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Summary 
Background 
Infectious disease modeling can serve as a powerful tool for science-based management of 
outbreaks, providing situational awareness and decision support for policy makers. Predictive 
modeling of an emerging disease is challenging due to limited knowledge on its epidemiological 
characteristics. For COVID-19, the prediction difficulty was further compounded by 
continuously changing policies, varying behavioral responses, poor availability and quality of 
crucial datasets, and the variable influence of different factors as the pandemic progresses. Due 
to these challenges, predictive modeling for COVID-19 has earned a mixed track record.  
 
Methods 
We provide a systematic review of prospective, data-driven modeling studies on population-level 
dynamics of COVID-19 in the US and conduct a quantitative assessment on crucial elements of 
modeling, with a focus on the aspects of modeling that are critical to make them useful for 
decision-makers. For each study, we documented the forecasting window, methodology, 
prediction target, datasets used, geographic resolution, whether they expressed quantitative 
uncertainty, the type of performance evaluation, and stated limitations. We present statistics for 
each category and discuss their distribution across the set of studies considered. We also address 
differences in these model features based on fields of study. 
 
Findings 
Our initial search yielded 2,420 papers, of which 119 published papers and 17 preprints were 
included after screening. The most common datasets relied upon for COVID-19 modeling were 
counts of cases (93%) and deaths (62%), followed by mobility (26%), demographics (25%), 
hospitalizations (12%), and policy (12%). Our set of papers contained a roughly equal number of 
short-term (46%) and long-term (60%) predictions (defined as a prediction horizon longer than 4 
weeks) and statistical (43%) versus compartmental (47%) methodologies. The target variables 
used were predominantly cases (89%), deaths (52%), hospitalizations (10%), and 𝑅! (9%). We 
found that half of the papers in our analysis did not express quantitative uncertainty (50%). 
Among short-term prediction models, which can be fairly evaluated against truth data, 25% did 
not conduct any performance evaluation, and most papers were not evaluated over a timespan 
that includes varying epidemiological dynamics. The main categories of limitations stated by 
authors were disregarded factors (39%), data quality (28%), unknowable factors (26%), 
limitations specific to the methods used (22%), data availability (16%), and limited 
generalizability (8%). 36% of papers did not list any limitations in their discussion or conclusion 
section. 
 
Interpretation 
Published COVID-19 models were found to be consistently lacking in some of the most 
important elements required for usability and translation, namely transparency, expressing 
uncertainty, performance evaluation, stating limitations, and communicating appropriate 
interpretations. Adopting the EPIFORGE 2020 guidelines would address these shortcomings and 
improve the consistency, reproducibility, comparability, and quality of epidemic forecasting 
reporting. We also discovered that most of the operational models that have been used in real-
time to inform decision-making have not yet made it into the published literature, which 
highlights that the current publication system is not suited to the rapid information-sharing needs 
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of outbreaks. Furthermore, data quality was identified to be one of the most important drivers of 
model performance, and a consistent limitation noted by the modeling community. The US 
public health infrastructure was not equipped to provide timely, high-quality COVID-19 data, 
which is required for effective modeling. Thus, a systematic infrastructure for improved data 
collection and sharing should be a major area of investment to support future pandemic 
preparedness.  
 
Introduction 
The COVID-19 pandemic has become an unprecedented public health crisis in its prolonged 
impact on health and its disruption to economic and social life, with more than 5 million deaths 
globally as of November 2021. To aid planning and response efforts during a pandemic, 
mathematical modeling of current and future trends of outbreaks has historically served as a 
valuable tool. Nowcasting and forecasting models can improve situational awareness of the 
current and near future states of disease spread, while long-term projections and scenario 
modeling can shed light on outcomes that may result from a set of assumptions. Insights from 
modeling can educate individuals on how to mitigate their own risks, while also providing 
decision support for policy makers seeking to minimize harm to an entire population. However, 
despite the influx of expertise from many fields, the modeling community has put up a mixed 
track-record on accurately capturing COVID-19 risk in real-time. 
Efforts to date have revealed some of the challenges with predicting the course of the COVID-19 
pandemic1,2. Critically, individual risk reduction behaviors and policy compliance, which 
directly impact case growth, are not easily measured. New variants emerge that change the 
course of the pandemic. Factors such as these, coupled with a substantial lack of quality and 
timely data, makes it difficult to build a model that predicts accurately into the future. 
For some endemic infectious diseases such as influenza, modelers have shown moderate success 
in making short-term predictions3,4. Influenza predictions in the US benefit from more than 15 
years of training data, more predictable new strains, and an absence of large-scale behavioral 
changes and policy interventions. However, even anomalous influenza seasons, like 2017/2018 
in the US, have proven hard to predict. While modeling has been used for many previous 
emerging and endemic infectious diseases, the COVID-19 pandemic thrust modeling into the 
spotlight. As a result of these challenges, the utility of COVID-19 models for informing response 
efforts has been criticized5–7, largely due to a few particularly erroneous projections at the start of 
the outbreak.  
Due to the rapid pace of publication on preprint servers and in publications, the several COVID-
19 modeling reviews that have been published to date form an incomplete, piecemeal 
understanding of the modeling work. Authors dealt with the onslaught of papers in different 
ways. Some took a narrative approach rather than conducting a systematic review8 and few 
included preprints9. The number of papers included for analysis ranged from less than 2010 to 
2509. Only a few papers explicitly stated their scoping process and selection criteria9,11,12. All of 
the reviews identified by our search are limited to papers published before August 202010–13 or in 
20209,14. Many of these reviews are focused on model objectives and methodology12–14. This 
paper will provide a systematic review that covers papers up until August 20, 2021, with a focus 
on factors that are important for model utility, which we define as the capability of a model to 
provide insight for decision-makers and the general public. 
This paper will analyze the inputs, outputs, and evaluation of predictive COVID-19 models, with 
a focus on elements that have been neglected in the current literature: data, uncertainty, 
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performance evaluation, and limitations. We provide a unique quantitative evaluation of each of 
these elements, which enables stronger and more justified conclusions about trends and areas in 
need of improvement, with respect to modeling COVID-19 and future pandemics. In addition, 
we provide commentary on the elements of modeling that are not consistently covered in the 
literature but are crucial for building useful models: data infrastructure, information sharing 
systems, and model translation. 
 
Methods: Search Strategy and Selection Criteria 
For the purposes of this literature review, we classified COVID-19 disease spread modeling into 
two major categories: retrospective analysis and prospective modeling. Retrospective modeling, 
or backward-looking analysis, has been applied throughout the outbreak to explore a variety of 
key questions such as inferring basic epidemiological characteristics like 𝑅", incubation period, 
and fatality rate, reveal factors driving transmission, and assess the effectiveness of different 
interventions15–17. In contrast, prospective modeling is forward looking, and includes forecasts, 
projections, and future scenario analysis. Forecasting aims to predict near term epidemiological 
dynamics, often relying on data-driven methods and assuming that there will be minimal changes 
during the forecast period, while projections span over a much longer future time window, and 
thus must make assumptions about how the factors driving COVID-19 will change in the future. 
Scenario analyses produce multiple projections that explore the impacts of different sets of 
assumptions that vary factors like transmission rates and interventions. 
Due to the substantial number of past and ongoing COVID-19 modeling efforts, we imposed 
significant constraints on the scope of this review to enable us to conduct a systematic, 
quantitative, and timely assessment of the relevant literature. Specifically, the following 
inclusion criteria defined our review scope:  

1) Prospective modeling work on population-level dynamics of COVID-19: we include 
papers that provide future predictions for a specific location, including forecasting, 
projections, and future scenario analysis. We exclude retrospective modeling studies. 
Papers that only fit a model without providing out-of-sample predictions were not 
included. 

