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Abstract: Many high-profile outbreaks are driven by super-spreading, including HIV, MERS, 

Ebola, and the SARS-Cov-2 pandemic. That super-spreading is a common feature of epidemics 

is immutable, however, the relative importance of 2super-spreaders to the outcome of an 

epidemic, and the individual-level traits that lead to super-spreading, is less clear. For example, 

an individual may contribute disproportionately to transmission by way of an extremely high 

contact rate or by way of low recovery, but how these two super-spreaders differ in their effect 

on epidemiological dynamics is unclear. Furthermore, epidemiological traits may often covary 

with one another in ways that promote or inhibit super-spreading. What patterns of covariation, 

and between what traits, are most likely to lead to large epidemics driven by super-spreading? 

Using stochastic individual-based simulations of an SIR epidemiological model, we explore how 

variation and covariation between transmission-related traits (contact rate and infectiousness) 

and duration-related traits (virulence and recovery) of infected individuals affects super-
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spreading and peak epidemic size. We show that covariation matters when contact rate and 

infectiousness covary: peak epidemic size is largest when they covary positively and smallest 

when they covary negatively. We did not see that more super-spreading always leads to larger 

epidemics, rather, we show that the relationship between super-spreading and peak epidemic size 

is dependent on which traits are covarying. This suggests that there may not necessarily be any 

general relationship between the frequency of super-spreading and the size of an epidemic.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction: Throughout the SARS-CoV-2 pandemic, the importance of super-spreading has 

been imprinted upon our cultural consciousness due to the high visibility of such cases and 

events; however, in the field of epidemiology, the significance of certain individuals being 

responsible for a disproportionate number of infections is par for the course. Not only have 

epidemiologists long known about the existence of super-spreaders, but they have shown that a 

significant number of high-profile outbreaks throughout modern history, including HIV, MERS, 
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Ebola, and SARS, in addition to SARS-CoV-2, have also been driven by super-spreaders (Lui et 

al. 2020, Kain et al. 2021, May & Anderson, 1987, Wong et al. 2015, Gani & Leach 2004). In 

some well-studied outbreaks, such as SARS, information about identified super-spreaders has 

been recorded in great detail, going so far as to find their respective secondary infection rates, 

contact rates and other relevant measurements (Stein 2011, Shen et al. 2004). Comparing the 

characteristics of super-spreaders across outbreaks, however, reveals that super-spreading can be 

caused by variation (and potentially covariation) in many epidemiologically relevant traits. For 

example, one of the earliest and most quintessential examples of super-spreading, Typhoid Mary, 

was a super spreader by way of having low virulence and low recovery, while one of the 

documented SARS super-spreaders experienced high virulence and high contact rate (Brooks 

1996, Shen et al. 2004). This limits the generality of conclusions regarding the role of super-

spreaders on overall epidemiological dynamics: does it matter to epidemiological dynamics 

whether super-spreading arises through variation in transmission-related traits, such as contact 

rate or infectiousness (Vanderwaal and Ezenwa 2016, White et al. 2018, McCallum et al. 2017), 

versus through variation in duration-related traits, such as recovery rate or virulence (Gou and 

Jin 2017)? Moreover, is variation and covariation in some traits more likely to produce super-

spreaders than (co)variation in others?  

 

To illustrate, consider the pattern of higher infection prevalence and intensity in males compared 

to females observed for some types of parasites and some types of hosts (Muehlenbein & 

Bribiescas 2005, Luis et al. 2012, Vanderwaal & Ezenwa 2016, Kelly et al. 2018). These are 

thought to be due in part to elevated levels of testosterone (an immunosuppressant that likely 

prolongs infections; Zuk 2009, Foo et al. 2016) but also due to increased home range sizes which 
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can lead to more infectious contacts (Klein et al. 2000, Luis et al. 2012). Here, individual 

variation in physiology and behavior act together to shape a potential pathway that might lead 

some males to become super-spreaders. Other examples include variation in attractiveness to 

vectors (Allan 2010, Takken & Verhulst 2013) or variation in disposition (being bold or shy) (in 

Siberian Chipmunks, Tamias sibiricu; Boyer et al. 2010; Vanderwall and Ezenwa 2016). How 

these different iterations of super-spreading compare to one another regarding influence on 

epidemiological dynamics is unclear.  

