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One sentence summary: The gut microbiome of rural Zimbabwean infants undergoes 
programmed maturation that is unresponsive to sanitation and nutrition interventions but 
is comprehensively modified by maternal HIV infection and can moderately predict linear 
growth.
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1 

ABSTRACT 1 

 2 

Stunting affects one-in-five children globally and is associated with greater infectious 3 

morbidity, mortality and neurodevelopmental deficits. Recent evidence suggests that the 4 

early-life gut microbiome affects child growth through immune, metabolic and endocrine 5 

pathways, and microbiome perturbations may contribute to undernutrition. We examined 6 

early-life fecal microbiome composition and function in 875 stool samples collected 7 

longitudinally in 335 children from 1-18 months of age in rural Zimbabwe, from a cluster-8 

randomized trial of improved water, sanitation, and hygiene (WASH), and improved infant 9 

and young child feeding (IYCF). Using whole metagenome shotgun sequencing, we 10 

examined the effect of the interventions, in addition to environmental or host factors 11 

including maternal HIV infection, on the succession of the early-life gut microbiome, and 12 

employed extreme gradient boosting machines (XGBoost) to model microbiome 13 

maturation and to predict child growth. WASH and IYCF interventions had little impact on 14 

the fecal microbiome, however children who were HIV-exposed but uninfected exhibited 15 

over-diversification and over-maturity of the early-life gut microbiome in addition to 16 

reduced abundance of Bifidobacteria species. Taxonomic microbiome features were 17 

poorly predictive of linear and ponderal growth, however functional metagenomic 18 

features, particularly B-vitamin and nucleotide biosynthesis pathways, moderately 19 

predicted both attained linear and ponderal growth and growth velocity. We find that the 20 

succession of the gut microbiome in a population at risk of stunting is unresponsive to 21 

WASH and IYCF interventions, but is strongly associated with maternal HIV infection, 22 

which may contribute to deficits in growth. New approaches targeting the gut microbiome 23 

in early childhood may complement efforts to combat child undernutrition.  24 
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2 

Main Text: 1 

 2 

INTRODUCTION 3 

Stunting, or linear growth failure, is a form of chronic undernutrition that affects 22% of 4 

children under 5 years of age worldwide (1, 2). Stunting is associated with infectious 5 

morbidity, reduced childhood survival and impaired cognitive development (3). The 6 

lifelong impacts of poor growth contribute to an intergenerational cycle of stunting and 7 

impaired development, lower educational attainment, and reduced adult economic 8 

productivity (4). Nutritional interventions, however, only reduce stunting by approximately 9 

12% (5), suggesting that other pathophysiological mechanisms contribute to chronic 10 

undernutrition, which may inform new therapeutic strategies. 11 

 12 

The determinants of stunting and other forms of child undernutrition are complex and 13 

include a myriad of biological, environmental and social factors including breastfeeding 14 

and complementary feeding practices, household water, sanitation and hygiene (WASH) 15 

practices, birthweight, maternal HIV status, maternal anthropometry and maternal 16 

education. However, growing evidence suggests that a subclinical disorder of the small 17 

intestine, termed environmental enteric dysfunction (EED), may play a role in impaired 18 

child growth (6). EED is characterized by blunted intestinal villi, increased gut 19 

permeability, and microbial translocation into the circulatory system resulting in both local 20 

and chronic inflammation and nutrient malabsorption (7, 8). It is hypothesized that high 21 

enteric pathogen carriage, as seen in poor-hygiene, low-resource settings, contributes to 22 

the pathophysiology of EED (9-11); however, interventions to improve WASH and reduce 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

3 

the pathogen burden in children have failed to demonstrate improvements in linear growth 1 

(12). Additionally, both enteric pathogen load and common biomarkers of EED are not 2 

consistently associated with linear growth in different geographical cohorts (13-16), 3 

suggesting that the pathway linking microbial exposures, impaired gut function and early-4 

life growth remains to be fully elucidated. 5 

 6 

In addition to research investigating the influence of diarrheal pathogens on child 7 

undernutrition and EED, emerging evidence supports the role of the commensal gut 8 

microorganisms in mediating child growth. Healthy-growing children exhibit a patterned 9 

ecological assembly of the gut microbiome through the first 2 years of life, which is defined 10 

by delivery mode, breastfeeding and complementary feeding practices (17). This 11 

microbial succession impacts a number of metabolic, immune and endocrine pathways 12 

in early life that contribute to early-life growth and development (18). Disturbances to this 13 

normal microbiome maturation therefore may impair these critical growth and 14 

developmental pathways. Immaturity of the early-life gut microbiome is associated with 15 

severe acute malnutrition (19), whilst reduced microbiome diversity is associated with 16 

higher risk of future diarrheal episodes (20).  Indeed, a ‘malnourished’ early-life gut 17 

microbiome can recapitulate phenotypes of faltering growth and EED when transplanted 18 

into germ-free mice and pigs (21, 22). Furthermore, nutritional interventions designed to 19 

specifically target the impaired gut microbiome in acute malnutrition in both animal studies 20 

and small-scale human trials have recently demonstrated a positive effect on ponderal 21 

growth (23, 24), but not on linear growth. 22 

 23 
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4 

Microbiome differences that may contribute to stunting are likely influenced by a number 1 

of environmental factors including household WASH, infant feeding practices and 2 

maternal HIV infection. To date, little research has investigated the effect of improved 3 

WASH or infant feeding interventions on the assembly of the infant gut microbiome in low 4 

resources settings. However, recent data show that children who are HIV-exposed but 5 

uninfected (CHEU), consume breast-milk with an altered oligosaccharide composition 6 

from their mothers (25), and may be exposed to abnormal microbiome profiles from their 7 

mothers, which have been reported in people living with HIV (26, 27). CHEU also receive 8 

prophylactic antibiotics, to prevent infectious morbidity associated with HIV exposure. 9 

Each of these exposures may influence the seeding and succession of the gut 10 

microbiome in CHEU (28, 29), which may contribute to the high prevalence of stunting 11 

observed in CHEU (30). Evidence of the effect of other early-life environmental exposures 12 

on the assembly of the infant gut microbiome in low resources settings is scarce but may 13 

provide insights into the influence of microbial and microbiota-modifying exposures on 14 

child growth in the context of undernutrition.  15 

 16 

Previous cross-sectional data from sub-Saharan Africa hypothesized that 17 

decompartmentalization of the gastrointestinal tract occurs in stunted children, as 18 

demonstrated by the overgrowth of oropharyngeal bacterial taxa in the intestine (31), 19 

whilst a handful of other cross-sectional studies report variations in gut microbiota 20 

composition in stunted children that are inconsistent across geographical settings (32-21 

34). We previously reported that the maternal gut microbiome can predict birthweight and 22 

neonatal growth in rural Zimbabwe (27). However, there are few studies mapping the 23 
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compositional and functional maturation of the gut microbiome throughout early 1 

childhood, accounting for feeding, WASH, maternal HIV infection and other environmental 2 

exposures, in populations from low-resource settings and at high risk of stunting. 3 

 4 

Here, we characterize the succession and maturation of the fecal microbiome from 1 to 5 

18 months of age in 335 children from rural Zimbabwe who were enrolled in the 6 

Sanitation, Hygiene, Infant Nutrition Efficacy (SHINE) Trial (35). We explore gut 7 

microbiome maturation and examine the influence of randomized WASH and nutrition 8 

interventions and maternal HIV infection. Using compositional and functional 9 

metagenomic data as well as extensive epidemiological information, we use machine 10 

learning to test the ability of the early-life gut microbiome to predict both attained linear 11 

and ponderal growth and growth velocity through the first 18 months of life. 12 

 13 

 14 

RESULTS 15 

Sub-study population characteristics 16 

The fecal microbiota was characterized in 875 fecal samples from 335 children from 1-18 17 

months of age (Fig. S1). A mean (SD) of 2.6 (1.3) samples were analysed per child. The 18 

children in the microbiome sub-study largely resembled the population of all live-born 19 

infants in the overall SHINE trial cohort (Table S1), however, the microbiome sub-study 20 

included a larger number of children who were born to women living with HIV (29.6%) 21 

compared to the whole SHINE cohort (15.6%), due to the deliberate over-sampling of 22 