2) Data-driven: we broadly define this as papers that incorporate COVID-19 data into the 
setup or fitting of the model. Those which only use parameters from the literature or rely 
on data from other viruses were excluded. 

3) Geographic restriction: we only included papers that implement forecasting or projections 
to US counties, states, or at the national level, which restricts our analysis to papers 
working with the same data issues and in a similar context.  

4) Journal restriction: Only papers published in English-language journals ranked in the top 
10% based on the Scopus’ CiteScore for their respective field were included. While we 
recognize this will exclude important work, this criterion enabled a systematic approach 
to reducing the set of papers to a manageable level, while still capturing a quality, 
representative sample of the literature from which broader conclusions can be drawn.  

 
The Scopus query we developed based on these criteria is included in the Supplement. 
To minimize the chance of our search missing relevant papers, we also searched PubMed with 
the equivalent query. Figure 1 outlines our scoping process and shows the number of papers 
screened out at each step. 
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Figure 1. Scoping Process 
 
The searches of Scopus and PubMed were carried out on August 20, 2021, and our final 
selection of papers was roughly evenly distributed from February 2020 to August 2021 (Figure 
2). Notably, the top 10% criteria only reduced the number of papers to 37% of the original size, 
from 2,401 to 894 papers. After screening steps, we narrowed down to 119 published papers.  
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Figure 2. Number of Papers in our Analysis by Month of Publication. 

 
We additionally considered preprints from authors known to be engaged in real-time modeling 
work, in an attempt to correct for the fact that many of the modeling groups most engaged in 
real-time work have not had the time to publish yet. We included preprints from modelers 
participating in the US COVID-19 Forecast Hub2. We also wanted to include the Scenario 
Modeling Hub18–20, but we did not find any preprints that met our criteria. While these papers do 
not have the validation that comes with peer-review, these models were used in real-time by a 
national public health agency, which we believe justifies their inclusion in this analysis. We 
found 17 preprints in the metadata provided by the modeling teams contributing to the Forecast 
Hub. Thus, 136 papers in total are included in our analysis. Despite our efforts, we acknowledge 
that we may still miss a portion of the COVID-19 modeling work that exists on preprint servers 
and on the websites of modeling groups.  
We have designed our scoping process to obtain an objective and representative sample of the 
most recently published work, in order to draw larger conclusions about prospective COVID-19 
modeling and highlight areas for improvement. 

 
Role of the funding source 
The funders of the study had no role in study design, data collection, data analysis, data 
interpretation, or writing of the report. The corresponding authors had full access to all the data 
in the study and had final responsibility for the decision to submit for publication. 
 
Results 
To conduct a quantitative analysis on the substance and quality of these studies, for each paper in 
our final set of papers we classified the following features: forecasting window, methodology, 
prediction target, datasets used, geographic resolution, quantitative uncertainty, performance 
evaluation, and stated limitations. We acknowledge that some of these categorizations are 
subjective and difficult to consistently extract from papers, especially the performance evaluation 
and stated limitations category. Thus, we narrowly define our categories and transparently 
discuss these definitions in this section. All of our categorizations were checked multiple times, 
and while we acknowledge that some of the categorizations we made could be disputed, we are 
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confident that the overall conclusions still hold. The classification of papers for each category is 
shown in Supplementary Table 121–156. Figure 3 visualizes the relative size of each category and 
the most common connections between categories. Each line through the figure represents the 
categorizations of a single paper, so the thicker the line between two categories, the more often 
papers tend to fall into both of those categories. 
 

 

Figure 3. Sankey Diagram of the Connections Between Categorizations of our Analysis. 

Model Objective and Prediction Horizon 
Forecasts are unconditional in the sense that they attempt to predict what will actually happen in 
the near future, while projections and scenarios are conditioned on the model’s assumptions 
about the future in order to extend the prediction horizon. We were unable to reliably categorize 
models into forecasts or projections due to inconsistent use of these terms and a lack of clear 
communication in papers on which purpose their model served. Therefore, as a proxy for model 
objective, we categorized papers into short-term predictions or long-term predictions, which 
broadly correspond to forecasts and projections, but not in every case. Since the COVID-19 
Forecast Hub generates predictions for 1-4 weeks ahead, we chose four weeks as the cutoff for 
short-term predictions. Using this definition, 60% of papers made long-term predictions, and 
46% of papers made short-term predictions. There were a small number of papers which 
produced both long-term and short-term predictions30,72,84,92. Note that because papers often fall 
into multiple categories, percentages in this analysis will not always add up to 100%. Within the 
category of papers conducting long-term projections, we also tagged papers with multiple 
scenarios, which provided multiple predictions based on different sets of assumptions. This could 
include modeling scenarios with different reopening speeds, non-pharmaceutical interventions, 
and vaccination rates. Of the 82 papers in the long-term projections category, 54 papers (66%) 
considered multiple scenarios.  
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Methodology 
Since many of the existing COVID-19 review papers go into more detail on this aspect of 
modeling12–14, we opted not to cover the methodologies beyond classification into three broad 
categories: compartmental models (SIR and variations), statistical models (machine learning, 
deep learning, ARIMA, etc.), and hybrid (a combination of compartmental and statistical 
models). We adopted a stringent definition of a hybrid model, requiring both compartmental and 
statistical layers of the model which go beyond using statistical approaches to fit parameters for a 
compartmental model. In addition, we noted if models used agent-based methods. We found that 
47% of papers used a compartmental model, 43% used a statistical model, 12% used a hybrid 
model, and 9% used agent-based methods. There were a few papers which showed both a 
compartmental model and a statistical model30,72,84,92. 
The wide interest in COVID-19 modeling from a variety of fields led to a diversity of 
methodologies being used in the literature. While a wider array of models can help provide more 
robust predictions, it is important for the appropriate methodology to be selected for the intended 
research objective. Especially for an ongoing public health crisis, modelers need to exercise extra 
care in providing model transparency and guiding readers towards an appropriate 
interpretation157, since their work can directly impact individual and group decisions.  
 
Target Variables 
The most common target prediction variables were cases (89%), deaths (52%), hospitalizations 
(10%), and 𝑅! (9%). Some of the lesser used target variables included growth rate, peak cases, 
and ICU admissions. 38% of papers had only one target variable, 43% of papers had two target 
variables, and 19% had more than two.  
The target prediction variables were dominated by absolute numbers of cases and deaths, which 
aligns with the goals of the US COVID-19 Forecast Hub. Despite the continued desire for these 
targets from across the field of public health, government, industry, and the public, accurate 
prediction of them remains challenging1.  
 
Data Categories 
Next, we quantified the categories of input data used to inform models. Table 2 shows how we 
defined the data categories, including an in-depth look at the datasets used by papers in our 
analysis that attempt to capture COVID-19 behaviors. 
 
Data Category 
  

Description 
  

Examples 
 

Cases, Deaths Epidemiological data on the 
number of cases or deaths 
and corresponding metrics.  

Daily cases/deaths, cumulative cases/deaths, 
reproduction number, growth rate 

Hospitalizations Data related to 
hospitalization of COVID-
19 patients. 

Daily hospitalizations, active 
hospitalizations, ICU occupancy, hospital 
capacity 
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Testing Data pertaining to COVID-
19 testing in a population or 
location. 

Daily tests, test positivity rate 

Climate Data describing the climate 
or any meteorological 
variables pertaining to a 
specific location, timeseries 
or static.  

Daily precipitation, daily temperature, 
average temperature 

Demographic Demographic or socio-
demographic information 
about the population of a 
specific location.  

Population, age, race, income, rural/urban 
ratio 

Health Risk 
Factors 

Data which quantifies the 
health risk factors of the 
population in the context of 
COVID-19.  