 

We can use an epidemiological model to help identify traits that are likely to both impact 

epidemiological dynamics and lead to super-spreading. For example, an individual may become 

disproportionately important to spreading if it has a high transmission rate (which could be 

caused by a high contact rate or by high infectiousness) or if it is infectious for a long time 

(which could be caused by a very low recovery rate or mortality rate). Recently, authors have 

explored the potential importance of, not only variation, but covariation among individual traits 

to epidemiological dynamics as well (White et al. 2018, Gou & Jin 2017, Hawley et al. 2011). 

However, this was first suggested in the evolution of virulence literature (Cressler et al. 2016) 

which presupposes mechanistic links between disease parameters via within-host parasite 

replication. For instance, a trade-off (negative covariation) between virulence and transmission 

results when increasing within-host replication increases transmission by increased 

infectiousness/shedding but comes with a cost of increased virulence (Anderson & May 1982, 

Ewald 1983). There may also be a trade-off between virulence and recovery if high within-host 

replication reduces the ability of the immune system to clear the infection but also increases 

virulence (Anderson & May 1982, Alizon 2008). Lastly, a trade-off between contact rates and 
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infectiousness can arise if high within-host replication increases infectiousness but also leads to 

increased sickness behavior that decreases host contact rates (Ewald 1994). These trade-offs 

make a strong case for covariation being possible in nature but are examples of negative 

covariation exclusively. However, there are plausible reasons to suspect that, in some cases, 

these correlations may be positive (Hawley et al. 2011). For example, Brookes and Ward (2019) 

recently showed that canines infected with rabies have increased contact rates due to disease-

induced behavioral changes and increased shedding and thus increased infectiousness. 

 

Empirical investigations show that super-spreading may arise through variation in traits related 

to both transmission (contact rate and shedding rate) and infection duration (virulence and 

recovery). Additionally, evidence of individual variation and clear rationale for covariation in 

epidemiologically relevant traits are well-documented in the literature. Despite this, the 

importance of individual variation/covariation on epidemiological dynamics, and how that 

relates to the way in which one becomes a super-spreader remains unclear. In an analysis of 

individual variation on outbreak dynamics, Lloyd-Smith et al. (2005) showed that increased 

variation is associated with more super-spreading events, but also increased probability of 

extinction, suggesting that more super-spreading does not necessarily imply larger epidemics. 

More recently, the effects of covariation on population-scale dynamics have been explored by 

several papers (Gou & Jin 2017, White et al. 2018, Hawley et al. 2011), but these have focused 

exclusively on covariation in transmission-related traits (i.e., susceptibility, contact rate, 

infectiousness). Here we use stochastic individual-based simulations of a simple SIR 

epidemiological model to explore how variation and covariation in transmission-related traits 

(contact rate and infectiousness) and duration-related traits (virulence and recovery) of infected 
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individuals affects super-spreading, peak epidemic size and the subsequent relationship between 

super-spreading and peak epidemic size. We tested all directions of covariation (positive, 

negative, and none), with three levels of variation (low, moderate, and high) and three different 

basic reproductive numbers (R0; low, moderate, and high). 

 
 
Methods: 
Model Description and Assumptions 
 
In the absence of any variation, the epidemiological dynamics are determined by a simple SIR 
model (Fig. 1; Eq. 1-3):  
 

 
Figure 1. Flow diagram of SIR model. Contact and shedding determine movement from susceptible to infected, 
recovery determines movement from infected to recovered, and virulence determines infected individuals that do not
recover. Births and deaths are not included in this diagram but are included in the SIR model used.  

 
We assume that all individuals are born susceptible, and that birth rate is density-dependent 

(according to the parameter ), with equal birth rates, , for all epidemiological classes. We 

decompose pathogen transmission rate into a contact rate process, , and an infection process 

(Fig. 1), with infectiousness determined by pathogen shedding rate ( ) such that the probability 

of infection, given contact, is a saturating function of shedding rate. Infected hosts die due to 

   
 

 
Eq. 1 

 
 

Eq. 2 

 
 

Eq. 3 
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infection at a per-capita rate, �, and recover into a permanently immune class at a per-capita rate 

�. All hosts are assumed to die at the per-capita background rate, �. 

