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Abstract6

Rapid susceptibility testing of bacterial isolates is crucial for anti-infective therapy, especially in critical cases such as7

bacteriaemia and sepsis. Nevertheless, empiric therapy is often initiated immediately and without testing because two8

days and more pass between a positive blood culture and a susceptibility profile, so in the meantime, the most likely9

pathogens are treated. However, current empiric recommendations are very generic. They often remain unmodified10

even in light of incoming, early data specific to a patient’s case, such as positive blood culture microscopy. Part of the11

hesitancy to change treatments presumably stems from a lack of systematic integration of early information beyond12

expert intuition. To enable targeted antimicrobial therapy earlier in a case’s progression, we developed a method to13

predict antimicrobial susceptibility from microscopy images of bacteria alone. Our proof-of-concept MICNet combines14

two neural nets in a new chimerical architecture. It is pre-trained on about 100 thousand antibiograms and fine-15

tuned with only five thousand microscopic images through transfer learning. Predicting susceptibility profiles of four16

representative species, we show high predictive performance with a mean F-score of nearly 85 %. In addition, several17

qualitative assessments show that our chimerical net has learned substantial expert knowledge. Therefore, MICNet is18

the first step towards personalized empiric therapy, combining prior pathogen probabilities with patient-specific data.19

Keywords Deep learning · Tranfer learning · Microscopy · Minimum inhibitory concentration · Prediction20

Background21

In empiric therapy treatments are chosen based on the most likely pathogens expected in a particular ailment when22

the infectious agent is either unknown or incompletely characterized yet. Treatment suggestions are made for patient23

aggregates, such as "patients with suspected bacteriaemia", but do not take individual patient characteristics into account.24

Of course, the clinical microbiologist will modify the treatments suggested in these guidelines on a per-case basis, but25

this process is often driven by intuition rather than explicit rules. In empiric therapy, treatment is accepted despite the26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.19.22269518doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.04.19.22269518
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT

diagnostic uncertainty when a delay in antimicrobial treatment would lead to poor outcomes. For example, in the case27

of S. aureus bacteremia and sepsis, the odds of dying increase by 1.3 % with every hour without treatment.1 Usually,28

there is at least some signal about what agent causes the disease. For example, bacteria can be observed in most cases29

once a blood culture turns positive. Under the microscope, simple features can be distinguished, such as Gram-stain,30

shape, and whether the growth was aerobic, anaerobic, or both. These features then lead to inference about plausible31

pathogens, based on which treatment is initiated.32

A human usually performs microscopy without any algorithmic support. However, image analysis has seen an increased33

use of neural nets in recent years.2 They have shown equal or better performance than humans on many tasks,3 including34

in the medical realm, e.g., the classification of skin lesions4 and radiographs.5 In addition, in microscopy, images of35

bacterial culture isolates have been assigned a species name with surprising accuracy.6 However, such species prediction36

is only of intermediate interest and arguably could be omitted. We often care about inferred properties of the organism,37

such as antimicrobial susceptibility, not its name, which only suggests those properties. Recently, MALDI-TOF38

spectra, now common practice to assign species, have been used to predict antimicrobial susceptibility using a range of39

algorithms from neural nets and random forests to support vector machines.7 Antibiogram prediction from genomes has40

also been shown in what is known as genotype-phenotype mapping.8, 9 To our knowledge, microscopic images have not41

been used to predict bacterial properties, although they are far cheaper to obtain than either spectra or genomes as a42

diagnostic modality.43

We hypothesized that a neural net could extract more information from microscopic images than microbiologists.44

Subsequently, this information could be used to predict wild-type (wt) antimicrobial susceptibility directly. "Wild-type"45

refers to the expected susceptibility of an organism to different antimicrobials ("antibiogram"), and "susceptible" is46

defined as a measured minimum-inhibitory concentration (MIC) below some threshold, here so called "breakpoints"47

defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST, see methods). We do not try48

to infer resistance at the isolate level, e.g., linking single nucleotide variants to a phenotype. Instead, we aimed to49

teach a neural net "expert knowledge" from scratch. First, it should recognize different bacterial entities as data-driven50

latent representations ("embeddings"), not human-defined species. It should do so from a cheap, early diagnostic51

modality (here images). Then, the neural net should directly link them to expected feature distributions (here MICs).52