Prevalence of comorbidities, use of 
preventative services (doctor visits) 

Mobility Data which quantifies the 
movement of a population. 
 
 

Google Mobility Trends (residential, grocery 
& pharmacy stores, parks, retail & 
recreation, workplaces, transit stations)158 
Unacast social distancing scoreboard 
(average mobility, nonessential visits, 
encounters density)159 
SafeGraph (trip counts at a census block 
group resolution)160 
Apple Mobility Trends (trends in apple maps 
routing requests)161 
Facebook Movement Range Maps (change in 
movement compared to baseline percent of 
population that stays home)162 
Flight data 
 

Human 
Behavior 

Data which quantifies the 
behavior or beliefs of a 
population in the context of 
COVID-19, excluding data 
on the mobility of a 
population. 
 
 

Google search trends163 
Mask use per capita164 
Facebook’s COVID-19 Trends and Impact 
Survey (timeseries of self-reported mask use 
and other social distancing behaviors)165 
New York Times Mask-Wearing Survey data 
(static)166 
Sentiment index constructed from COVID-
19 news69 
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Policy Data pertaining to policies 
relating to COVID-19. 
 
  

Oxford COVID-19 Government Response 
Tracker (ordinal scale on stringency of many 
types of COVID-19 policies, including 
containment and closure policies, economic 
policies, health system policies, and 
vaccination policies)167  
State Level Social Distancing Policies: tracks 
dates and details of policies including 
emergency declarations, gathering 
restrictions, closures, stay-at-home orders, 
travel restrictions, isolation orders, and mask 
mandates 168 

Table 2. Data Categories. 

The most frequently used data categories were cases, deaths, mobility, demographics, and 
hospitalizations. 20% of papers used only one category of data, 39% of papers used two 
categories, 16% used three categories, and 25% used four or more categories (Table 3). 

 
Data Category Occurrences Percent of Papers 
Cases 126 93% 
Deaths 79 62% 
Mobility 34 26% 
Demographics 30 25% 
Hospitalizations 15 12% 
Policy 13 12% 
Testing 11 9% 
Hospital Resources 10 8% 
Climate 8 7% 
Human Behavior 8 7% 
Health Risk Factors 4 5% 

Table 3. Top 10 Data Categories. 

The data sources informing predictions in our analysis were dominated by case and death data. 
Data used in 2 or less papers include vaccination, 𝑅!, wastewater surveillance, and economic 
data. Most modelers did not use non-epidemiological data sources, with mobility and 
demographic data as the main exceptions. The models that did use other data sources tended to 
incorporate a large number and variety of input data. We suspect that human behavior in 
response to COVID-19 could have an important impact on epidemiological dynamics, but the 
datasets currently available to capture this are limited. Mobility data can only capture a limited 
aspect of risk reduction behavior, and surveys of self-reported social distancing behaviors suffer 
from substantial sampling biases and low spatial and temporal resolution. Some other factors 
have been shown to be associated with COVID-19 dynamics, such as demographics, health risk 
factors, and climate, although little research has been done to rigorously test for whether these 
factors can improve predictive performance. These factors were rarely used in our sample of 
papers. Of particular interest due to the increasing impact of new variants on epidemiological 
dynamics, none of the papers in our sample utilized variant prevalence data. In the US, this data 
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suffers from low sample size, sampling bias, and is difficult to use as a signal for predictive 
modeling.  
 
Geographic Resolution 
We noted the geographic scale at which predictions were made, categorizing papers as national, 
state, or county-level and lower. 54% out of 136 of papers included a national level prediction, 
36% at the state-level, and 34% at the county-level or smaller scale. Half of the models in our 
analysis were at the national level, which tends to be the easiest resolution to predict and the least 
useful for decision-making, which must often occur at the local level. 
 
Uncertainty 
We analyzed which papers included a quantitative expression of uncertainty of their predictions, 
excluding those which only did so for model parameters. We found that half of papers (50% out 
of 136) did not express any uncertainty. 49% of papers included some form of confidence or 
prediction intervals. A sensitivity analysis was performed in 13% of papers32,68. 
Half of the papers studied did not express any quantitative uncertainty around the forecasts, 
despite the highly uncertain and consequential nature of COVID-19 dynamics. The utility of 
forecasts for decision-makers depends on clear communication of uncertainty169, especially since 
point estimate predictions will rarely match ground truth data. Well calibrated expressions of 
uncertainty help stakeholders assess future risk and decide how to respond. For example, the 
difference between a 1% chance of exceeding hospital capacity versus a 25% chance could 
determine whether certain preparatory actions are taken. Additionally, expressing uncertainty is 
especially important to prevent harmful, incorrect interpretations of COVID-19 models. Clearly 
communicating uncertainty around predictions weakens the ability of actors to use a study in a 
misleading way to support their preexisting agenda. 
 
Performance Evaluation 
We categorized the type of performance evaluation used for each model. We chose to conduct 
this analysis only for the subset of papers implementing short-term prediction models, which can 
be fairly evaluated against truth data. In contrast, the purpose of long-term projections is to 
compare multiple plausible scenarios of the future, not to predict what will actually happen. 
Therefore, evaluating the performance of these predictions is not possible using standard error 
metrics, since these models make assumptions about the future that do not match reality.  
For timeseries forecasts, the setup of train and test data should be representative of real-time 
forecasting conditions. Since the utility of a model is based on its ability to predict future 
dynamics, randomly excluded “out-of-sample” evaluation methods do not adequately describe 
performance. Instead, models should be trained using data up until a certain cutoff date and 
evaluated on data after that date. This preserves the fundamental challenge of forecasting: not 
knowing future data or trends. Within the subset of short-term studies considered, 75% of papers 
used some sort of performance evaluation metric to compare future-blind, out-of-sample 
predictions to ground truth data. The most commonly used metrics were mean absolute error, 
root mean square error, mean absolute percentage error, 𝑅#, mean square error, and coverage rate 
of prediction intervals. Out of the papers that did conduct a metric-based evaluation, only 13% 
evaluated the accuracy of confidence intervals. Within the group of 47 papers which conducted 
out-of-sample performance evaluation, 34% evaluated only one model, 55% compared 
performance metrics across multiple internal models, and 19% compared the performance 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 12 

metrics of their model against those of other models in the COVID-19 Forecast Hub (Table 4). 
15% of evaluated models used a baseline model for comparison. 
 
Prediction Horizon Performance Evaluation 

Category 
Performance Evaluation Sub-Category 

Short-Term 
Predictions 

Metric-Based 
Performance Evaluation – 
75% 

Evaluate One Model – 34% 
Evaluate Multiple Internal Models – 55% 
Evaluate and Compare to Models from 
Forecast Hub – 19% 