 

To allow individuals to vary in contact rate, shedding rate, virulence, and recovery, we simulated 

the above SIR model with an individual-based model (IBM) built on the standard Gillespie 

algorithm for exact stochastic simulation of differential equations (Gillespie 1977). As in the 

standard algorithm, the probability of any of the possible events (birth, death, infection, and 

recovery) occurring at a moment in time is proportional to its rate, relative to all of the other 

events. Following DeLong (2016), we extend the algorithm by allowing each individual to have 

a unique set of parameters. Here we assume that epidemiological variation comes only through 

infected hosts, so that, for example, variation in contact rate is due to variation in the behavior of 

infected hosts, rather than susceptible hosts. The epidemiological traits of newly infected 

individuals are drawn from a multivariate normal distribution with fixed mean and covariance 

structure. With this individual-based model, we can track unique fates of each individual in the 

population, including the number of secondary infections each causes, while allowing population 

dynamics to emerge out of the stochastic processes of birth, death, infection and recovery.  

 

To develop intuition about how (co)varation is likely to affect epidemiological dynamics, we can 

analyze how variation is predicted to affect the net reproductive rate, ��. For this simple model,  

 

�� �
�

�
� 	 �


�

� 	 � 	 �
, 

 
where 
� is the equilibrium number of susceptible hosts in the absence of infection, if one or more 

epidemiological parameters (co)vary, then �� becomes a random variable and we can estimate 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2022. ; https://doi.org/10.1101/2022.04.19.22273976doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273976
http://creativecommons.org/licenses/by-nd/4.0/


its moments using a Taylor expansion. Table 1 gives the resulting expectations for ��, assuming 

variation and covariation between all epidemiological parameters; for full details of this 

derivation, see the appendix. 

 
 
 � varies � varies � varies � varies � varies ������ ��
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Table 1: The epidemiological effect of variation (along the diagonal) and covariation (off-diagonal) in parameters is 
reported relative to R0 evaluated at the mean parameter values and �.  

 
From this, we can make several predictions. In particular, variation in contact rate alone will 

have no impact on ��, whereas variation in either virulence or recovery will tend to increase ��. 

The effects of covariation are, of course, more complicated. If contact and shedding negatively 

covary (i.e., there is a trade-off between contact rate and infectiousness) then the expected �� 

decreases. On the other hand, if contact rate negatively covaries with either virulence or 

recovery, then the expected �� increases. If virulence and recovery positively covary, then the 
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expected ��increases. In all other cases, it is impossible to make a general prediction, as the 

expected �� depends on parameter values. 

To confirm these predictions and more fully explore the effects of variation and covariation of 

transmission and duration-related traits on epidemiological dynamics, and, in particular, on the 

potential for super-spreading, we explored all possible combinations of contact rate (c), shedding 

rate (shed), virulence (alpha) and recovery (gamma), allowing parameters to covary with zero, 

positive, or negative covariation. We tested each model combination at three levels of variation 

(SD; 0.03, 0.15, 0.75) and three R0 values (R0; 1.5, 3.8, 8). The covariation was calculated from 

the correlation, set to either -0.5, 0, 0.5, and the variation. This resulted in a total of 54 model 

variants.  

 

We carried out 50 stochastic simulations of each model, tracking the epidemiological dynamics 

and each infected individual’s trait values and number of secondary infections. We compared the 

peak epidemic size and the heterogeneity in the number of secondary infections for each model. 

To quantify heterogeneity, we use an estimate of the dispersion parameter (k) of a negative 

binomial model fit to the distribution of secondary infections for each simulation (Lloyd-Smith 

et al. 2005). We use the estimate of k as a measure of super-spreading: the larger the k value, the 

less heterogeneity there is in the number of secondary infections, and thus less super-spreading.  

 
Results  
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Figure 1. Dynamics of infected individuals over time for intragroup trait pairings at a moderate R0 for all levels of 
variation and directions of covariation. For each simulation, the initial number of susceptible hosts is given by the 
expected equilibrium population size in the absence of infection, minus the initial number of infected hosts, which 
was always 5.
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Figure 2. Dynamics of infected individuals over time for intergroup trait pairings at a moderate R0 for all levels of 
variation and directions of covariation. Note that the trait pairings of contact with virulence (alpha) and recovery 
(gamma) are omitted but can be found in the appendix.  
 
