 
(GO:0001963) gold standard genes intermixed with different ratios of random genes (Noise). 599 
Median precision: 0.970 (2:1), 0.767 (1:1), 0.568 (1:2), 0.360 (1:4). Median recall: 0.735 (2:1), 600 
1.00 (1:1), 1.00 (1:2), 1.00 (1:4). Median specificity: 0.970 (2:1), 0.696 (1:1), 0.620 (1:2), 0.554 601 
(1:4) F. Precision, recall, and specificity values for 100 sets of dopaminergic synaptic signaling 602 
(GO:0001963) and myelination (GO:0022010) gold standard genes mixed with a ratio of 50% 603 
noise (2:1 Gold Std:Noise) or an equivalent ratio (1:1 Gold Std:Noise) of random genes. 604 
  605 
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 606 
Figure 3. GRIN identifies biologically interrelated genes from suicide attempt summary 607 
statistics from United States veterans.  608 
A. Workflow for identifying biologically interrelated genes from genome-wide association study 609 
(GWAS) summary statistics of suicide attempt from Million Veteran Program (MVP) and 610 
International Suicide Genetics Consortium (ISGC) cohorts. Figure made with BioRender.com. B. 611 
Sliding window p-values of Mann-Whitney U test for the union of H-MAGMA and conventional 612 
MAGMA-assigned genes from MVP GWAS summary statistics using SNPs with a threshold of 613 
p < 1e-5. Dotted line indicates the elbow point of the curve used to determine which genes were 614 
retained by GRIN. C. Gene lists of retained (blue) and removed (orange) genes from MVP 615 
summary statistics as determined by GRIN based on H-MAGMA or conventional MAGMA 616 
SNP-to-gene assignment.  617 
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 618 
Figure 4. GRIN retains and removes genes common to two sets of civilian suicide attempt 619 
summary statistics. 620 
Venn diagrams of the number of genes before GRIN (left) and retained and removed genes 621 
following GRIN from suicide attempt of general European population (SA-EUR) and 622 
conditioned on major depressive disorder diagnosis (SA-MDD) at p < 1e-5. A majority of the 623 
retained genes from SA-MDD were also retained from the SA-EUR summary statistics.  624 
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 625 
Figure 5. GRIN retains a majority of genes common among distinct suicide attempt 626 
summary statistics.  627 
Venn diagrams of GRIN retained and removed genes from the union of MVP, SA-EUR, and SA-628 
MDD suicide attempt summary statistics from genes assigned from SNPs at p < 1e-5. Most genes 629 
common to multiple summary statistics were retained, as indicated by percentage of retained 630 
(orange) and removed (blue) genes in multiple sets of summary statistics. I1 = overlapping genes 631 
between MVP and SA-EUR, I2 = overlapping genes between MVP and SA-MDD, I3 = 632 
overlapping genes between SA-EUR and SA-MDD, IA = genes common to all summary 633 
statistics.  634 
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 635 
Figure 6. GRIN enhances gene set enrichment analysis.  636 
Left: Using genes intersecting in two or more GWAS summary statistics (shaded blue region of 637 
Venn diagram) prior to GRIN resulted in 1324 enrichments. Intersecting genes retained by GRIN 638 
resulted in 1708 enrichments, 1259 of which were common prior to GRIN. Green: Enrichments 639 
using intersecting genes prior to GRIN; yellow: enrichments using intersecting genes from GRIN 640 
retained genes; purple: enrichments common to unfiltered and GRIN-retained genes. Right: Of 641 
the 1259 enrichments common before and after applying GRIN, these enrichments were likely to 642 
be more statistically significant (1048 enrichments, orange squares) compared to equivalent 643 
significance (205 enrichments, open circles) or less significance (gray triangles). Diagonal line 644 
indicates equivalent p-values before and after GRIN. Threshold for enrichment inclusion was –645 
log10(FDR-corrected p-value) > 1.30103 (FDR-corrected p-value < 0.05). 646 
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 647 
Figure 7. Neurobiological mechanisms implicated in suicide attempt pathophysiology as 648 
determined by GWAS summary statistics and GRIN. 649 
GRIN retained genes from MVP suicide attempt GWAS (cyan), MVP and ISGC general 650 
population GWAS (orange), and MVP and both ISGC suicide attempt summary statistics (red). 651 
A number of genes related to dopaminergic signaling (DRD2, PRKAR2A, and PDE4B) were 652 
identified, as well as presynaptic vesicle release (BRSK1, SGIP1), glutamatergic synapse 653 
formation (CELSR3), and synaptic plasticity (NCAM1). Genes related to cytoskeletal 654 
reorganization (CDC42BPB, MAP4, and MARK3) were also implicated in suicide attempt 655 
GWAS. Genes related to chromatin reorganization (SMARCC1), cortical development (TSHZ2, 656 
ZNF589), cell lineage (RCOR1), and translation processes (DALRD3, DHX30, and EIF5) were 657 
also retained by GRIN. Together, GRIN retained genes from multiple coincident biological 658 
processes underlying suicide pathophysiology. Figure made with BioRender.com. 659 
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660 
Figure 8. Network association of drugs and drug targets identified by suicide attempt 661 
GWAS. 662 
Network diagram of DrugBank drugs (featured drugs green, additional drugs gray) and drug 663 
target genes from genes retained by GRIN applied to MVP and ISGC suicide attempt summary 664 
statistics at p < 1e-5 threshold. The dopamine D2 receptor (DRD2), phosphodiesterase 4B 665 
(PDE4B), and estrogen receptor 1 (ESR1) are targeted by many drugs, while fostamatinib targets 666 
8 genes implicated by suicide attempt GWAS followed by GRIN. Magenta: genes implicated in 667 
MVP and both SA-EUR and SA-MDD ISGC summary statistics; cyan: genes implicated in MVP 668 
only; orange: genes implicated in both SA-EUR and SA-MDD; brown: genes implicated in SA-669 
EUR only; yellow: genes implicated in SA-MDD only.  670 
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