No Performance 
Evaluation – 25% 

N/A 

Table 4. Categorization of Performance Evaluation for Short-Term Predictions 
 
Most modelers (75%) quantified the performance of their model relative to truth data, but most 
did not evaluate their model on predictions made across a timespan that included varying 
epidemiological dynamics. In order to quantify this, we counted how many dates papers showed 
predictions from. For example, let’s consider a paper that shows a model prediction using data 
up until September 1st and predicts future case counts on the 8th, 15th, 22nd, and 29th. This would 
be a prediction made from a single date. If this paper adds another prediction made from (model 
uses data up until) October 1st and predicts weekly values for the next 4 weeks, this paper would 
be showing predictions made from two dates, which cover a month-long timespan (September 1st 
to October 1st). We defined the category this way in order to make sure we could reliably extract 
this data from each paper. Our analysis found that among short-term models, more than half 
(55%) only showed a prediction made from a single date. 28% of papers showed predictions 
made from multiple dates over a timespan that was less than 2 months long, while 17% covered a 
timespan longer than 2 months. From the COVID-19 Forecast Hub, we know that predictive 
accuracy of models varies widely over time, especially with respect to epidemiological trends2. 
Therefore, failing to evaluate a model in a variety of epidemiological dynamics severely limits 
the generalizability of performance evaluation and the ability to make fair comparisons between 
models. In addition, one-third of papers (34%) that completed a quantitative performance 
evaluation did not compare their model to a baseline or any other models, so it is unclear whether 
the model provides any improvement over a naïve model. The COVID-19 Forecast Hub uses a 
baseline model that assumes no change in incidence over the next four weeks. According to 
historical error metrics calculated on September 8th, 2021, only 25% of models outperformed the 
baseline model for cases while 75% outperformed the baseline for deaths, calculated by relative 
mean absolute error and weighted interval score170. Thus, comparison to a baseline model 
provides context that provides important information about the utility of a model. 
Many papers did not cover the specific methodology of their performance evaluation, which 
limited our ability to provide more specific analyses in this review. Authors should clearly state 
the dates of the training period, the dates predictions were made from, how error metrics were 
computed and aggregated, and whether metrics are computed in-sample or out-of-sample. In 
addition, models that aim to contribute to real-time forecasting efforts should use input data as it 
was available at the date predictions are made from. Without thorough performance evaluation, 
the broader scientific community will be unable to determine which approaches are working and 
build knowledge on best practices. 
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Model Limitations 
Authors stated six main categories of limitations: disregarded factors (39%), data quality (28%), 
unknowable factors (26%), limitations specific to the methods used (22%), data availability 
(16%), and limited generalizability (8%). We define unknowable factors as those that cannot be 
known at the time predictions were made, like future implementation of non-pharmaceutical 
interventions or the emergence of new variants during the prediction horizon. In contrast, 
disregarded factors have some relevant data or information available at the time of the analysis, 
but the authors choose to disregard it for simplicity, like the demographic breakdown of 
populations or healthcare capacity of different regions. A third of the papers in our analysis 
(36%) did not list any limitations in an accessible section of the paper, which we considered to 
be in the discussion, conclusion, or in a separate section named limitations. In most cases, all of 
these types of limitations are relevant to COVID-19 models. In addition, our categorization does 
not give information about how thoroughly these limitations categories were discussed. For 
COVID-19 applications, clearly stating model limitations is crucial to help the public understand 
the appropriate way to interpret results.  
 
Multidisciplinary Nature of the COVID-19 Literature 
The highly consequential nature of the COVID-19 pandemic has attracted modeling experts from 
a variety of different fields. The top five journal subject areas represented in our final set of 
papers, in order from most to least frequent, are applied mathematics, multidisciplinary, general 
physics and astronomy, general mathematics, and statistical and nonlinear physics. Notably, 
public health did not appear in the top five subject areas. Our final set of papers represented 52 
journals. The most common journals were Chaos, Solitons, and Fractals, PLOS One, and 
Scientific Reports (Figure 4). We were unable to conduct a thorough analysis on the 
contributions to COVID-19 modeling from different fields due to the difficulty of classifying 
papers into different disciplines based on their journal and the inherent interdisciplinarity of the 
work. However, we completed sub analyses on the group of papers from Forecast Hub modelers 
and a physics and math journal with interesting characteristics. 
 

 

Figure 4. Top 10 Journals in the final set 
 
Papers from the journal Chaos, Solitons, and Fractals, which specializes in mathematics and 
physics, composed a large portion of our final set of papers (22 out of 118 published 
papers)26,51,60,64,66,73,75,77–81,83,85,87,100,102,103,118,124–126. So, we conducted a separate analysis of this 
subset, shown in Table 5. Notably, this journal was heavily skewed towards national level 
predictions (95%) and favored statistical models (77%) and short-term predictions (64%). Papers 
from this journal were significantly less likely to express quantitative uncertainty compared to 
our sample of all papers (14% versus 50% for all papers). Out of short-term models only, Chaos 
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papers were less likely to do a performance evaluation that compares predictions to ground truth 
data (64% versus 75% for all papers), and significantly more likely to only make predictions 
from a single date (93% versus 55% for all papers). In addition, papers from this journal were 
significantly less likely to state limitations (23% versus 64% for all papers). 
We also conducted an analysis on papers written by authors that contributed to the COVID-19 
Forecast Hub, which includes 17 preprints138–140,142–150,152–156 and 3 published papers137,141,151. 
70% of these papers made short-term predictions and 40% of these papers made long-term 
predictions. Although these papers were cited by teams in the metadata of their submissions to 
the COVID-19 Forecast Hub, which focuses on one to four week predictions, these preprints are 
not necessarily on the exact model and application that was submitted to the Forecast Hub. 
Despite being mostly preprints with many serving to provide a brief explanation a model being 
used in real-time, these papers were more likely to express uncertainty, have forecasts for state 
and county levels, and conduct performance evaluation than the full set of papers. In addition, 
Forecast Hub papers were significantly more likely to show and evaluate predictions made from 
several dates over a timespan greater than 2 months (50% versus 17% for all papers). A 
significant advantage of the hub approach is that it encourages good practices in terms of 
uncertainty, evaluation, and high geographic resolution. Additionally, the real-time sharing of 
forecasts ensures that predictions were truly future-blind. 

Categories All Papers 
(N=136) 

Chaos, 
Solitons, & 
Fractals 
(N=22) 

Forecast Hub 
Papers and 
Preprints 
(N=20) 

Prediction Horizon 
Short-term Predictions 
 Long-term Predictions 

 
46% 
60% 

 
64% 
45% 

 
70% 
40% 

Methodology 
Compartmental 
Statistical 
Hybrid 
Agent-based 

 
47% 
43% 
12% 
9% 

 
18% 
77% 
5% 
0% 

 
35% 
45% 
20% 
5% 

Geographic Level 
National 
State 
County or Smaller 

 
54% 
36% 
34% 

 
95% 
14% 
5% 

 
25% 
65% 
55% 

Uncertainty 
Expressed Quantitative Uncertainty 
 

            Sensitivity Analysis 

 
50% 
 
13% 

 
14% 
 
0% 

 
55% 
 
5% 

Performance Evaluation 
Comparison to Ground Truth (out of 
short-term models only) 
 
Only Made Predictions from One Date 

 
75% 
 
 
55% 
17% 

 
64% 
 
 
93% 
7% 

 
86% 
 
 
7% 
50% 
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Table 5. Comparison of All Papers, Forecast Hub Preprints, and Chaos, Solitons, & Fractals 

 
Epidemic Information Systems 
Most of the operational models that have been used in real-time to inform decision-making have 
not yet made it into the published literature. Although we tried to correct for this by adding some 
preprints from the COVID-19 Forecast Hub, the combination of hub preprints and papers only 
made up a small fraction of the papers in our analysis (15% of 136 papers). The difficulty of 
scoping this literature review to capture real-time work highlights that the current publication 
system is not suited to the rapid information-sharing needs of outbreaks, even in the context of 
increased use of preprints171. As COVID-19 research took off, editors were overwhelmed with so 
many submissions that the already slow process of peer-review by epidemic standards was 
further slowed, forcing more work onto preprint servers. Preprints excel at quickly sharing new 
research but lack the quality assurance provided by peer-review—a particularly important aspect 
for models used to inform urgent decisions. In addition, the ability to continuously update 
models is incredibly important for modeling a rapidly evolving pandemic. This need for 
continuous updating of operational models means that real-time modelers have little time to 
spend on making sure their documentation is current and available to other researchers. We need 
an information sharing system that is better suited to the needs of outbreaks, which strikes a 
balance between speed and quality, expects updates, and can fit into the busy schedule of real-
time modelers. For example, the 2019 Novel Coronavirus Research Compendium172 curates and 
assesses recent research papers that are receiving a lot of attention, serving as a faster, bare-
bones version of peer review. 
The lack of an efficient system for tracking COVID-19 research increases the difficulty of and 
limits the insights gained from literature reviews. We had to design an intensive scoping process, 
which narrowed the work to a subset of prospective modeling. Other reviews adopted their own 
narrow scope, creating a body of COVID-19 modeling literature reviews which amount to a 
piecemeal, incomplete picture of the efforts of researchers.  
Another aspect of the COVID-19 literature that limited the depth and insight of our analysis was 
a lack of standards for reporting on COVID-19 models. Papers did not consistently state the 
precise objective of their model (unconditional forecast or assumption-based projection), detail 
their methodology, express uncertainty, evaluate performance across a long, varied timespan, 
and clearly list their limitations. Without this information, our ability to synthesize insights from 
the research to determine best practices is limited. In response to these concerns, the EPIFORGE 
2020 guidelines were developed and recommend consistent terminology, a clear definition of 
study purpose and model targets, identification of prospective versus retrospective work, 
comparison to a baseline model, a non-technical summary of results, and full documentation of: 
data sources, data availability, data processing, methods, assumptions, code, model validation, 
forecast accuracy evaluation, uncertainty, limitations, interpretation, and generalizability157. 
Consistent sharing of this information for epidemiological predictions would improve the 
consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. 
 