 
We found that our results were strongly determined by whether covarying parameters were 

duration (virulence, recovery) or transmission (contact rate, shedding rate) related. When trait 

pairings include one duration parameter and one transmission parameter (i.e., virulence and 

contact rate) we classify them as intergroup trait pairings. When trait pairings include parameters 

from the same group (i.e., virulence and recovery), we classify them as intragroup trait pairings. 

These groupings provide a general framework in which we can understand our results because, 

for most of our measures, results from simulations of intergroup trait pairings tend to be similar, 

rs 
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whereas results from simulations of intragroup trait pairings are distinct to the trait pairing. We 

also found that when the simulated R0 is increased or decreased the general patterns are the same, 

but emphasized or deemphasized, respectively. Given this, our figures show only results from 

our simulations with a moderate R0 (see appendix for different R0 result figures). Similarly, when 

only one of the intergroup trait pairings is shown in our figures, it implies that the omitted 

simulation results are qualitatively identical to those that are shown (see appendix for all trait 

pairings). 

 
Effect of Variation on Peak Epidemic Size 
When intergroup traits covary negatively (i.e., individuals with the largest recovery rate have the 

lowest shedding rate), regardless of which transmission and duration traits are covarying, 

increasing trait variation always increases the peak epidemic size (fig. 2&3). This agrees with the 

analytical results, which indicate that R0 is most likely to increase with variation if covariation is 

negative (Table 1). When traits vary independently or covary positively (i.e., there is a trade-off: 

individuals with the highest recovery rate have the highest shedding rate), the effect of increasing 

variation depends on which transmission traits are varying; in particular, if contact rate (c) varies, 

then increasing variation increases the peak with all directions of covariation; if shedding rate 

(shed) varies, however, increasing variation can increase, not affect, or even decrease the peak, 

depending on the direction of covariation (Fig. 3). For intragroup trait pairings, the effect of 

variation depends on the covarying traits (Fig. 3). When virulence (alpha) and recovery (gamma) 

covary, more variation always leads to a large epidemic peak regardless of covariation. This 

agrees with the analytical results (Table 1). When contact rate (c) and shedding rate (shed) vary, 

however, we see an increase in peak epidemic size when there is positive covariation, but no 

change in peak size with an increase in variation with no covariation. When these traits covary 
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negatively, we see a decrease in peak epidemic size with an increase in variation. Interestingly, 

this does not agree with the analytical results, which indicate that increasing variation should 

always decrease R0 (Table 1).  

Figure 3. Distribution of peak epidemic sizes for intergroup trait pairings at all levels of variation and directions of 
covariation. Differences in violin width indicate the density of peak epidemic sizes at that value.  

Figure 4. Distribution of peak epidemic sizes for intragroup trait pairings at all levels of variation and directions of 
covariation. Differences in violin width indicate the density of peak epidemic sizes at that value. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2022. ; https://doi.org/10.1101/2022.04.19.22273976doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273976
http://creativecommons.org/licenses/by-nd/4.0/


 
 
Effect of Covariation on Peak Epidemic Size 
We see that, at moderate variation, peak epidemic size of intergroup trait pairings is largest when 

covariation is negative, and larger when traits vary independently than when they covary 

positively (i.e., there is a trade-off) (fig. 3). At high variation, however, both negative and 

positive covariation result in larger peak epidemic sizes than independent covariation (fig. 3). 

For intragroup trait pairings, we see the same pattern at all levels of variation: the largest peak 

sizes result from positive covariation and the smallest from negative covariation (fig. 3).  

 
Effect of Variation on Super-spreading (dispersion) 
For all trait pairings, more variation leads to lower dispersion (k) which indicates more super-

spreading (fig. 5). With negative covariation and the highest level of variation for our contact 

rate (c) and shedding rate (shed) simulations, however, no dispersion could be estimated due to 

extinctions. 

 
Effect of Covariation on Super-spreading (dispersion) 
For intergroup trait pairings, negative covariation leads to the smallest dispersion values while 

positive leads to the largest (fig. 5). This indicates that negative covariation leads to more super-

spreading than positive or independent covariation. For intragroup trait pairings, there is no clear 

pattern. There is no effect of covariation on super-spreading when virulence (alpha) and recovery 

(gamma) covary. When contact rate (c) and shedding rate (shed) vary we see that negative 

covariation leads to the largest dispersion values and positive covariation leads to the smallest. 