HIV-positive mothers and their infants. In addition, the microbiome sub-study included 23 
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infants with slightly older mothers and longer gestational ages. The majority of infants 1 

were born by vaginal delivery (94.5%) in an institution (89.9%) and were exclusively 2 

breastfed (91% at 3 months). Prevalence of stunting (LAZ <-2) varied from 18-34% across 3 

study time-points.  4 

 5 

Metagenome sequencing performance 6 

Overall, 875 unique infant-visit whole metagenome sequencing datasets were used. On 7 

average, 12 million ± 4.2 million quality-filtered read pairs were generated per sample. 8 

Sixteen negative controls produced a mean of 655 quality-filtered reads (range = 149 to 9 

1,425; SD = 456). The median percent of human reads detected was 0.05% but ranged 10 

widely by age group and decreased over time (Fig. S2a). The median percent un-11 

annotatable reads detected in each sample was 58.6% and increased over time (Fig. 12 

S2b). Thirty-six samples were subject to repeated extraction and metagenome 13 

sequencing to assess technical variation. These samples originated from 4 unique 14 

children, each with 3 visit samples, where each visit sample was extracted and 15 

sequenced in 3 replicates. Principal coordinates analysis (PCoA) of Bray-Curtis distances 16 

and phylum-level relative abundances revealed little variation between replicates (Fig. 17 

S2c-d). 18 

 19 

Succession of gut microbiome composition in early childhood  20 

After prevalence and relative abundance threshold filtering, 161 annotated bacterial 21 

species were identified. Seven Eukaryotic and 4 Archaeal species were detected in a 22 

small proportion of samples, but these did not meet the prevalence thresholds (Table S2). 23 
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Bifidobacterium longum was the predominant species at all time-points up to 12 months 1 

of age. Four other Bifidobacteria speces (B. breve, B. bifidum, B. pseudocatenulatum, 2 

and B. kashiwanohense), Escherichia coli, Bacteroides fragilis and Veillonella species 3 

were consistently amongst the most abundant species at the earlier time points before 4 

being outnumbered by Faecalibacterium prausnitzii and Prevotella copri at 12 and 18 5 

months of age. Taxonomic α-diversity metrics and gene richness tended to decline or 6 

remain stable over the first 4-6 months of life, during exclusive breast-feeding, but 7 

increased as expected with infant age from 6-18 months of age (Fig. S3a-b), with the 8 

introduction of complementary feeds. A large proportion of variation in both compositional 9 

(R2 = 0.198, P<0.001) and functional β-diversity (R2 = 0.378, P<0.001) was explained by 10 

age (Fig. 1a-b and S3 c-d). 11 

 12 

We employed extreme gradient boosting machines (XGBoost), a machine learning 13 

approach, to train and test a model of compositional and functional microbiome 14 

maturation, with child age as an outcome. Children who were born to HIV-negative 15 

mothers, who were non-stunted at 18 months (LAZ > -2) and had at least 2 stool samples 16 

collected were used as a ‘training set’, which was then used to predict child age in the 17 

remaining samples (test set). Using species composition, the microbiome was highly 18 

predictive of child age (Model pseudo-R2 = 0.77, MAE = 1.4 months). This ‘microbiota 19 

age’ score was also strongly correlated with biological age in the subset of children from 20 

the test set who were also non-stunted and born to HIV-negative mothers (pseudo-R2 = 21 

0.67). The species most strongly predictive of age included Faecalibacterium prausnitzii, 22 

Blautia wexlerae, Prevotella copri, Staphylococcus hominis, Dorea formicigenerans, 23 
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Bifidobacterium longum, Agathobaculum butyriciproducens, Bifidobacterium bifidum, 1 

Bacteroides thetaiotaomicron, Streptococcus vestibularis and Veillonella parvula (Fig. 2 

1c). Metagenomic pathways also predicted age with high accuracy (Model pseudo-R2 = 3 

0.68; MAE = 1.5; Fig. 1d). The pathways most strongly predictive of age included 4 

methanogenesis from acetate (METH-ACETATE-PWY), multiple nucleotide and amino 5 

acid metabolic pathways, including L-tryptophan biosynthesis (TRPSYN-PWY), purine 6 

ribonucleosides degradation (PWY0-1296), pyrimidine deoxyribonucleotides de novo 7 

biosynthesis I (PWY-7184), L-histidine degradation I (HISDEG-PWY), dTDP-L-rhamnose 8 

biosynthesis I (DTDPRHAMSYN-PWY), flavin biosynthesis I (RIBOSYN2-PWY) and 9 

nitrate reduction I (DENITRIFICATION-PWY). This ‘metagenome age’ was also highly 10 

correlated with age in the subset of children from the test set who were also non-stunted 11 

and born to HIV-negative mothers (pseudo-R2 = 0.67). Using these models, we created 12 

a microbiota-for-age Z-score (MAZ) and metagenome-for-age Z-score (MetAZ), which 13 

accounted for variance of microbiota ages with respect to chronological ages at each 14 

study visit (see Methods). The top 20 features contributing most strongly to age 15 

predictions are plotted in Fig.1e-f. 16 

 17 

WASH and IYCF interventions have little influence on the infant gut microbiome  18 

We have previously reported in the SHINE trial that the WASH intervention had no impact 19 

on infant growth, whilst the IYCF intervention increased LAZ scores by 0.16, leading to a 20 

23% reduction in stunting by 18 months of age. We tested whether these randomized 21 

interventions impacted any metrics of gut microbiome diversity or maturity in each age 22 

group. By performing principal coordinate analysis (PCoA) on Bray-Curtis distances of 23 
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taxonomic data and functional data we found no significant differences in β-diversity 1 

between IYCF and non-IYCF arms at any time-point. There was a significant difference 2 

in Bray-Curtis distances for microbiome composition between WASH and non-WASH 3 

arms at the 3-month time-point (PERMANOVA, P=0.013; R2= 0.011), but at no other time-4 

points (Fig.2a-d). No significant differences were observed in α-diversity metrics or gene 5 

richness between WASH versus non-WASH arms nor IYCF versus non-IYCF arms at any 6 

time-point (Fig.2e-f). Using multivariable regression analyses (MaAsLin2), there were 7 

also no differences in the relative abundance of species or pathways between intervention 8 

arms apart from a small number of features at 3 months in the WASH arms (increased 9 

Klebsiella pneumoniae, reduced Collinsella aerofaciens and more abundant 10 

metagenomic pathways involved in biotin and folate synthesis) and at 18 months in the 11 

IYCF arms (reduced Eubacterium siraeum, E. rectale and Agathobaculum 12 

butyriciproducens; Table S3 and S4). 13 

  14 

HIV exposure comprehensively alters infant gut microbiome composition and 15 

function  16 

We previously reported in this cohort that maternal HIV exposure significantly impacts 17 

infant growth, whereby CHEU displayed significantly poorer linear growth compared with 18 

children who are HIV-unexposed (CHU) (30). We assessed diversity metrics and 19 

microbiome maturity in CHEU versus CHU and found that CHEU displayed significantly 20 

greater diversity (Shannon index; Wilcoxon rank-sum test P = 0.002; Fig. 3a) and species 21 

richness (P = 0.01; Fig. 3b) compared with CHU at 12 months of age, although the size 22 

of the two groups was imbalanced within this age category (n=91 CHEU, n=27 CHU). 23 
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10 

Other metrics of α-diversity were significantly lower in CHEU at 2 months of age 1 

(evenness P = 0.04, Simpson index P = 0.04). Metagenomic gene richness was also 2 

elevated in CHEU at 1, 3, 6 and 12 months (Wilcoxon rank-sum test P = 0.002, P = 0.059, 3 

P = 0.007, P < 0.001, respectively; Fig. 3c). Analysis of taxonomic β-diversity between 4 

CHEU and CHU also revealed significant differences at 1, 3, 6, 12 and 18 months 5 

suggesting that in utero HIV exposure was significantly associated with gut microbiome 6 

succession and development throughout the first 18 months of life (Fig. 3d-e). HIV 7 

exposure also explained a significant proportion of the variation in metagenome pathway 8 

β-diversity (PERMANOVA, P = 0.002, R2 = 0.033) at 1 month of age (Fig. 3h-i), but not 9 

at later ages. We next tested the association between HIV exposure and gut microbiome 10 

maturity. We found that CHEU displayed greater microbiome age and MAZ, and hence 11 

microbiota over-maturity, compared with CHU at 12 months of age (median 14.7 vs 9.2 12 

months; β = 3.18, P < 0.001), which tended to be higher in CHEU at 1 months and at 6 13 

months also (P = 0.074 and P = 0.059, respectively; Fig.3 f-g). However, at 18 months 14 