 

Made Multiple Predictions over a 
Timespan greater than 2 months 

Limitations 
             Authors discussed limitations 

 
64% 

 
23% 

 
65% 
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Discussion: Commentary on Data Quality and Model Translation 
The goal of this literature review was to cover the prospective COVID-19 modeling research that 
has been done, with a focus on model utility, and identify areas for improvement. Our analysis 
covered many topics that are central to the success of COVID-19 modeling, but there are some 
aspects of modeling that are not directly covered in the COVID-19 papers we analyzed but are 
crucial for the utility of our work, which we will comment on in this section. 
 
Data: Quality and Availability 
Data quality is one of the most important drivers of model performance. If the data are 
inconsistent or not a true reflection of reality, models have no reliable ground truth to learn from. 
Unfortunately, the public health infrastructure in the US was not equipped to provide timely, 
high-quality COVID-19 data, necessitating several disparate efforts to provide more accessible 
COVID-19 data173,174. Despite the valiant efforts of data collectors, there are several flaws in the 
underlying reporting system that are difficult to account for in modeling. For example, the 
decision-making on how to collect COVID-19 data fell to the states, and each state had their own 
reporting idiosyncrasies, like defining what counts as a COVID-19 case and death, whether this 
includes probable cases/deaths, and how to define a “probable” case/death. Another frequent 
occurrence for case and death data is a large artificial spike or drop in the timeseries due to errors 
such as discovering old cases or deaths, correcting a past overreport, or a technical issue. When 
errors occur, many state public health dashboards did not clearly explain the cause of the 
anomaly in a timely, accessible fashion, leaving modelers to guess what the correct timeseries 
should be and whether it might be updated in the future. Other COVID-19 data, like counts of 
vaccinations, tests, hospitalizations, and prevalence of variants, suffer from their own data 
quality issues, mainly due to an incapable data reporting infrastructure, lack of universal data 
standards, and sampling bias. Number of tests is a particularly important factor due to its 
influence on number of reported cases.  
These inconsistencies impinge upon modelers’ ability to provide accurate predictions. Modelers 
have been forced to wonder whether to aim to predict unreliable reported data or actual numbers 
of infections and deaths, which for COVID-19 will never be fully observed. If modelers aim for 
the latter, they must attempt to correct for the layers upon layers of issues that distance reported 
data from the truth. In order to give modelers the best chance of success, we need to build a data 
system that provides open, timely, standardized data at a high spatial and temporal resolution. 
Models built using existing indicators have not been able to capture inflection points, a reflection 
of the difficulty of predicting phenomena driven by human behavior. However, we currently do 
not have reliable data that measures COVID-19 risk reduction behaviors at a high temporal and 
spatial scale, so obtaining this data is a promising avenue for improving predictions. Another 
data source with potential is the prevalence of variants of concern, which could provide a 
warning sign of an upcoming wave. Therefore, a more robust genomic surveillance system could 
be a great resource for improving the predictive capability of models, especially in light of the 
impact of new variants on recent epidemiological dynamics. 
Yet another factor that complicates the translation of relevant datasets into accurate models is 
that data availability, quality, and relationships between variables change throughout the 
outbreak. For example, mobility data was found to be associated with case growth during the 
first wave in the US, but not for later waves175. The introduction of vaccines, new variants, 
different kinds of COVID-19 tests, and policy changes have all played different roles in driving 
epidemic dynamics and the resulting risk reduction behaviors throughout the pandemic. This 
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constant changing of dynamics that drive COVID-19 transmission coupled with data quality 
limitations has hindered model accuracy. 
  
 
Translation 
 
Transparency 
Although the translational aspect of modeling is often overlooked in academic papers, better 
communication of modeling is an integral part of producing useful models. One of the most 
important aspects of successful modeling translation is transparency in how models are built and 
how they should be used, which is covered in the aforementioned EPIFORGE 2020 
guidelines176. Since COVID-19 modeling attracted many researchers without prior infectious 
disease modeling experience, the adoption of epidemic reporting guidelines is especially helpful 
to help modelers support decision-makers and avoid causing unintentional harm.  
To advance knowledge of best practices for translation, modelers should prioritize 
documentation of the process of sharing models with decision-makers when possible. For 
example, this paper documents the process of modelers working with policymakers in Utah to 
provide COVD-19 decision support177. By neglecting to share their experiences and knowledge 
on translation of models, modelers are missing an opportunity to harness the collaborative power 
of academia to identify best practices for translation and boost the utility of their work. 
 
Control the Messaging 
Due to the uncertainty and fear surrounding an unprecedented outbreak, modeling results were 
sometimes sensationalized by the media or were bent to serve a predetermined political purpose. 
To prevent misrepresentation, modelers must be explicit in stating how the assumptions and 
limitations shape the appropriate interpretation and control the corresponding public health 
messaging. Most of the papers in our analysis did not discuss what questions the model is 
appropriate to answer and how results should be applied to decision-making. Due to the serious 
consequences of misunderstandings, modelers have a responsibility to facilitate appropriate 
interpretation of our work. Many of these misunderstandings are rooted in the public lacking 
basic understanding of models and how they should be used. Therefore, a concerted effort from 
the modeling community is needed to build public understanding of the basic principles of model 
translation. For decision-makers, the best approach is often direct collaboration with modelers, 
since modeling and its interpretations are often complicated. These mutually beneficial 
relationships allow modelers to better understand the needs of decision-makers and help 
decision-makers better understand the nuances of epidemic modeling.  
One aspect of modeling that could be better designed for easy interpretation is the selection of 
prediction targets. In the Forecast Hub, dozens of modeling groups have predicted the absolute 
number of cases, deaths, and hospitalizations for the next four weeks throughout the COVID-19 
pandemic. The ensemble, which is consistently one of the top performing models, has shown 
poor performance during times of rapid changes in trends1, which are the most crucial moments 
for decision-making. This is especially pronounced in forecasts of cases and hospitalizations and 
less so for deaths. In response, modelers should consider new targets that may be more aligned 
with what models are able to accurately predict. For example, categorical predictions that 
classify a region into rapid growth, moderate growth, flat, moderate decline, or rapid decline, 
still convey the information that most model users want to know but is more interpretable for the 
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average person. Since numerical forecasts of the precise number of cases or hospitalizations 
several weeks in the future have not been reliable over the course of the first 18 months of the 
pandemic, trying new experimental targets at different spatial and temporal scales could help 
provide models with more feasible targets. This could in turn enhance public trust in modeling. 
In addition, modelers tackling a broader range of targets can provide a more complete picture of 
relevant outcomes for stakeholders. 
A crucial aspect of model translation is communicating that there are a range of plausible 
outcomes and that point predictions should not be interpreted as what will actually happen. Thus, 
modelers must clearly communicate uncertainty, but the way that modelers currently do so can 
be confusing for the public. For example, the 50% and 95% confidence intervals adopted by the 
COVID-19 Forecast Hub are often wide, spanning both upward and downward trends, which can 
be difficult to interpret. Therefore, modelers need to explore alternative ways to communicate 
uncertainty that translate statistical concepts into formats that are more accessible to the public, 
like providing the percent chance that the trend will be increasing, flat, or decreasing. More 
clarity in this aspect of communication will build public trust in modeling and help to prevent 
actors with ulterior motives from using a paper to support their preconceived agenda. 