We propose a chimerical model that can do this with high accuracy using transfer learning and that can, in principle,53

be easily extended to include other diagnostic modalities. Our proof-of-principle opens the way for patient-specific,54

"personalized" empiric therapy.55

Results56

Unsupervised antibiogram embeddings have plausible global structure57

First, we trained a model to "know" about wild-type antibiograms for commonly isolated human pathogens. We had58

access to an extensive corpus of about 100 thousand antibiograms. For training, we thus selected an unsupervised59

model, namely a variational autoencoder (VAE).10 A significant advantage of the VAE is that it is generative, i.e., once60

the model has been learned, instances can be simulated from it given a prompt. A VAE represents the input x in a61
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constrained latent space ("information bottleneck") where each instance of x has a low-dimensional representation z62

(Figure 1A).63

Training with about 100 thousand MIC profiles (x) of 26 antibiotics each resulted in a plausible distribution across64

latent space. Across all species, antibiogram representations (z) of the same species cluster together, similar species are65

closer than more distant ones (compare Pr. vulgaris and mirabilis), and Gram-negative and -positive MICs are well66

separated (Figure 1B and S1). Antibiograms generated from the model (x′) are also accurate. For example, in E. coli,67

the wild-type MIC distribution is well approximated (Figure S2). Note, however, how the VAE struggles to model68

multi-modal or wide distributions because it uses the Gaussian distribution to model data by design (Figure S2).10 The69

variance of the reconstructions is small for similar antibiograms (e.g. Ent. faecalis (ATCC 29212), Figure S1). We can70

assess this using technical replicates in our database (we regularly calibrate the method used to measure MIC, broth71

micro-dilution, using ATCC control strains with corresponding known MIC values).72

In the latent space, global distance has meaning, as one interpolates from one point to another (see below). It means73

that previously unseen values can nevertheless be embedded. We illustrate this in Figure 1C where we record the74

imputed values for cefotaxim (CTX) moving in latent space from wild-type E. coli (MICCTX ≤ 1 mg/L) to isolates that75

carry an extended-spectrum beta-lactamase (ESBL), where we expect much higher MICCTX values. Indeed, we see an76

exponantial increase in the MICCTX as we move in the latent space from a sensitive point to a resistant one (arrow in77

Figure 1C). The same is true for e.g. colistin (COL) when moving from E. coli to Pr. mirabilis (not shown).78

Our qualitative analysis suggests that the VAE learned a plausible representation of antibiograms. However, we did79

not quantitatively assess the reconstruction loss other than using it as feedback in the training process (i.e., we did not80

evaluate the VAE on a hold-out set). The reason is that the VAE as an unsupervised algorithm is better evaluated on81

how well it helps another process, in our case, another neural net. For the latter, validation and test sets were held out82

according to standard practice (see below).83

Microscopy images can be projected into latent susceptibility space using transfer learning84

With the VAE trained, we now had a model which we could prompt with two (latent) coordinates to generate an85

antibiogram, using only the VAE decoder. Note that the decoder is deterministic, i.e., given a coordinate z, it always86

returns the exact reconstruction x′. Next, we sought to project image data into the latent space to generate antibiograms87

from microscopy images. The inspiration for this architecture comes from the recently published DALL-E model,1188

which enables zero-shot text-to-image generation.89

To test our approach in a proof-of-principle, we used an existing high-quality dataset.6 To project images into the90

(pre-trained) VAE latent space, we used a pre-trained convolutional neural net (CNN) with the ResNet architecture.1291

The advantage of using two pre-trained models (VAE, CNN), or transfer learning more generally, is data efficiency.92

With them, far less data is required on domain-specific tasks because the models have already learned general features93

of the data and need only be "fine-tuned" on a few examples to reach good predictive performance.94

For all subsequent experiments, we only used a subset of images from four bacterial species, two of them Gram-positive95