CHEU displayed lower microbiome age (15.3 vs 16.4 months; β = -1.1, P = 0.045 15 

respectively). Similarly, CHEU displayed significantly greater metagenome ages and 16 

MetAZ scores compared with CHU at 1 month (β = 1.1, p = 0.039) and 12 months of age 17 

(β = 2.2, P = 0.04; Fig. 3j-k), suggesting that HIV exposure drives both compositional and 18 

functional microbiome over-maturity. The proportion of CHEU receiving prophylactic 19 

cotrimoxazole ranged from 56-83% across the 3, 6, 12 and 18-month study visits. 20 

 21 

We next explored which species were differentially abundant between CHEU and CHU 22 

by performing multivariable regression analyses, adjusting for age at stool sample 23 
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collection, exclusive breastfeeding status, delivery mode, and randomised trial arm. 1 

Between 1-3 months of age, two Bifidobacteria species, B. longum and B. bifidum (Fig. 2 

4a-b), in addition to Veillonella seminalis were significantly less abundant in CHEU versus 3 

CHU (q < 0.1; Table S3). Conversely, Flavonifractor plautii was significantly more 4 

abundant in CHEU at 3 months (q = 0.02). At 18 months, B. bifidum was again significantly 5 

less abundant in CHEU (q = 0.04), whilst two other Bifidobacteria species were also 6 

weakly associated with CHEU, whereby B. breve was lower and B. pseudocatenulatum 7 

higher (q < 0.25).  Regression analyses of metagenomic pathways with CHEU status 8 

generated similar outcomes. Following adjustment for covariates, significant associations 9 

for metagenomic pathways were only present at 1 and 3 months of age. At 1 month of 10 

age, these included significant negative associations between CHEU and amino acid 11 

synthetic pathways (superpathway of L-threonine biosynthesis, superpathway of L-12 

isoleucine biosynthesis I and L-lysine biosynthesis I; Fig. 4c-e) and positive associations 13 

with pathways involved in the degradation of sugar derivatives, including fructuronate, 14 

glucoronate and galacturonate (PWY 7242 D-fructuronate degradation, PWY 6507 4-15 

deoxy-L-threo-hex-4-enopyranuronate degradation, GALACTUROCAT PWY D-16 

galacturonate degradation I, GALACT GLUCUROCAT PWY  superpathway of 17 

hexuronide and hexuronate degradation and GLUCUROCAT PWY  superpathway of  18 

beta D-glucuronide and D-glucuronate degradation; Fig. 4f-h, Table S4). A handful of 19 

pathways involved in fatty acid oxidation and fermentation (fatty acid beta oxidation 20 

peroxisome and succinate fermentation to butanoate) were also significantly positively 21 

associated with CHEU at 3 months of age.  22 

 23 
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Microbiome functionality, but not composition, predicts linear and ponderal 1 

growth. 2 

We next examined the relationship between taxonomic and functional features of the gut 3 

microbiome and attained growth (LAZ and WHZ) and growth velocity (WHZ and LAZ 4 

velocity, increase in z-score increments per day between visits) from 1-18 months of age 5 

using XGBoost models. Models were run separately for each of the six age groups, 6 

stratified by maternal HIV status and run in two combinations of predictive features: (i) 7 

microbiome features alone (species or pathways); and (ii) microbiome features and 8 

epidemiological variables, which included maternal anthropometry, baseline WASH and 9 

infant diet variables, amongst others (Table S5). In models combining microbiome 10 

features with epidemiological features, birthweight, maternal height, maternal mid-upper 11 

arm circumference, and household wealth were all important predictors of attained infant 12 

LAZ and WHZ and growth velocity. Models including microbiome taxonomic features 13 

(species) alone performed poorly for both attained and growth velocity at every age 14 

category and regardless of HIV exposure status (Fig. 5a and 6a), with a majority of models 15 

resulting in pseudo-R2 values < 0. Model performance for linear growth improved when 16 

epidemiological features were included, suggesting that gut microbiota composition alone 17 

was poorly predictive of growth. Taxonomic features were weakly predictive of WHZ 18 

velocity at 1-3 months (pseudo-R2 0.09-0.12) and attained WHZ at 6 months (pseudo-R2 19 

= 0.22), but only in children born to HIV-negative mothers (Fig. 6a). Conversely, models 20 

containing functional metagenomic pathways were moderately predictive of both attained 21 

and future growth throughout 18 months of age (pseudo-R2 = 0-0.55; Fig. 5a and 6a) 22 

albeit with relatively large mean absolute errors (MAE) for both linear (0.48-0.95 LAZ) and 23 
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13 

ponderal growth models (0.6-1.18 WHZ). The inclusion of epidemiological variables in the 1 

metagenomic models added little to performance suggesting that pathway features were 2 

independently predictive of both linear and ponderal growth. Models predicted WHZ 3 

better than LAZ and models including children born to HIV-negative mothers also tended 4 

to perform better. MAE decreased in all models as age increased (Fig. S4 a-d).  5 

 6 

Microbiome features associated with linear growth 7 

In all but the 2-month age group, birthweight contributed most strongly to prediction of 8 

attained LAZ. Metagenomic pathways consistently performed better as predictors than 9 

other epidemiological features including maternal height. The most predictive pathways 10 

were largely similar between infants born to HIV-positive and HIV-negative mothers. At 1 11 

month and 2-months, metagenomic pathways encoding enzyme co-factor biosynthesis, 12 

nucleotide degradation and biosynthesis and amino acid biosynthesis were consistently 13 

predictive of both attained LAZ and LAZ velocity (Fig. 5b). Accumulated local effects 14 

(ALE) (36, 37) plots show the average effect of some of the most important features on 15 

model outcomes (Fig. 6c). At 3 months and 6 months, pathways encoding fermentation 16 

and carbohydrate biosynthesis were consistently predictive of attained LAZ and LAZ 17 

velocity, whilst amino acid degradation pathways, amongst others, were predictive of 18 

growth at the oldest age groups. In particular, pathways involved in vitamin B biosynthesis 19 

(flavin, folate, biotin, thiazole and cobalamin biosynthetic pathways) were consistently 20 

predictive of attained LAZ, and included flavin biosynthesis I, 6-hydroxymethyl-21 

dihydropterin diphosphate biosynthesis, superpathway of tetrahydrofolate biosynthesis, 22 

adenosylcobalamin salvage from cobinamide I, biotin biosynthesis II and thiazole 23 
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biosynthesis I. Increasing abundances of B vitamin biosynthesizing genes contributed to 1 

increasing predicted growth in ALE plots, apart from Thiamin biosynthesis, which 2 

predicted lower LAZ at 12 months (Fig. 5c). At 12 months of age, 4-coumarate 3 

degradation (anaerobic), a pathway involved in plant polysaccharide degradation, was 4 

the most predictive pathway of LAZ in children born to HIV-positive mothers, with greater 5 

abundance associated with greater LAZ.  We also assessed pathways predicting growth 6 

velocity and found similar results to that of attained growth (Fig. S5a). At 2 months of age, 7 

folate biosynthetic pathways (folate transformations II and N10-formyl-tetrahydrofolate 8 

biosynthesis) were the top two predictive features of linear growth velocity in children born 9 

to HIV-negative mothers, whilst at 3 months, purine and pyrimidine pathways were 10 

amongst the most predictive features of linear growth velocity. Similarly, as per the 11 

attained growth models, amino acid and fatty acid biosynthetic pathways were also 12 

strongly predictive. Glycogen biosynthesis pathways were also consistently predictive of 13 

linear growth velocity at all ages from 2 months onwards. 14 

 15 

Microbiome features associated with ponderal growth 16 

In the few models incorporating taxonomic features that weakly predicted WHZ velocity 17 

in infants born to HIV-negative mothers, Escherichia coli at 2 months and Bacteroides 18 

fragilis and Veillonella atypica at 3 months were amongst the most predictive features 19 

(Fig. S6). Many of the same categories of biosynthetic microbiota pathways were 20 

predictive of both WHZ and LAZ, including amino acid and nucleotide (especially purine 21 

biosynthesis) biosynthetic pathways in addition to a number of lipid synthesis pathways 22 

at older age groups (Fig. 6b-c). The most predictive pathways were largely similar 23 
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between infants born to HIV-positive and HIV-negative mothers. O-antigen biosynthesis 1 

pathways (PWY-7328 UDP-glucose-derived O-antigen building blocks biosynthesis & 2 