 
Value of Translational Work 
A barrier to modelers in academia engaging in critical but time-consuming translational work is 
that incentive structures usually reward publishing papers and other traditional forms of 
academic achievement. However, most of the crucial work that was done for this pandemic was 
in building, updating, and communicating models and their results in real-time. In order for our 
research to maximize its impact in mitigating outbreaks, we need to recognize and elevate the 
value of translational work. 
 
Conclusion 
This analysis examined a subset of the COVID-19 modeling literature, focused on data-driven, 
prospective modeling, and identified several opportunities to improve the utility of outbreak 
modeling. In response to significant scoping challenges, we selected a sample that should 
represent the best modeling papers and still found them to be substantially lacking in some of the 
areas that are most crucial for translating models into useful insight for decision-makers and the 
general public. As of August 20, 2021, we found that most of the translational modeling efforts 
that were (and in some cases still are) operational during the COVID-19 pandemic had not found 
their way into the peer-reviewed literature. 
The main takeaways of this literature review relate to adopting epidemic forecasting standards, 
investing in quality datasets, engaging in thoughtful model translation, and creating a suitable 
information sharing system. Adopting the EPIFORGE 2020 guidelines address many of the 
issues identified in this review, including the need to be transparent about the methods, express 
uncertainty, thoroughly evaluate performance, state limitations, and discuss appropriate 
interpretations. Curating high-quality datasets, especially for ground truth epidemiological data, 
COVID-19 behaviors, and variant prevalence could greatly increase modelers’ chance of 
success. By thinking about translation during the modeling process, like when choosing 
prediction targets and uncertainty methods, modelers can make their model outputs more 
understandable for the public. Lastly, the creation of an information sharing system suited to the 
needs of an epidemic would allow faster advancement of knowledge and derive the maximum 
benefit from the hard work of COVID-19 modelers. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 19 

 
Contributors 
LG, KN, and SJ contributed to the conceptualization and design of the study. KN, SJ, and FP 
collected the data and conducted the analysis. FP and SJ made the figures. KN led the writing of 
the original draft. NGR, KG, ECL, ST and LG edited the manuscript. LG supervised the study 
and acquired funding. KN and SJ have verified the underlying data. All authors had full access to 
the data and approved the manuscript for publication. 
 
Declaration of Interests 
We declare no competing interest. 
 
Acknowledgements 
KN, SJ, and LG were funded by the NSF Rapid Response Research grants, Award ID 2108526 
and 2028604. NGR has been supported by the National Institutes of General Medical Sciences 
(R35GM119582). The content is solely the responsibility of the authors and does not necessarily 
represent the official views of NIGMS or the National Institutes of Health. KG and FP were 
funded by the SMDM Covid Modeling Accelerator. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 20 

References 
1.  On the predictability of COVID-19 - International Institute of Forecasters [Internet]. [cited 

2021 Dec 6]. Available from: https://forecasters.org/blog/2021/09/28/on-the-
predictability-of-covid-19/ 

2.  Cramer EY, Ray EL, Lopez VK, Bracher J, Brennen A, Castro Rivadeneira AJ, et al. 
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in 
the United States. Proceedings of the National Academy of Sciences [Internet]. 2022 Apr 
12 [cited 2022 Apr 9];119(15). Available from: 
https://pnas.org/doi/full/10.1073/pnas.2113561119 

3.  Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, et al. A collaborative 
multiyear, multimodel assessment of seasonal influenza forecasting in the United States. 
Proceedings of the National Academy of Sciences [Internet]. 2019 Feb 19 [cited 2021 Dec 
14];116(8):3146–54. Available from: https://www.pnas.org/content/116/8/3146 

4.  FluSight: Flu Forecasting | CDC [Internet]. [cited 2021 Dec 14]. Available from: 
https://www.cdc.gov/flu/weekly/flusight/index.html 

5.  James LP, Salomon JA, Buckee CO, Menzies NA. The Use and Misuse of Mathematical 
Modeling for Infectious Disease Policymaking: Lessons for the COVID-19 Pandemic: 
https://doi.org/101177/0272989X21990391 [Internet]. 2021 Feb 3 [cited 2021 Jul 
11];41(4):379–85. Available from: 
https://journals.sagepub.com/doi/full/10.1177/0272989X21990391 

6.  Press WH, Levin RC. Modeling, post COVID-19. Science (1979) [Internet]. 2020 Nov 27 
[cited 2021 Nov 20];370(6520):1015. Available from: 
https://www.science.org/doi/abs/10.1126/science.abf7914 

7.  Ioannidis JPA, Cripps S, Tanner MA. Forecasting for COVID-19 has failed. International 
Journal of Forecasting. 2020 Aug 25. 

8.  Adiga A, Dubhashi D, Lewis B, Marathe M, Venkatramanan S, Vullikanti A. 
Mathematical Models for COVID-19 Pandemic: A Comparative Analysis. Journal of the 
Indian Institute of Science 2020 100:4 [Internet]. 2020 Oct 30 [cited 2021 Jul 
11];100(4):793–807. Available from: https://link.springer.com/article/10.1007/s41745-
020-00200-6 

9.  Gnanvi JE, Salako KV, Kotanmi GB, Glèlè Kakaï R. On the reliability of predictions on 
Covid-19 dynamics: A systematic and critical review of modelling techniques. Infect Dis 
Model. 2021 Jan 1;6:258–72.  

10.  Zawadzki RS, Gong CL, Cho SK, Schnitzer JE, Zawadzki NK, Hay JW, et al. Where Do 
We Go From Here? A Framework for Using Susceptible-Infectious-Recovered Models for 
Policy Making in Emerging Infectious Diseases. Value in Health. 2021 Jul 1;24(7):917–
24.  

11.  Shankar S, Mohakuda SS, Kumar A, Nazneen PS, Yadav AK, Chatterjee K, et al. 
Systematic review of predictive mathematical models of COVID-19 epidemic. Medical 
Journal Armed Forces India. 2021 Jul 1;77:S385–92.  

12.  Xiang Y, Jia Y, Chen L, Guo L, Shu B, Long E. COVID-19 epidemic prediction and the 
impact of public health interventions: A review of COVID-19 epidemic models. Infect Dis 
Model. 2021 Jan 1;6:324–42.  