(S. aureus, Ent. faecalis) and two Gram-negative (E. coli, P. aeruginosa). We chose them because of the clinical96

relevance to distinguish them in blood culture. For example, Gram-negative rods can be treated empirically with97
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Figure 1: Overview of the two neural nets combined to predict antimicrobial susceptibility from microscopic
images. (A) A Variational autoencoder (VAE) tries to reconstruct, without supervision, an antibiogram x′

given the original antibiogram x from a low-dimensional "information bottleneck", a latent representation
z. After training, the model is generative, and given any value for z a MIC x′ can be reconstructed,
independent of the encoder. (B) The VAE learns two-dimensional antibiogram embeddings. Displayed are
selected Gram-negative (violet) and -positive (blue) bacterial species. Each point is a latent antibiogram
representation defined by two coordinates, c1 and c2. Note how, without any species labels, the model
nevertheless clusters points by species in latent space. (C) In the area of latent space marked in by the black
frame in (B), we interpolate along the arrow (insert), using the corresponding two coordinates in latent
space z to generate an antibiogram x′ from a point representing an E. coli wild-type (wt) isolate, to one
that harbors an extended-spectrum beta-lactamase (ESBL). Focusing on cefotaxime (CTX), which ESBL
inactivates, we see an exponential increase in its MIC as we move along the arrow. At 1 mg/L an isolate
moves from CTX sensitive (S) to resistant (R, see breakpoints for Enterobacterales, EUCAST v11 from
2021). The x-axis displays the interpolation weight w of zESBL between 0 and 1, where 1− w is the weight
of wt E. coli (zwt). The y-axis displays MICCTX in mg/L.

cefotaxime. On the other hand, P. aeruginosa cannot be treated with cefotaxime because it is inherently resistant to98

it. We assigned wild-type antibiograms from our database at random to these subset images. We then fine-tuned the99

ResNet, which means that we froze all weights but the final layer during training. The final layer ("head") was replaced100

with a fully connected layer that outputs two dimensions, compatible with the VAE latent space (Figure 2A). Thus,101

the neural net has to perform a multi-output regression task. After fine-tuning, the CNN generated embeddings from102

images that mirrored the VAE. However, a better distinction seems to be possible for the Gram-negative bacteria than103

for Gram-positive ones (Figure 2B).104

Chimerical architecture shows good performance in susceptibility prediction task105

We evaluated the performance of our proposed MICNet architecture in two ways: First, quantitatively, by classifying106

each predicted MIC value for a given antibiotic and species as correct if it fell in the right breakpoint interval (sensitive,107

resistant) and calculating precision, recall and the F-score for each predicted MIC profile. Our method reaches a108

precision of 93.78± 12.25%, a recall of 82.20± 22.32%, and a F-score of 84.73± 17.41% (Figure 2C and Figures S3109

and S4). Note that left-skewed distributions can lead to the phenomenon that the sum of mean and standard deviation110

exceeds the maximum value, here 100 %. The performance is surprisingly good, considering the network can only train111

on about 3,500 image-susceptibility profile pairs. This frugality illustrates the value of transfer learning whereby the112
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Figure 2: (A) Chimerical neural net for transfer learning. A pre-trained convolutional neural net (CNN)
is used to encode microscopy images (ResNet architecture, only four of 18 layers are displayed). All
layer weights have been frozen during "fine-tuning" (violet) except for the last, fully-connected one (blue).
Images are from culture isolates of four bacterial species. Displayed is a Gram-positive photomicrograph
in the upper panel and a Gram-negative one in the lower one. The final layer (blue) has been replaced
to map the image representation into the latent space of the VAE in Figure 1A (multi-output regression
task). The learned image representation z is then fed into the pre-trained VAE decoder to generate a MIC
reconstruction x′. (B) Image embedding in the VAE latent space. Each point represents an image from the
test set with two coordinates (c1 and c2). E. coli and P. aeruginosa can be separated well, while S. aureus
and E. faecalis appear more similar to the network. (C) Predictive performance of the chimerical neural
net in (A) is high. Evaluated to predict the right EUCAST susceptibility class, i.e., whether an isolate was
sensitive or resistant, for the entire panel of 26 antibiotics, we achieve a precision of 93.78± 12.25%, a
recall of 82.20± 22.32%, and an F-score of 84.73± 17.41% across all test antibiograms (n = 698). (D)
Distribution of differences of MIC values between original and reconstructed antibiograms. Only antibiotics
with corresponding EUCAST breakpoints for the bacterial species were included (EUCAST v11, 2021).
For most antibiotics, the difference lies between -1 and 1, which is acceptable to stay within the correct
susceptibility class for most substances. Antibiotic abbreviations according to the WHO.