PWY-7332 UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis 3 

and OANTIGEN-PWY pathway), which did not appear in LAZ models, were consistently 4 

amongst the most predictive features of WHZ at 1, 6, 12 and 18 months, whereby greater 5 

abundance was associated with reduced growth. Pyrimidine and purine synthetic 6 

pathways were consistently the strongest predictors of WHZ velocity with varying 7 

directions of association, including superpathway of pyrimidine deoxyribonucleotides de 8 

novo biosynthesis (PWY0-166) which was the strongest predictive feature of WHZ 9 

velocity at 12 months in children born to HIV-mothers (Fig. S5b). Similar to the attained 10 

WHZ models, O-antigen biosynthesis pathways, amino acid synthetic pathways and 11 

glycogen biosynthesis pathways were all strongly predictive of ponderal growth velocity.  12 

 13 

 14 

DISCUSSION 15 

We report the succession and maturation of the early-life gut microbiome in a cohort of 16 

335 children from rural Zimbabwe through the first 18 months after birth. We find that 17 

taxonomic composition of the gut microbiome is poorly predictive of child growth, however 18 

functional composition moderately predicts both attained LAZ/WHZ and LAZ/WHZ 19 

velocity, with pathways including B vitamin and nucleotide biosynthesis genes amongst 20 

the most predictive of child growth. We also report that randomized WASH and IYCF 21 

interventions have little impact on early-life gut microbiome composition, whilst maternal 22 

HIV infection, which is associated with impaired infant growth, is associated with over-23 
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maturity of the gut microbiome, featuring a depletion in commensal Bifidobacteria 1 

species. Collectively, these data suggest that disturbances in the functional potential of 2 

the infant gut microbiome may contribute to poor infant growth and that interventions 3 

targeting the infant gut microbiome may serve as novel solutions to combat child stunting, 4 

particularly in CHEU. 5 

 6 

Our previous data from the SHINE trial found that the WASH intervention had no impact 7 

on linear growth, whilst IYCF improved growth by 0.16 LAZ (35). Furthermore, WASH had 8 

no impact on carriage of enteropathogens or diarrheal incidence (14). Here, we show that 9 

the improved WASH and IYCF interventions also had little impact on the infant gut 10 

microbiome throughout 18 months after birth. Our results support those from high-income 11 

settings, showing a structured, programmed assembly of the gut microbiome in healthy 12 

children who are born by vaginal delivery and exclusively breastfed (17, 38). These data 13 

suggest that this programmed microbial maturation is robust to changes in WASH and 14 

complementary feeding, as delivered in this trial, and that potential microbiome-mediated 15 

pathways affecting early-life growth occur independently of these specific interventions. 16 

Improvements in growth as a result of the IYCF intervention are not driven by the 17 

microbiome, as supported by previous reports showing that the gut microbiome does not 18 

mediate the effect of lipid-based IYCF nutrient supplements on child growth (39). More 19 

intensive interventions that target WASH, microbial exposures, nutrient intake and 20 

microbiota-directed foods during the first 2 years of life may be required to modify this 21 

programmed trajectory of gut microbiome succession. 22 

 23 
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The data reported here complement previous research associating the gut microbiome 1 

with infant growth. The composition and maturity of the gut microbiota has been shown 2 

to be disturbed during severe acute malnutrition (SAM) and could be used to predict 3 

growth recovery (19). More recently, an “ecogroup” of 15 bacterial taxa has been 4 

identified that exhibits consistent covariation, thereby representing microbiota maturation, 5 

throughout the first 2 years after birth across different geographical cohorts (40). 6 

However, little research has examined microbiome maturation in the context of child 7 

stunting. We report similar maturation of the early-life microbiome in this stunting cohort, 8 

driven by many of the same age-predictive taxa as previously reported, notably 9 

Faecalibacterium prausnitzii as the species most predictive of age. We extend this to 10 

report functional maturation of the early-life gut microbiota and find that, in addition to 11 

amino acid and B-vitamin biosynthetic pathways, methanogenesis from acetate (METH-12 

ACETATE-PWY) was the pathway most predictive of age, despite the apparent lack of 13 

methanogens. The predictive strength of this pathway may reflect accumulation of 14 

acetogenic species, including Blautia wexlerae, that feed into reactions upstream of the 15 

METH-ACETATE-PWY. However, our results contrast with previous cross-sectional 16 

studies reporting an association between the taxonomic composition of the gut 17 

microbiome and stunting (31-33). A previous study from sub-Saharan Africa (Afribiota) 18 

reported significant differences in the fecal microbiome of stunted and non-stunted 19 

children between 2-5 years of age, hypothesizing that decompartmentalization of the 20 

gastrointestinal tract and overgrowth of oropharyngeal taxa are associated with stunting 21 

(31). We report here no association between the taxonomic composition of the gut 22 

microbiome and linear growth, however our study examined children at younger ages to 23 
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that of the Afribiota cohort, suggesting that differences in the taxonomic composition of 1 

the gut microbiome mediating linear growth may only manifest later in childhood.  2 

 3 

We identified a range of metagenomic pathways that predicted linear and ponderal growth 4 

through 18 months suggesting that the potential influence of an altered gut microbiome 5 

on child growth is dependent upon a number of interacting metagenomic pathways. This 6 

discrepancy in the ability of functional metagenomic features versus taxonomic features 7 

to predict growth may suggest that metagenomic pathways contributing to differences in 8 

early-life growth may be harboured across a number of functionally redundant species. 9 

Intriguingly, many of the pathways that we found predictive of growth in infants, were also 10 

found to be predictive of infant birthweight and neonatal growth in analysis of maternal 11 

gut microbiomes from the same study cohort (27). Glycogen synthase was the pathway 12 

most predictive of birthweight in maternal microbiomes, whereby higher abundance 13 

predicted lower birthweight. Here we identified 2 related pathways (PWY-622 starch 14 

biosynthesis, GLYCOGENSYNTH-PWY glycogen biosynthesis I (from ADP-D-Glucose)) 15 

that were consistently ranked as highly predictive of both linear and ponderal growth 16 

velocity. Glycogen synthesis occurs as a starvation response in bacteria which facilitates 17 

transition into a biofilm state (41, 42). These data suggest that microbiome starvation 18 

responses are associated with growth as early as the first months after birth, which may 19 

have downstream implications for host metabolism and associated growth pathways. It is 20 

plausible that these pathways are a result of altered nutrient composition in breastmilk of 21 

mothers of stunted infants, thereby providing insufficient substrates for infant microbiome 22 

maturation, as has been identified previously (43). Alternatively, these signatures may be 23 
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a consequence of a host-induced effect in poorly growing infants on gut microbiome 1 

function.  2 

 3 

Pathways encoding biosynthesis of B vitamins were consistently amongst the top 4 

predictive features in models predicting both attained and LAZ and WHZ growth velocity. 5 

Previous evidence supports the importance of B vitamins in early-life growth whereby 6 

maternal folic acid supplementation increases infant birthweight (44). In infants, vitamin 7 

B12 status is predictive of both linear and ponderal growth (45), however the largest 8 

randomized trial of B12 supplementation on infant growth to date showed no effect (46, 9 

47). The gut microbiome biosynthesizes and metabolises B vitamins, including cobalamin 10 

(B12) and folate (B9), at levels similar to dietary intake, and abundance of B vitamin-11 

synthesizing genes in the infant gut microbiome differs by delivery mode, antibiotic 12 

exposure (48), exclusive breastfeeding practices and geographic location, where vitamin 13 

biosynthesis genes are greater in Western settings (38). Greater relative abundance of B 14 

vitamin biosynthetic pathways such as thiazole, tetrahydrofolate and flavin biosynthesis 15 

in the maternal gut microbiome predicted greater birthweight and neonatal growth in this 16 

same cohort, whilst biotin biosynthesis predicted reduced birthweight (27). The gut 17 

microbiome transferred from mother to infants may influence the metabolic capacity of 18 

the infant microbiome to biosynthesize essential nutrients and influence downstream 19 

growth pathways. Purine and pyrimidine biosynthetic pathways consistently contributed 20 

to growth predictions across all age groups. In mothers from this same cohort, purine and 21 

pyrimidine salvage pathways were associated with increasing birthweight (27). Meta-22 

analyses have also found that dietary nucleotide supplementation in infants significantly 23 
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increases head circumference and rate of weight gain (49), suggesting that microbiome-1 

derived nucleotide metabolism may play an important role in nutritional status in early 2 

infancy.  3 

 4 

An important observation, however, is that many of these pathways predicting growth, 5 

including B vitamin and purine/pyrimidine biosynthesis, were also predictive of age and 6 

hence microbiota maturation. There was a strong association between age and growth in 7 

the SHINE cohort, whereby LAZ declined steadily between 1-18 months of age. This 8 

highlights the difficulty in delineating the independent effect of the gut microbiome on 9 

growth during infancy, when the microbiome is concurrently undergoing age-related 10 

maturation, which is by far the strongest contributor to gut microbiome variability. 11 