13.  Guan J, Wei Y, Zhao Y, Chen F. Modeling the transmission dynamics of COVID-19 
epidemic: a systematic review. Journal of Biomedical Research [Internet]. 2020 Nov 1 
[cited 2021 Nov 21];34(6):422. Available from: /pmc/articles/PMC7718076/ 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 21 

14.  Rahimi I, Chen F, Gandomi AH. A review on COVID-19 forecasting models. Neural 
Computing and Applications [Internet]. 2021 Feb 4 [cited 2021 Nov 21];1–11. Available 
from: https://link.springer.com/article/10.1007/s00521-020-05626-8 

15.  Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of 
travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. 
Science (1979) [Internet]. 2020 Apr 24 [cited 2021 Dec 9];368(6489):395–400. Available 
from: https://www.science.org/doi/abs/10.1126/science.aba9757 

16.  Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating 
the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 
[Internet]. 2020 Aug 13 [cited 2021 Dec 9];584(7820):257–61. Available from: 
https://pubmed.ncbi.nlm.nih.gov/32512579/ 

17.  Tian H, Liu Y, Li Y, Wu CH, Chen B, Kraemer MUG, et al. An investigation of 
transmission control measures during the first 50 days of the COVID-19 epidemic in 
China. Science (1979) [Internet]. 2020 May 8 [cited 2021 Dec 9];368(6491):638–42. 
Available from: https://www.science.org/doi/abs/10.1126/science.abb6105 

18.  Lemaitre JC, Grantz KH, Kaminsky J, Meredith HR, Truelove SA, Lauer SA, et al. A 
scenario modeling pipeline for COVID-19 emergency planning. Scientific Reports 2021 
11:1 [Internet]. 2021 Apr 6 [cited 2021 Jul 24];11(1):1–13. Available from: 
https://www.nature.com/articles/s41598-021-86811-0 

19.  Truelove S, Smith CP, Qin M, Mullany LC, Borchering RK, Lessler J, et al. Projected 
resurgence of COVID-19 in the United States in July—December 2021 resulting from the 
increased transmissibility of the Delta variant and faltering vaccination. medRxiv 
[Internet]. 2021 Sep 2 [cited 2022 Apr 9];16:2021.08.28.21262748. Available from: 
https://www.medrxiv.org/content/10.1101/2021.08.28.21262748v2 

20.  Borchering RK, Viboud C, Howerton E, Smith CP, Truelove S, Runge MC, et al. 
Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates 
and Nonpharmaceutical Intervention Scenarios — United States, April–September 2021. 
Morbidity and Mortality Weekly Report [Internet]. 2021 [cited 2022 Apr 9];70(19):719. 
Available from: /pmc/articles/PMC8118153/ 

21.  Chiu WA, Fischer R, Ndeffo-Mbah ML. State-level needs for social distancing and 
contact tracing to contain COVID-19 in the United States. Nature Human Behaviour 2020 
4:10 [Internet]. 2020 Oct 6 [cited 2021 Dec 14];4(10):1080–90. Available from: 
https://www.nature.com/articles/s41562-020-00969-7 

22.  Luo J, Zhang Z, Fu Y, Rao F. Time series prediction of COVID-19 transmission in 
America using LSTM and XGBoost algorithms. Results in Physics. 2021 Aug 
1;27:104462.  

23.  Duque D, Morton DP, Singh B, Du Z, Pasco R, Meyers LA. Timing social distancing to 
avert unmanageable COVID-19 hospital surges. Proc Natl Acad Sci U S A. 2020;117(33).  

24.  Shadabfar M, Mahsuli M, Sioofy Khoojine A, Hosseini VR. Time-variant reliability-based 
prediction of COVID-19 spread using extended SEIVR model and Monte Carlo sampling. 
Results in Physics. 2021;26.  

25.  Tkachenko A v., Maslov S, Elbanna A, Wong GN, Weiner ZJ, Goldenfeld N. Time-
dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not 
herd immunity. Proc Natl Acad Sci U S A. 2021;118(17).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 22 

26.  Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Time series forecasting of Covid-19 
using deep learning models: India-USA comparative case study. Chaos, Solitons & 
Fractals. 2020 Nov 1;140:110227.  

27.  Yan K, Yan H, Gupta R. The predicted trend of COVID-19 in the United States of 
America under the policy of “Opening Up America Again.” Infect Dis Model. 2021 Jan 
1;6:766–81.  

28.  Guo X, Tong J, Chen P, Fan W. The suppression effect of emotional contagion in the 
COVID-19 pandemic: A multilayer hybrid modelling and simulation approach. PLoS 
ONE. 2021;16(7 July).  

29.  Lin YC, Chi WJ, Lin YT, Lai CY. The spatiotemporal estimation of the risk and the 
international transmission of COVID-19: a global perspective. Scientific Reports. 
2020;10(1).  

30.  Bertozzi AL, Franco E, Mohler G, Short MB, Sledge D. The challenges of modeling and 
forecasting the spread of COVID-19. Proceedings of the National Academy of Sciences 
[Internet]. 2020 Jul 21 [cited 2021 Nov 2];117(29):16732–8. Available from: 
https://www.pnas.org/content/117/29/16732 

31.  Tang F, Feng Y, Chiheb H, Fan J. The Interplay of Demographic Variables and Social 
Distancing Scores in Deep Prediction of U.S. COVID-19 Cases. J Am Stat Assoc. 
2021;116(534).  

32.  Alagoz O, Sethi AK, Patterson BW, Churpek M, Alhanaee G, Scaria E, et al. The impact 
of vaccination to control COVID-19 burden in the United States: A simulation modeling 
approach. PLoS ONE. 2021;16(7 July).  

33.  Hssayeni MD, Chala A, Dev R, Xu L, Shaw J, Furht B, et al. The forecast of COVID-19 
spread risk at the county level. Journal of Big Data. 2021;8(1).  

34.  López L, Rodó X. The end of social confinement and COVID-19 re-emergence risk. 
Nature Human Behaviour. 2020;4(7).  

35.  Nande A, Sheen J, Walters EL, Klein B, Chinazzi M, Gheorghe AH, et al. The effect of 
eviction moratoria on the transmission of SARS-CoV-2. Nature Communications. 
2021;12(1).  

36.  Bartsch SM, O’Shea KJ, Wedlock PT, Strych U, Ferguson MC, Bottazzi ME, et al. The 
Benefits of Vaccinating With the First Available COVID-19 Coronavirus Vaccine. 
American Journal of Preventive Medicine. 2021;60(5).  

37.  Wang Z, Zhang X, Teichert GH, Carrasco-Teja M, Garikipati K. System inference for the 
spatio-temporal evolution of infectious diseases: Michigan in the time of COVID-19. 
Computational Mechanics. 2020;66(5).  

38.  Chen S, Li Q, Gao S, Kang Y, Shi X. State-specific projection of COVID-19 infection in 
the United States and evaluation of three major control measures. Scientific Reports. 
2020;10(1).  

39.  Unwin HJT, Mishra S, Bradley VC, Gandy A, Mellan TA, Coupland H, et al. State-level 
tracking of COVID-19 in the United States. Nature Communications. 2020;11(1).  

40.  Cuadros DF, Xiao Y, Mukandavire Z, Correa-Agudelo E, Hernández A, Kim H, et al. 
Spatiotemporal transmission dynamics of the COVID-19 pandemic and its impact on 
critical healthcare capacity. Health and Place. 2020;64.  

41.  Lawson AB, Kim J. Space-time covid-19 Bayesian SIR modeling in South Carolina. PLoS 
ONE. 2021;16(3 March).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 23 

42.  Yasir KA, Liu WM. Social distancing mediated generalized model to predict epidemic 
spread of COVID-19. Nonlinear Dynamics. 2021;106(2).  

43.  Browning R, Sulem D, Mengersen K, Rivoirard V, Rousseau J. Simple discrete-time self-
exciting models can describe complex dynamic processes: A case study of COVID-19. 
PLoS ONE. 2021;16(4 April).  

44.  Yu X, Lu L, Shen J, Li J, Xiao W, Chen Y. RLIM: a recursive and latent infection model 
for the prediction of US COVID-19 infections and turning points. Nonlinear Dynamics. 
2021;106(2).  

45.  Vaid S, McAdie A, Kremer R, Khanduja V, Bhandari M. Risk of a second wave of Covid-
19 infections: using artificial intelligence to investigate stringency of physical distancing 
policies in North America. International Orthopaedics. 2020;44(8).  