neural net has acquired extensive knowledge about the problem domain through pre-training on data from a different113

domain (CNN) and unlabelled data (VAE), respectively (see methods).114

Second, for a qualitative evaluation, we plotted the distribution of MIC differences for all antibiotics with defined115

EUCAST breakpoints in the corresponding species (Figure 2D). Most antibiotics fall within the ±1 range of the true116

value, which is sufficient to remain in the same susceptibility category (sensitive, resistant). However, on average, the117
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difference is larger for substances with a multimodal MIC distribution in the wild-type, such as fosfomycin (FOS).118

Furthermore, there are larger differences for antibiotics with a very broad MIC distribution, e.g., piperacillin (PIP,119

Figure 2D and S2). We address several proposed architectural changes to deal with this shortcoming in the discussion.120

Discussion121

We demonstrate how very different modalities can be linked efficiently through neural nets and transfer learning to122

provide personalized empirical therapy suggestions hours or days before the actual measurement of what was predicted123

is available.124

Interestingly, our proposed chimeric model does not use bacterial species identity or only implicitly through the attached125

phenotype. We consider this a strength rather than a weakness because the species name is only relevant to predict126

properties of the organism that are relevant for therapy. Arguably, in clinical microbiology practice, if everything about127

an isolate was known but the name, not much would change. Also, whether species is a useful concept in microbiology128

remains debated.13129

Our proposed solution is a proof of principle. We have not scoured the optimization space without prospectively130

collected data, i.e., blood culture microscopy images combined with MIC profiles. However, we envision several131

improvements in the following iterations of MICNet. First, it can incorporate other data sources available at the same132

time as microscopy; namely, patient metadata such as age, sex, and current diagnoses14 as well as MALDI-TOF spectra133

of the positive blood cultures.15 Such a multimodal net would be trained the same way we did here. Second, we could134

train the neural net "end-to-end", propagating the loss from the final generated antibiogram x′ through the VAE decoder135

and then the CNN. Third, we could optimize both models used. For the VAE, we could use a discretized version,136

such as the VQ-VAE,16, 17 as it would model the discrete MIC dilution steps better. For the CNN, we could test other137

architectures such as a larger ResNet or VGG.18 We used microscopy images from bacterial isolate in the current study;138

with positive blood culture images, image preprocessing will also have to be optimized.19139

Furthermore, future work will have to include all bacterial and fungal species that can be observed in bacteriaemia.140

This distribution is highly skewed, which poses a challenge for predicting rare species. However, because our model141

does not depend on species identification, and the rare species are usually similar to a more abundant one, we assume142

our model will perform well in this context.143

Conclusions144

Our approach proposes a way towards personalized empiric therapy, improving clinical outcomes through timely145

treatment suggestions and minimizing unnecessary prescriptions of antibiotics, which reduces the rate of resistance146

development.147

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.19.22269518doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22269518
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT

Methods148

MIC data aquisition and preprocessing149

Susceptibility testing was carried out using the broth micro-dilution method per ISO 20776-1. Broth micro-dilution150

was performed according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Mini-151

mum inhibitory concentrations (MICs) for the following antibiotics were determined: ampicillin, ampicillin/sulbactam,152

piperacillin, piperacillin/tazobactam, ceftazidime, cefotaxime, cefuroxime, aztreonam, imipenem, meropenem, amikacin,153

gentamicin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, colistin, fosfomycin, trimethoprim/ sulfamethoxa-154

zole and tigecycline, clindamycin, roxithromycin, vancomycin, teicoplanin, and rifampicin. There are 24 antibiotics in155

each of two of the routine panels, one for Gram-positive and one for Gram-negative isolates. We merged them into a156

panel of 26, setting the value for substances not in the panel to 512, i.e., double the highest concentration tested, to157

signal "resistance" because these substances would not work due to missing targets.158

Image data preprocessing159

For micrographs, we relied on the previously published DIBaS dataset,6 which was created from pure culture isolates160

of 33 different genera and species of bacteria for a total of 660 images (equal proportions) at a resolution of 2048 x161