Although we attempted to account for age-related effects by examining samples within 12 

specified age categories, the microbiome-growth relationship observed here may be 13 

confounded by age. Previous studies, employing MAZ as a maturation index to account 14 

for age have demonstrated microbiome maturation is disturbed in acutely malnourished 15 

states (19) but is not associated with linear growth (50). Our observations that functional 16 

microbiome characteristics moderately predict changes in linear growth add novel 17 

findings to this literature but need to be replicated in other large cohorts examining the 18 

functional maturation of the gut microbiome throughout early childhood in similar settings. 19 

 20 

We report that maternal HIV infection had a significant impact on the infant microbiome 21 

throughout the first 18 months after birth. We previously reported that CHEU have a 16% 22 

higher prevalence of stunting, 40% higher risk of infant mortality and poorer cognitive 23 
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development compared with CHU (30). The results presented here raise the intriguing 1 

possibility that altered succession and assembly of the infant gut microbiome may drive 2 

some of these poorer clinical outcomes in CHEU. These findings are in line with previous 3 

reports of disturbed gut microbiome composition in CHEU (25, 29). A number of factors 4 

may explain these differences. Firstly, CHEU receive prophylactic cotrimoxazole from 6 5 

weeks of age, which may impact gut microbiome succession throughout childhood (51, 6 

52). However, we found the largest differences in gut microbiome composition and 7 

function in samples from infants < 6 weeks of age, suggesting that these findings were 8 

independent of antibiotic prophylaxis and that CHEU may acquire an altered microbiome 9 

from their mothers. We saw relatively minor differences, however, in the gut microbiome 10 

of mothers living with HIV or without HIV in this same cohort (27). Although there were 11 

significant differences in compositional beta diversity, the only species that differed in 12 

abundance was Treponema berlinense, which was significantly less abundant in mothers 13 

living with HIV. Exclusivity of breast-feeding is one of the most impactful factors 14 

determining infant gut microbiome composition, however there was no significant 15 

difference in EBF rates between CHEU and CHU in this cohort, suggesting that exclusivity 16 

of breast-feeding was not responsible for these differences. Previous research has shown 17 

that the HMO content of breast milk differs between mothers living with and without HIV 18 

(25). HMOs are the among the primary substrates for digestion by the infant gut 19 

microbiome thereby fundamentally determining gut microbiome composition. Indeed, we 20 

found that Bifidobacteria species, which are primary degraders of HMOs were 21 

significantly less abundant in CHEU, as were genes involved in amino acid biosynthesis. 22 

Previous, in-depth profiling of infant immune development has found that a lack of 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

22 

Bifidobacteria in infancy is associated with systemic inflammation and immune 1 

dysregulation (21) which are also observed in CHEU (53-55), suggesting that the lack of 2 

commensal Bifidobacteria may mediate some of the poor immune, growth and clinical 3 

outcomes observed in CHEU. 4 

 5 

This study is strengthened by the large birth cohort of healthy infants from two rural 6 

districts in sub-Saharan Africa. This population is underrepresented in microbiome 7 

research to date. The use of whole metagenome shotgun sequencing strengthens the 8 

study, providing a unique dataset in which to examine both compositional and functional 9 

microbiome maturation in early childhood. Furthermore, the machine learning approach 10 

(XGBoost) and comprehensive clinical and epidemiologic data allows us to account for 11 

environmental exposures influencing gut microbiome succession and infant growth in this 12 

rural, low-resource settings. However, there are several limitations to this analysis: (i) the 13 

SHINE microbiome sub-study included more HIV-positive mothers than the main SHINE 14 

trial (30% versus 15%), and the proportion of HIV-exposed infants varied by age group.  15 

This resulted in some small sub-groups in some of our age categories by HIV exposure 16 

analyses, which likely resulted in unstable predictions in certain XGBoost models; (ii) a 17 

significant proportion of the sequencing reads included in our datasets were not 18 

annotatable (median 58.6%) using the specified bioinformatic pipelines (MetaPhlAn3 and 19 

HUMAnN3). This large abundance of unknown sequences is common in samples derived 20 

from non-Western populations (56) and leads to inferences solely being made from the 21 

assignable fraction, potentially missing important microbiota features that are predictive 22 

of infant growth but are currently not represented in databases; (iii) Escherichia coli was 23 
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one of the most prevalent bacterial species across all age groups; however, MetaPhlAn3 1 

cannot differentiate between E. coli pathotypes. Different E. coli pathotypes, such as 2 

enteropathogenic and enteroaggregative E. coli have been associated with intestinal 3 

pathology and EED, however we previously reported in the same cohort that some of 4 

these pathotypes were not associated with growth (14); (iv) we attempted to account for 5 

the age-related confounding of the microbiome-growth relationship by predicting attained 6 

growth and growth velocity in discrete age groups, but residual confounding may still be 7 

present, influencing our ability to identify microbiome features independently associated 8 

with growth; (v) data on infant antimicrobial use in the SHINE trial was incomplete, limiting 9 

our ability to confidently assess this and other potential confounders; (vi) differences in 10 

microbiome composition and function may also be driven by differences in intestinal 11 

microbial load, motility and biogeography, which were not assessed; (vii) finally, we chose 12 

mother-infant pairs with the most complete sample collection during follow-up, in order to 13 

strengthen our inferences about development of the gut microbiome over time. Baseline 14 

characteristics of the microbiome sub-cohort were largely similar to those of the larger 15 

trial, suggesting that the microbiome sub-study cohort studied was largely representative 16 

of the larger SHINE trial. 17 

 18 

Collectively, these data suggest that HIV exposure shapes maturation of the infant gut 19 

microbiota, and that the functional composition of the infant gut microbiome is moderately 20 

predictive of infant growth in a population at high risk of stunting. Novel therapeutic 21 

approaches targeting the gut microbiome may mitigate the poor clinical outcomes that 22 

are observed in CHEU, a growing population of children in sub-Saharan Africa. By 23 
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contrast, current WASH and IYCF interventions fail to impact the infant gut microbiome 1 

and therefore transformative WASH and microbiome-targeted dietary interventions may 2 

prove to be more successful approaches to target the microbial pathways mediating early-3 

life growth.  4 

 5 

 6 

MATERIALS AND METHODS 7 

SHINE trial design 8 

The study design and methods for The Sanitation Hygiene Infant Nutrition Efficacy 9 

(SHINE) trial and for the corresponding microbiome analyses, have been reported 10 

previously (57, 58). Briefly, SHINE was a 2x2 cluster-randomized trial, conducted 11 

between 2012 and 2017, to determine the independent and combined effects of improved 12 

infant and young child feeding (IYCF) and WASH on child stunting and anaemia in two 13 

rural Zimbabwean districts (NCT01824940). 5280 pregnant women were cluster-14 

randomized to one of four interventions: WASH, IYCF, WASH+IYCF, and Standard of 15 

Care (SOC). The SOC interventions, included in all trial arms, comprised exclusive 16 

breastfeeding promotion for all infants up to 6 months and strengthened prevention of 17 

mother to child transmission (PMTCT) of HIV services. The household WASH intervention 18 

was initiated during pregnancy and was designed to reduce exposure to human and 19 

animal feces, including, at the household level: construction of a ventilated improved pit 20 

latrine, installation of two hand-washing stations plus monthly delivery of liquid soap and 21 

water chlorination solution, provision of a play space for the infant, and hygiene 22 

counseling. The IYCF intervention was designed to improve infant diets using a small-23 
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quantity lipid-based nutrient supplement (SQ-LNS), provided to the infant from 6-18 1 

months, and educational interventions promoting the use of age-appropriate, locally 2 

available foods and dietary diversity. Lastly, a combined trial arm, WASH+IYCF, 3 

evaluated the effects of both improved WASH and infant nutrition.  4 

 5 

Infants were followed up at study visits at 1, 3, 6, 12 and 18 months of age. Length and 6 

weight were measured at each infant visit, as described previously (35). Length-for-age 7 

z scores (LAZ) and weight-for-height z scores (WHZ) were calculated from length and 8 

weight measurements at each visit according to WHO Child Growth Standards. 9 

Epidemiologic data for the infants was collected from the baseline and follow-up visits 10 

using trial questionnaires that included maternal anthropometry, birth outcomes, baseline 11 

household WASH facilities, household wealth, maternal education, religion, parity, 12 

household size, dietary diversity, changes in breastfeeding and complementary feeding 13 

practices, food security, 7-day and 3-month infant health status, and antimicrobial use.  14 