This indicates that positive covariation causes more super-spreading than negative or 

independent covariation.  
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Figure 4. Distribution of dispersion (K) values for each trait pairing, level of variation and direction of covariation. 
Lower dispersion values indicate more super-spreading.  
 
Effect of super-spreading on peak epidemic size 
We see that variation and covariation influence peak epidemic size and dispersion (super-

spreading) (fig. 3&4); however, we do not find a direct interaction between dispersion and peak 

epidemic size (fig. 5). This indicates that the role of super-spreading during an epidemic is 

indirect and varied. For example, in the contact rate (c) and shedding rate (shed) panel of figure 

six, when looking at the moderate variation simulations (triangles), we see a trend of increasing 

peak epidemic size with a decrease in dispersion, but this trend is a function of the direction of 

covariation rather than only dispersion on peak epidemic size. Although we do not see a direct 
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effect of super-spreading on epidemic size in our simulations, we do show under what conditions 

super-spreading should be an important driver of epidemiological dynamics. For example, when 

virulence (alpha) and recovery (gamma) vary, the effect of super-spreading on epidemiological 

dynamics should be negligible. In contrast, if intergroup traits are highly variable and covary 

negatively, we expect super-spreading to contribute to increasing the peak epidemic size because 

we see that despite approximately equal dispersion (k) for all directions of covariation at high 

variation, high dispersion with negative covariation leads to larger peak epidemic sizes.  

 

Figure 5. Relationship between dispersion (K) and peak epidemic size for all trait pairings, level of variance and 
direction of covariation.  

ns 
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Discussion: In this study, we investigated how covariation in traits associated either with disease 
transmission (e.g., contact rate and infectiousness) or infection duration (e.g., recovery rate and 
virulence) influenced disease dynamics and individual heterogeneity in spreading. Previous 
investigations of this question have focused mainly on heterogeneity in traits associated with 
transmission and on epidemic dynamics, utilizing analytical approximation (Hawley et al. 2011), 
branching processes (Lloyd-Smith et al. 2005), and network-based approaches on static (Gou & 
Jin) and dynamic networks (White et al. 2018). In contrast, we built a stochastic, individual-
based version of a classic SIR model with demography to understand how both epidemic and 
endemic dynamics are affected by heterogeneity (Fig. 1, 2). We also allowed for covariation 
between all combinations of transmission- and duration-related traits to investigate whether 
certain combinations of traits are more likely to give rise to larger epidemics or more super-
spreading events. 
 

Across simulations, we found that increasing variation almost always leads to an increase in the 

peak size of the epidemic (Fig. 3, 4). The only situation where this is less true is when contact 

and infectiousness covary, but this is driven by the fact that increasing variation increases the 

likelihood of epidemic fade-outs, as has been seen in other studies (Lloyd-Smith et al. 2005, 

White et al. 2018). When epidemics do take off in this case, they tend to be larger when there is 

more variability. Increasing variation also tends to increase individual heterogeneity in 

spreading, as evidenced by the decrease in the dispersion parameter, k (Fig. 5). The effect of 

variation is less pronounced when recovery and virulence covary – although there is increasing 

heterogeneity, the distributions of k are broadly overlapping suggesting that variation has less 

effect in this scenario. Interestingly, however, the observed values of k in our simulations are 

only comparable to existing empirical estimates in the high variation case. For example, Lloyd-

Smith et al. 2005 estimated dispersion parameters to be less than 0.1 for all the pathogens they 

considered; this is in line with estimates for other pathogens (Melsew et al. 2019); we observed 

values of k that small only in the highest variation case, suggesting that there is considerable 

individual variability in epidemiological traits in most infectious disease systems. 
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The effects of covariation tended to be less pronounced, and to depend on the total amount of 

variation and whether the covarying traits affected transmission or duration (intragroup) or both 

transmission and duration (intergroup) (Fig. 3-5). For intergroup pairings, covariation only has 

an effect at the highest level of variation, and we observed larger epidemics and more super-

spreading when traits covaried negatively (e.g., the most infectious individuals have the lowest 

recovery) or when they covaried positively (e.g., the most infectious individuals have the highest 

recovery). The negative covariation result is intuitive; why positive covariation (i.e., a trade-off) 

also leads to larger, more variable epidemics is less clear. For intragroup pairings, on the other 

hand, we see larger and more variable epidemics when covariation is positive (e.g., the most 

infectious individuals have the highest contact rates), as you might expect. Again, we see the 

largest effect of covariation sign when transmission traits covary, with epidemic fade-outs being 

much more likely under negative covariation than positive, especially at high variation.  