1532 pixels (last access 2021-10-01, misztal.edu.pl/software/databases/dibas). To augment the data, we cropped the162

images into non-overlapping blocks of 224 x 224 pixels, 224 because this is the smallest size compatible with a ResNet163

architecture (see below). This preprocessing step was also used to avoid excessive blurring due to the CNN pooling164

layers. Given the original images’ high resolution and "wide-angle", we would lose important information about shapes165

and edges. The preprocessed images also mimic how a microscopist would process slides under a microscope, i.e., with166

smaller fields of view. In line with community standard practice and for ResNet compatibility, the images were loaded167

in to a range of [0, 1] and normalized in all three RGB channels to means (0.485, 0.456, 0.406) and standard deviations168

(0.229, 0.224, 0.225) computed from the images originally used to train ImageNet,20 and which were subsequently169

used to pre-train our convolutional neural net (CNN, see below).170

Training, validation, and testing data171

From the cropped image data, we selected four species for our experiments. These are relevant pathogens where the172

distinction is clinically relevant when diagnosing positive blood cultures (see results). From these four species, we173

randomly selected 70 % (n = 3020) of cropped images as training data, and 15 %, respectively, as validation (n = 590)174

and test (n = 698) set. We then assigned each cropped image a wild-type MIC of the corresponding species from our175

database at random. Note how, while this amount of data is hard to collect in practice, it is still an order of magnitude176

smaller than what would be required to train the models we use from scratch. Only transfer learning using pre-trained177

weights allows learning from such little data.178

Variational autoencoder model179

We trained a variational autoencoder (VAE)10 on our entire MIC dataset. Each vector of 26 numbers was forced through180

a two-dimensional information bottleneck (z). We trained for 30 epochs with a mean squared error (MSE) loss, a181
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Kullback-Leibler divergence (KLD) weight of β = 1 in line with the original implementation, optimized using Adam21182

with a learning rate of 0.003 and a batch size of 64.183

Convolutional encoder-decoder model (MICNet) and transfer learning184

To leverage transfer learning of images, we used a pre-trained ResNet architecture with 18 layers (downloaded from185

pytorch vision, v0.10.0, pytorch.org/hub/pytorch_vision_resnet, last access 2021-07-03). We then replaced its final186

layer ("head") with a fully connected layer mapping its input to a 2-dimensional vector ŷ, i.e., of the same shape as the187

embedding space of the VAE, and freezing all other weights during subsequent training ("finetuning"). The network188

thus performs a multi-output regression task. We trained for ten epochs with an MSE loss, optimized using stochastic189

gradient descent (SGD)21 with a (maximum) learning rate of 0.001 and a momentum of 0.9 in a one cycle learning190

schedule to speed up convergence.22 We used a batch size of 64.191

For MIC predictions from images, we then fed ŷ to the decoder of the VAE to generate MICs deterministically (only192

the encoder includes a noise term). The final prediction is thus generated from a chimerical network that uses transfer193

learning to encode and decode the image into a MIC profile. MIC breakpoints used during the evaluation were sourced194

from EUCAST (v11 from 2021-01-01, eucast.org/clinical_breakpoints). For antibiotics where a breakpoint existed for195

"susceptible, increased exposure" (I), we used this breakpoint instead of "sensitive".196

List of abbreviations197

MIC .. minimum inhibitory concentration, CNN .. convolutional neural network, VAE .. variational autoencoder, NN198

.. neural net, KLD .. Kullback-Leibler divergence, SGD .. stochastic gradient descent, ESBL .. extended-spectrum199

beta-lactamase, wt .. wild-type, EUCAST .. European Committee on Antimicrobial Susceptibility Testing200
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Figure S1: VAE latent space illustrated for additional bacteria.
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Figure S2: Distribution of MIC values (green histograms) and the distribution learned by the VAE (violet densities).

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.19.22269518doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.19.22269518
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT

0

100

200

300

400

1
precision

co
un

t

species

E. coli

Ent. faecalis

P. aeruginosa

S. aureus

Figure S3: Precision histogram of EUCAST breakpoint class prediction.
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Figure S4: Recall histogram of EUCAST breakpoint class prediction.
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