 15 

HIV testing 16 

HIV testing was conducted on mothers at the baseline visit using a rapid test algorithm 17 

(Alere Determine HIV1/2 test, followed by INSTI HIV-1/2 test if positive). Those testing 18 

positive for HIV had CD4 counts measured (Alere Pima Analyser) and referral to local 19 

clinics; women were encouraged to begin co-trimoxazole prophylaxis and ART, to 20 

exclusively breastfeed, and to attend clinic at 6 weeks postpartum for early infant 21 

diagnosis and infant co-trimoxazole prophylaxis. Women testing negative for HIV were 22 

offered retesting at 32 gestational weeks and 18 months postpartum. Children of mothers 23 
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living with HIV were offered testing for HIV at each of the study visits. Those who tested 1 

positive were referred to local clinics for ART. HIV was diagnosed using DNA PCR on 2 

dried blood-spot samples or RNA PCR on plasma in samples collected prior to 18 months. 3 

In samples collected after 18 months, HIV was diagnosed by PCR or rapid test algorithm, 4 

depending on samples provided. Children born to HIV-positive mothers and whom tested 5 

negative at 18 months were classified as HIV-exposed uninfected (CHEU). Inconclusive 6 

or discordant results were re-tested; if no further samples were available or repeat testing 7 

was inconclusive, children were classified as HIV-unknown.  8 

 9 

Microbiome sub-study 10 

All CHEU and a subgroup of CHU from the SHINE study were enrolled into an 11 

Environmental Enteric Dysfunction (EED) sub-study (n=1,656 mother-child pairs); these 12 

infants underwent intensive biological specimen collection at 1, 3, 6, 12 and 18 months 13 

of age (58). The EED sub-study was therefore enriched for mothers living with HIV, by 14 

design. Sample selection for inclusion into the current microbiome study was conducted 15 

to enhance longitudinal profiling of the mother and infants gut microbiota. Of the mother-16 

infant pairs within the EED sub-study, those with least one maternal fecal specimen (of 2 17 

possible) and at least 2 infant fecal specimens (of 5 possible) were included in the gut 18 

microbiome analyses. An additional 94 samples collected at the 1 and 3-month visits, that 19 

did not meet these criteria, but had microbiome sequencing data available from a 20 

separate study examining rotavirus vaccine immunogenicity in the SHINE trial (59), were 21 

also included in these analyses. Infant ages varied at each study visit due to the allowable 22 

window around the visit date for the larger SHINE trial. Therefore, for this microbiome 23 
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study, each stool samples were re-categorized into 6 age groups corresponding to 1 

important stages in infant microbiome development: “1 month” (0-6 weeks), “2 months” 2 

(7 weeks – <3 months), “3 months” (3-6 months), “6 months” (6-9 months), “12 months” 3 

(9-15 months), and “18 months” (15-20 months). 4 

 5 

Sample collection 6 

Study visits were conducted by trained study nurses in participants' homes. Sterile stool 7 

collection tubes were provided to mothers, who collected stool samples from their infants 8 

on the morning of each study visit. Samples were placed in cool boxes immediately upon 9 

collection by study nurses and transported by motorbike to field laboratories where they 10 

were aliquoted and stored at -80°C within 6 hours of collection before subsequent 11 

transport to the central laboratory in Harare for long-term storage at -80°C. An aliquot of 12 

each stool sample was shipped on dry ice by courier to the British Columbia Centre for 13 

Disease Control in Vancouver, Canada. A strict cold chain was maintained throughout 14 

transport, ensuring no freeze-thaw cycles occurred between sample collection and 15 

processing. 16 

 17 

Whole metagenome library preparation and sequencing 18 

DNA was extracted from 100-200mg of stool samples using the Qiagen DNeasy 19 

PowerSoil Kit as per the manufacturer's instructions. DNA quantity was assessed by 20 

fluorometry (QuBit) and quality confirmed by spectrophotometry (SimpliNano). 1µg DNA 21 

was subsequently used as input for metagenomic sequencing library preparation using 22 

the Illumina TruSeq PCR-free library preparation protocol, using custom end-repair, 23 
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adenylation and ligation enzyme premixes (New England Biolabs). The concentration and 1 

size of constructed libraries were assessed by qPCR and by TapeStation (Agilent). DNA-2 

free negative controls and positive controls (ZymoBIOMICS) were included in all DNA 3 

extraction and library preparation steps. Libraries were pooled in random batches of 48 4 

samples including one negative control. A set of specimens were subject to replicate DNA 5 

extraction, library preparation and, sequencing to estimate the magnitude of technical 6 

variability among samples. Whole metagenome sequencing was performed with 125-7 

nucleotide paired-end reads using either the Illumina HiSeq 2500 or HiSeqX platforms at 8 

Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada. 9 

 10 

Bioinformatics 11 

Sequenced reads were trimmed of adapters and filtered to remove low-quality, short 12 

(<70% raw read length), and duplicate reads, as well as those of human, other animal or 13 

plant origin, using KneadData with default settings. Species composition was determined 14 

by identifying clade-specific markers from reads using MetaPhlAn3 with default settings 15 

(60). Relative abundance estimates were obtained from known assigned reads, and 16 

unknown read proportions were estimated from total, assigned and unassigned, reads. 17 

Percent human DNA was estimated from KneadData output, using the proportion of 18 

quality-filtered reads that align to the human genome. Given the smaller viral genome 19 

sizes, sequencing depth, and limitations of MetaPhlAn3 for virus identification, we did not 20 

include viruses in our current analyses. We applied a minimum threshold of >0.1% relative 21 

abundance and ≥5% prevalence for all detected species.  Metabolic pathway composition 22 

was determined using HUMAnN3 with default settings against the UniRef90 database 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

29 

(60). Pathway abundance estimates were normalized using reads per kilobase per million 1 

mapped reads (RPKM) and then re-normalized to relative abundance. We applied a 2 

minimum relative abundance threshold of 3x10-7% and ≥5% prevalence for all 3 

metagenomic pathways.  4 

 5 

Statistical analysis 6 

All data were analysed using R (v.4.0.5). Microbiome data were handled using the 7 

phyloseq package. Alpha diversity metrics were calculated using the vegan package. 8 

Beta-diversity was estimated using the Bray-Curtis dissimilarity index and analysed by 9 

permutation analysis of variance (PERMANOVA). Differential abundance analysis of 10 

species or functional pathways was assessed using multiple regression analyses using 11 

the MaAsLin2 package (61). Four covariates were chosen for adjustment in MaAsLin2 12 

regression models and included age at stool sample collection, exclusive breastfeeding 13 

status (recorded at 3 months old), delivery mode, and randomised trial arm. These 14 

covariates were chosen based on biological plausibility and previous evidence of their 15 

influence on gut microbiome composition in large birth cohorts (17). Adjustment for 16 

multiple comparisons was performed using the Benjamini-Hochberg false discovery rate 17 

(FDR).  18 

 19 

The SHINE trial did not observe an interaction between the randomized WASH and IYCF 20 

interventions and growth; therefore, randomised trial arms were combined into WASH 21 

versus non-WASH arms and IYCF versus non-IYCF arms for specified analyses. We 22 

restricted the IYCF analysis to the 6, 12 and 18 month visits, corresponding to the period 23 
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during which supplemental infant feeding was introduced (from 6 months of age). All 1 

children, regardless of HIV status or exposure status were included in the growth 2 

analyses (875 total stool samples). 16 samples had missing ages and were excluded from 3 

age prediction models. Stool samples collected from children classified as HIV-unknown 4 

(24 samples) or HIV-positive (4 samples) at 18 months were excluded from direct 5 

comparisons of CHEU vs CHU infants. 6 

 7 

XGBoost models 8 

Relationships between the infant microbiome and age or growth (attained LAZ/WHZ and 9 