 

Our observation that the effects of variation and covariation are largest when transmission traits 

covary, and smallest when duration traits covary, provides some validation for previous studies 

emphasis on these two aspects of the epidemiological process (Hawley et al. 2011, White et al. 

2005). It is important to keep in mind that the expected R0 is identical across all trait pairings, 

and it is only the contact-infectiousness pairing that leads to frequent epidemic fade-outs, while 

also leading to the most super-spreading.  

 

Another clear pattern that emerges from this study is that whether there is a relationship between 

super-spreading (measured by k) and the size of the epidemic, depends on the covarying traits. 
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For example, when infectiousness and virulence covary (Fig. 5, shed-alpha), increasing variation 

increases super-spreading without any noticeable effect on peak size. However, when 

infectiousness and recovery covary (Fig. 5, shed-gamma), increasing variation increases both 

super-spreading and peak size. This suggests that there will not necessarily be any relationship 

between the frequency of super-spreading and the size of the epidemic, contrary to some 

previous work (Lloyd-Smith et al. 2005). Moreover, looking across stochastic simulations for a 

set of covarying traits and the sign and magnitude of covariation, we do not find that more super-

spreading leads to larger peak.  

 

In general, we find that it is critical to know which traits are covarying and how much they vary. 

Currently, there is little empirical evidence of covariation in nature. However, Hamilton et al. 

(2020) recently showed that in Tasmanian Devils (Sarcophilus harrisii) infected with devil facial 

tumor disease (DFTD), contact rates and infectiousness are negatively correlated: as the disease 

progresses and tumor surface area increases, Devils become more infectious (Obendorf & 

McGlashan 2008), but due to behavioral changes they have fewer contacts. Our simulations 

suggest that this negative covariation is likely important to the overall epidemiological dynamics 

given that, if these traits covaried positively we would expect larger epidemics and super-

spreading, depending on the amount of individual variation. Much more common is empirical 

evidence of individual variation (VanderWaal & Ezenwa 2016, Ferrari et al. 2004, Melsew et al. 

2019). For example, variation in pneumonia recovery rates have been documented in Bighorn 

sheep (Ovis canadensis) (Plowright et al. 2017). Our simulations show that, if recovery rate is 

covarying with another trait, epidemiological expectations may vary widely (Fig. 3). If recovery 

covaries with virulence (in any direction), we would expect minimal heterogeneity in number of 
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secondary infections and only an increase in variation would lead to larger peak epidemic sizes 

(Fig. 3, 4). Conversely, if recovery covaries with contact rates, covariation (in any direction) 

would indicate an increase in peak epidemic size and super spreading being an important driver 

of epidemiological dynamics. The same expectations hold for individual heterogeneity in 

disease-induced mortality, which has been observed in a number of amphibian populations due 

to variation in parasite aggregation (Wilber et al. 2020). 

 

Although documented cases of measured covariation are relatively rare, there is good reason to 

suspect that it is likely widespread and has the potential to largely influence population-scale 

disease dynamics. With this, our results highlight another nuance to understanding why certain 

individuals become super-spreaders. For example, an individual with a high contact rate may be 

considered a likely candidate for super-spreading, however, if contact rate covaries negatively 

with infectiousness (shedding rate), their influence on the epidemiological dynamics might be 

minimized, despite having many contacts. Conversely, if contact rate covaries in any direction 

with another trait, such as recovery, the high contact rate of an individual may lead such an 

individual to becoming a super-spreader in more cases since both positive and negative 

covariation increase peak epidemic size. Research to uncover when covariation between 

transmission and/or duration traits occurs will be important to furthering our ability to predict 

and manage epidemics and super-spreading. 
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