WHZ/LAZ velocity) were evaluated using extreme gradient boosting machines 10 

(XGBoost). XGBoost builds an optimized predictive model by creating an ensemble from 11 

a series of weakly predictive models. XGBoost is also non-parametric, can capture non-12 

linear relationships, and can accommodate high-dimensional data (62). The XGBoost 13 

models were developed using microbiome relative abundances (species or pathways) 14 

and all epidemiologic variables.  15 

 16 

XGBoost model selection was performed in 3 stages as previously described (27). In 17 

brief, BayesianOptimization function of the rBayesianOptimization package was used 18 

with 10-fold cross-validation to select model hyperparameters by minimizing the mean 19 

squared error (MSE). Models with the lowest MSE (in the 5th percentile) were retained, 20 

and from these models the variables that contributed to the top 95% of variable 21 

importance by proportion were retained. In stage two, all epidemiologic variables were 22 

included with the microbiome variables obtained in stage one, and BayesianOptimization 23 
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was re-run as for stage one but using leave-one-out cross-validation. Microbiome 1 

variables that contributed to the top 95% of variable importance by proportion were 2 

retained. In stage three, all epidemiologic variables, microbiome features, and 3 

hyperparameters selected in stage two were used to fit our final models, using leave-one-4 

out cross-validation to minimize the MSE. This 3-stage hyperparameter tuning and model 5 

building was performed for two feature sets, one comprising microbiome features and a 6 

second comprising microbiome plus epidemiologic features; this was done to assess 7 

model performance and to examine the contribution of epidemiologic versus microbiome 8 

features. Separate models were built for attained LAZ and WHZ and growth velocity 9 

outcomes (13). We assessed microbiota composition and functional pathways 10 

separately. XGBoost models were fit using the H20.ai engine and h2o R package 11 

interface with the XGBoost package. XGBoost model performance was evaluated using 12 

pseudo-R2 and mean absolute error (MAE). Pseudo-R2 values < 0 indicated that the 13 

prediction of the model was worse than the mean response. Scaled relative importance 14 

for each model feature was used to identify the twenty most informative variables for 15 

further interpretation, where the most important variable is ranked first, and the 16 

importance of subsequent variables are relative to the first variable. The marginal 17 

relationships between the twenty most important features and each growth outcome were 18 

visualized for interpretation (36) using accumulated local effects plots (ALE). ALE plots 19 

can be interpreted as showing a marginal effect, adjusted for all covariates retained in the 20 

final model, showing the expected change in the outcome variable per increment in a 21 

model feature. The resulting effect sizes are plotted cumulatively and centered about the 22 

average effect size (37). ALEs were generated using the ALEplot package, modified to 23 
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compute confidence intervals, and were plotted using ggplot2. Standard deviations were 1 

calculated per increment and were used to calculate and plot increment-wise 95% 2 

confidence intervals.   3 

 4 

Microbiome age 5 

We investigated microbiome maturation by building an age prediction model using 6 

XGBoost and microbiome features only (species or pathways). We partitioned the infants 7 

and their corresponding datasets into three groups to train and test a model of microbiome 8 

age: (1) CHU with LAZ > -2 at 18 month of age, who contributed >1 dataset (healthy 9 

training set), (2) remaining CHU infants with LAZ > -2 at 18 month of age, who contributed 10 

a single metagenomic dataset (healthy test set); and (3) CHEU or children with LAZ ≤ -2 11 

at 18 months of age (unhealthy test set).  Age was log transformed as a response in the 12 

XGBoost model. We performed the same 3-stage tuning and model building procedure, 13 

as described above. We generated model performance metrics, including pseudo-R2, 14 

mean absolute error (MAE) and mean squared error (MSE) for the three sets. For the 15 

training set, we used the cross-validation, hold-out predictions to generate the metrics, 16 

and for the two test sets, we used the predicted values from the final to calculate the 17 

model performance metrics. We exponentiated the predicted log transformed ages and 18 

plotted these values against the observed age. The predicted age using these models is 19 

referred to as ‘microbiota age’ for the models trained using species and ‘metagenome 20 

age’ for models trained using pathways. To account for variance of microbiota ages with 21 

respect to chronological age within the age range of each study visit, a microbiota for age 22 

Z-score (MAZ) and metagenome-for-age Z-score (MetAZ) was also created using the 23 
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microbiome age and metagenome ages as previously described (19). A Z-score was 1 

calculated to account for variation in ages within each study visit using the following 2 

formula:  3 

 4 

(Microbiota age of child – median microbiota age of ‘healthy’ child at same study visit)/ 5 

standard deviation of microbiota age of ‘healthy’ child at same study visit. 6 

 7 

 8 

SUPPLEMENTARY MATERIALS: 9 

 10 

Fig. S1. Participants and samples included in the study. 11 

 12 

Fig. S2. Whole metagenome sequencing performance. 13 

 14 

Fig. S3. Diversity metrics in entire dataset. 15 

 16 

Fig. S4. XGBoost model performance metrics as assessed by mean absolute error. 17 

 18 

Fig. S5. Top ranked pathways in XGBoost models predicting growth velocity. 19 

 20 

Fig. S6. Figure S5. Top ranked species in XGBoost models predicting growth. 21 

 22 
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Table S1. Baseline characteristics of infants in SHINE trial and microbiome sub-1 

study 2 

 3 

Table S2. Detected Eukaryota and Archaea species prior to prevalence filtering 4 

 5 

Table S3. Multivariate regression analysis examining the effect of maternal HIV 6 

infection, age (days), exclusive breastfeeding status, delivery mode and trial arm 7 

on taxonomic microbiome composition 8 

 9 

Table S4. Multivariate regression analysis examining the effect of maternal HIV 10 

infection, age (days), exclusive breastfeeding status, delivery mode and trial arm 11 

on gene pathway microbiome composition 12 

 13 

Table S5. Epidemiological variables included in XGBoost models 14 

 15 

 16 
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Fig. 1. Compositional and functional maturation of the gut microbiome of 335 1 

infants from rural Zimbabwe from 1-18 months of age. PCoA of Bray-Curtis distances 2 

of species (a) and metagenomic pathways (b) coloured by age category. PERMANOVA 3 

model results are also plotted. The top 20 features and model pseudo-R2 from XGBoost 4 

models predicting age using species (c) or pathways (d) are ranked by scaled feature 5 

importance and relative abundance (0-1) plotted by age (e-f) to visualize taxonomic and 6 

functional microbiome succession from 1-18 months of age. 7 
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Fig. 2. Impact of randomized WASH and IYCF interventions on infant gut 1 

microbiome. PCoA of Bray-Curtis distances species coloured by WASH vs non-WASH 2 

arms (a), including PERMANOVA model results, and IYCF vs non-IYCF arms (b) are 3 

plotted in addition to the first component (PC1) from PCoA of species (c) and pathways 4 

(d). The IYCF intervention was introduced after 6 months of age, therefore direct 5 

comparisons of IYCF vs non-IYCF arms are not shown in the 1-, 2- and 3-month age 6 

categories. No significant differences were observed in Shannon alpha diversity (e) and 7 

gene richness (f) according to trial arm. 8 
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Fig. 3. Maternal HIV infection comprehensively alters infant gut microbiome 1 

diversity and maturity. Shannon alpha diversity (a), species richness (b) and gene 2 

richness (c) shows significant over-diversification in CHEU vs CHU (Wilcoxon rank-sum 3 

test; *p<0.05). PCoA of Bray-Curtis distances (d) and PC1 (e) of species composition in 4 

CHEU vs CHU show significant differences throughout 18 months of life (PERMANOVA). 5 

Microbiome age (f) and microbiome-for-age Z score (MAZ; g) shows significant 6 

differences in gut microbiome maturity in CHEU vs CHU (linear regression analyses). 7 

PCoA of microbiome gene pathways shows differences in CHEU vs CHU at 1 month of 8 

age (h-i) in addition to differences in metagenomic maturity (j-k). 9 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

52 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

53 

Fig. 4. Maternal HIV infection is associated with reduced abundance of 1 

Bifidobacteria abundance and amino acid biosynthesis genes. Relative abundance 2 

(0-1) of Bifidobacterium longum (a) and B. bifidum (b) in the gut microbiome of CHEU and 3 

CHU at each age category via multivariate regression analyses. Multivariate regression 4 

of gene pathways demonstrates reduced abundance of amino acid biosynthetic pathways 5 

(c-e) and increase in abundance of pathways involved in degradation of sugar derivatives 6 

(f-h). Multivariate regression using MaAsLin2 using default q < 0.25 cut-off. *q<0.1. 7 
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Fig. 5. Prediction of attained LAZ and LAZ velocity using XGBoost models. 1 

Performance of XGBoost models as assessed by pseudo-R2 values for prediction of 2 

attained LAZ and LAZ velocity (LAZ increase per day to next study visit) using species or 3 

metagenomic pathways, stratified by age category and maternal HIV status (a). Models 4 

were run using microbiome features alone (species or metagenomic pathways; blue 5 

points) and in combination with epidemiological variables (yellow points). The top ranked 6 

pathways predicting LAZ at each age category are plotted (b), stratified by maternal HIV 7 

status and coloured by scaled importance in the XGBoost model. Accumulated effect 8 

plots (ALE) of representative pathways ranking highly in XGBoost model predictions 9 

display change in predicted linear growth (LAZ or LAZ velocity) by percentile of the feature 10 

abundance distribution. Tick marks on the x-axis are a rug plot of individual feature 11 

abundance percentiles. ALEs were generated using the ALEplot package and were 12 

plotted using ggplot2. Standard deviations (sd) were calculated per increment in 13 

microbiome feature and were used to calculate and plot increment-wise 95% confidence 14 

intervals as the average change in the outcome ±1.96(sd/sqrt(n)), where n is the number 15 

of observed feature values, and sd is the standard deviation of the change in the outcome 16 

variable in an interval. 17 
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Fig. 6. Prediction of attained LAZ and LAZ velocity using XGBoost models. 1 

Performance of XGBoost models as assessed by pseudo-R2 values for prediction of 2 

attained WHZ and WHZ velocity (WHZ increase per day to next study visit) using species 3 

or metagenomic pathways, stratified by age category and maternal HIV status (a). Models 4 

were run using microbiome features alone (species or metagenomic pathways; blue 5 

points) and in combination with epidemiological variables (yellow points). The top ranked 6 

pathways predicting WHZ at each age category are plotted (b), stratified by maternal HIV 7 

status and coloured by scaled importance in the XGBoost model. Accumulated effect 8 

plots (ALE) of representative pathways ranking highly in XGBoost model predictions 9 

display change in predicted linear growth (LAZ or LAZ velocity) by percentile of the feature 10 

abundance distribution. Tick marks on the x-axis are a rug plot of individual feature 11 

abundance percentiles. ALEs were generated using the ALEplot package and were 12 

plotted using ggplot2. Standard deviations (sd) were calculated per increment in 13 

microbiome feature and were used to calculate and plot increment-wise 95% confidence 14 

intervals as the average change in the outcome ±1.96(sd/sqrt(n)), where n is the number 15 

of observed feature values, and sd is the standard deviation of the change in the outcome 16 

variable in an interval. 17 
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Table S1. Baseline characteristics of infants in SHINE trial and microbiome substudy  
 
 
 SHINE Microbiome substudy 

      N=4727           N=335       
Mothers HIV+ 738 (15.6%)    99 (29.6%)    
Female 2329 (49.5%)   147 (43.9%)    
Birthweight, kg (sd) 3.07 (0.5)   3.09 (0.49)    
Low birthweight 410 (9.7%)    27 (8.2%)    
Gestational age, weeks (sd) 38.4 (4.03)   39.2 (3.43)    
Standard vaginal delivery 4000 (92.5%)   308 (93.9%)    
Institutional delivery 3752 (88.2%)   294 (89.9%)    
Exclusive breastfeeding 2397 (87.9%)   292 (91.0%)    
LAZ - 1 month, (sd) -0.9 (1.35)   -0.96 (1.25)   
LAZ - 3 months, (sd) -0.91 (1.33)   -0.94 (1.18)   
LAZ - 6 months, (sd) -0.95 (1.25)   -0.91 (1.15)   
LAZ - 12 months, (sd) -1.28 (1.22)   -1.21 (1.05)   
LAZ - 18 months, (sd) -1.58 (1.13)   -1.48 (1.07)   
Trial arm                                   
        SOC 1126 (23.8%)    88 (26.3%)    
        IYCF 1121 (23.7%)    93 (27.8%)    
        WASH 1201 (25.4%)    71 (21.2%)    
        WASH+IYCF 1279 (27.1%)    83 (24.8%)    
Household size, [IQR] 5.00 [3.00;6.00] 5.00 [4.00;6.00] 
Mother age, years (sd) 26.2 (6.66)   28.3 (6.35)    
Mother height, cm (sd) 160.1 (5.94)    161 (5.78)    
Parity, [IQR] 2.00 [1.00;3.00] 2.00 [1.00;3.00] 
Maternal MUAC, cm (sd) 26.4 (3.08)   27.1 (3.23)    
Maternal education, years (sd) 9.52 (1.85)   9.39 (1.90)    
Mothers employed 383 (8.7%)    30 (9.17%)    
Open defacation in household 1952 (44.8%)   154 (47.1%)    
Any latrine in household 1743 (39.8%)   128 (40.3%)    
Improved latrine in household 1535 (35.1%)   119 (37.4%)    
Improved floor in household 2370 (54.2%)   183 (56.5%)    
Household owns chickens 3512 (79.0%)   264 (80.5%)    
Livestock in household 1691 (36.6%)   146 (44.0%)    
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Table S2. Detected Eukaryota and Archaea species prior to prevalence filtering 
  
Eukaryota Archaea 
Blastocystis sp subtype 1 Methanobrevibacter oralis 
Candida albicans Methanobrevibacter smithii 
Cryptosporidium hominis Methanobrevibacter woesei 
Cryptosporidium meleagridis Methanosphaera stadtmanae 
Cryptosporidium parvum  
Giardia intestinalis  
Saccharomyces cerevisiae  

 
 
 
Table S3. (Auxiliary supplementary file) Multivariate regression analysis 

examining the effect of maternal HIV infection, age (days), exclusive breastfeeding 

status, delivery mode and trial arm on taxonomic microbiome composition 

 

Table S4. (Auxiliary supplementary file) Multivariate regression analysis examining 

the effect of maternal HIV infection, age (days), exclusive breastfeeding status, 

delivery mode and trial arm on gene pathway microbiome composition 

 

Table S5. (Auxiliary supplementary file) Epidemiological variables included in 

XGBoost models 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1. Participants and samples included in the study. 875 stool samples 

collected from 335 unique infants underwent whole metagenome shotgun 

sequencing and were categorized into 6 age groups (a). CONSORT diagram of the 

participants from the SHINE trial included in the infant microbiome sub-study (b). 
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Figure S2. Whole metagenome sequencing performance. A median of 0.05% 

sequencing reads were assigned to the human genome in each sample (a), which 

varied by age at stool sample collection. The percentage of sequencing reads that 

could be aligned to known sequences using the MetaPhlAn3 and HUMAnN3 

pipelines decreased in stool samples collected at older ages (b). PCoA (c) and 

phylum relative abundances (d) of sequencing sample replicates showed high 

reproducibility and little technical variation. 
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Figure S3. Diversity metrics in entire dataset. Shannon alpha diversity (a) and 

gene richness (b) across the entire dataset revealed stable diversity up to 4-5 

months of age followed by rapid taxonomic and functional diversification. Bray-curtis 

distances between samples at within and across each age visit showed low inter-

individual variability in species composition which increase with age (c), and high 

inter-individual variation in metagenome pathways (d). 
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Figure S4. XGBoost model performance metrics as assessed by mean 

absolute error. Mean absolute error (MAE) in XGBoost model performances in 

models predicting LAZ (a), WHZ (b), LAZ velocity (c) and WHZ velocity (d) stratified 

by maternal HIV status and age categories. Models were run using microbiome 

features alone (species or metagenomic pathways) and in combination with 

epidemiological variables. 
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Figure S5. Top ranked pathways in XGBoost models predicting growth 

velocity. Top ranked features in XGBoost model predictions of LAZ velocity (a) and 

WHZ velocity (b) stratified by maternal HIV status. Only features from XGBoost 

models with pseudo-R2 > 0 are plotted. 
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Figure S6. Figure S5. Top ranked species in XGBoost models predicting 

growth. Top ranked features in XGBoost model predictions of WHZ velocity (a) and 

WHZ in children born to HIV+ (b) and HIV- mothers (c). Only features from XGBoost 

models with pseudo-R2 > 0 are plotted. 

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.22273587doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22273587
http://creativecommons.org/licenses/by-nc-nd/4.0/