46.  Buckman SR, Glick R, Lansing KJ, Petrosky-Nadeau N, Seitelman LM. Replicating and 
projecting the path of COVID-19 with a model-implied reproduction number. Infect Dis 
Model. 2020;5.  

47.  Tsay C, Lejarza F, Stadtherr MA, Baldea M. Modeling, state estimation, and optimal 
control for the US COVID-19 outbreak. Scientific Reports 2020 10:1 [Internet]. 2020 Jul 
1 [cited 2021 Nov 2];10(1):1–12. Available from: 
https://www.nature.com/articles/s41598-020-67459-8 

48.  Yamamoto N, Jiang B, Wang H. Quantifying compliance with COVID-19 mitigation 
policies in the US: A mathematical modeling study. Infect Dis Model. 2021;6.  

49.  Ilin C, Annan-Phan S, Tai XH, Mehra S, Hsiang S, Blumenstock JE. Public mobility data 
enables COVID-19 forecasting and management at local and global scales. Scientific 
Reports. 2021;11(1).  

50.  Shen M, Zu J, Fairley CK, Pagán JA, An L, Du Z, et al. Projected COVID-19 epidemic in 
the United States in the context of the effectiveness of a potential vaccine and implications 
for social distancing and face mask use. Vaccine. 2021;39(16).  

51.  Zhang X, Ma R, Wang L. Predicting turning point, duration and attack rate of COVID-19 
outbreaks in major Western countries. Chaos, Solitons & Fractals. 2020 Jun 
1;135:109829.  

52.  Watson GL, Xiong D, Zhang L, Zoller JA, Shamshoian J, Sundin P, et al. Pandemic 
velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time 
series compartmental model. PLOS Computational Biology [Internet]. 2021 Mar 1 [cited 
2021 Nov 2];17(3):e1008837. Available from: 
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008837 

53.  Renardy M, Eisenberg M, Kirschner D. Predicting the second wave of COVID-19 in 
Washtenaw County, MI. Journal of Theoretical Biology. 2020;507.  

54.  Hierro LÁ, Garzón AJ, Atienza-Montero P, Márquez JL. Predicting mortality for Covid-
19 in the US using the delayed elasticity method. Scientific Reports. 2020;10(1).  

55.  Geng X, Gerges F, Katul GG, Bou-Zeid E, Nassif H, Boufadel MC. Population 
agglomeration is a harbinger of the spatial complexity of COVID-19. Chemical 
Engineering Journal. 2021;420.  

56.  Melin P, Sánchez D, Monica JC, Castillo O. Optimization using the firefly algorithm of 
ensemble neural networks with type-2 fuzzy integration for COVID-19 time series 
prediction. Soft Computing. 2021;  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 24 

57.  Cao Y, Francis R. On forecasting the community-level COVID-19 cases from the 
concentration of SARS-CoV-2 in wastewater. Science of the Total Environment. 
2021;786.  

58.  Efimov D, Ushirobira R. On an interval prediction of COVID-19 development based on a 
SEIR epidemic model. Annual Reviews in Control. 2021;51.  

59.  Majid F, Gray M, Deshpande AM, Ramakrishnan S, Kumar M, Ehrlich S. Non-
Pharmaceutical Interventions as Controls to mitigate the spread of epidemics: An analysis 
using a spatiotemporal PDE model and COVID–19 data. ISA Transactions. 2021;  

60.  Ekinci A. Modelling and forecasting of growth rate of new COVID-19 cases in top nine 
affected countries: Considering conditional variance and asymmetric effect. Chaos, 
Solitons and Fractals. 2021;151.  

61.  Reiner RC, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, et al. Modeling 
COVID-19 scenarios for the United States. Nature Medicine 2020 27:1 [Internet]. 2020 
Oct 23 [cited 2021 Nov 2];27(1):94–105. Available from: 
https://www.nature.com/articles/s41591-020-1132-9 

62.  Yang C, Wang J. Modeling the transmission of COVID-19 in the US – A case study. 
Infect Dis Model. 2021 Jan 1;6:195–211.  

63.  Wong GN, Weiner ZJ, Tkachenko A v., Elbanna A, Maslov S, Goldenfeld N. Modeling 
COVID-19 Dynamics in Illinois under Nonpharmaceutical Interventions. Physical Review 
X. 2020;10(4).  

64.  Singhal A, Singh P, Lall B, Joshi SD. Modeling and prediction of COVID-19 pandemic 
using Gaussian mixture model. Chaos, Solitons and Fractals. 2020;138.  

65.  Ala’raj M, Majdalawieh M, Nizamuddin N. Modeling and forecasting of COVID-19 using 
a hybrid dynamic model based on SEIRD with ARIMA corrections. Infect Dis Model. 
2021;6.  

66.  Song J, Xie H, Gao B, Zhong Y, Gu C, Choi KS. Maximum likelihood-based extended 
Kalman filter for COVID-19 prediction. Chaos, Solitons and Fractals. 2021;146.  

67.  Sornette D, Mearns E, Schatz M, Wu K, Darcet D. Interpreting, analysing and modelling 
COVID-19 mortality data. Nonlinear Dynamics. 2020;101(3).  

68.  Liu M, Thomadsen R, Yao S. Forecasting the spread of COVID-19 under different 
reopening strategies. Scientific Reports 2020 10:1 [Internet]. 2020 Nov 23 [cited 2021 
Nov 2];10(1):1–8. Available from: https://www.nature.com/articles/s41598-020-77292-8 

69.  Chalkiadakis I, Yan H, Peters GW, Shevchenko P v. Infection rate models for COVID-19: 
Model risk and public health news sentiment exposure adjustments. PLoS ONE. 
2021;16(6 June).  

70.  Singh PK, Chouhan A, Bhatt RK, Kiran R, Ahmar AS. Implementation of the 
SutteARIMA method to predict short-term cases of stock market and COVID-19 
pandemic in USA. Quality & Quantity. 2021;  

71.  España G, Cavany S, Oidtman R, Barbera C, Costello A, Lerch A, et al. Impacts of K-12 
school reopening on the COVID-19 epidemic in Indiana, USA. Epidemics. 2021;37.  

72.  Cot C, Cacciapaglia G, Islind AS, Óskarsdóttir M, Sannino F. Impact of US vaccination 
strategy on COVID-19 wave dynamics. Scientific Reports. 2021;11(1).  

73.  Brugnago EL, da Silva RM, Manchein C, Beims MW. How relevant is the decision of 
containment measures against COVID-19 applied ahead of time? Chaos, Solitons and 
Fractals. 2020;140.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 25 

74.  Khalilpourazari S, Hashemi Doulabi H, Özyüksel Çiftçioğlu A, Weber GW. Gradient-
based grey wolf optimizer with Gaussian walk: Application in modelling and prediction of 
the COVID-19 pandemic. Expert Systems with Applications. 2021;177.  

75.  Basu S, Campbell RH. Going by the numbers: Learning and modeling COVID-19 disease 
dynamics. Chaos, Solitons and Fractals. 2020;138.  

76.  Singh P, Gupta A. Generalized SIR (GSIR) epidemic model: An improved framework for 
the predictive monitoring of COVID-19 pandemic. ISA Transactions. 2021;  

77.  Das RC. Forecasting incidences of COVID-19 using Box-Jenkins method for the period 
July 12-Septembert 11, 2020: A study on highly affected countries. Chaos, Solitons & 
Fractals. 2020 Nov 1;140:110248.  

78.  Feroze N. Forecasting the patterns of COVID-19 and causal impacts of lockdown in top 
five affected countries using Bayesian Structural Time Series Models. Chaos, Solitons & 
Fractals. 2020 Nov 1;140:110196.  

79.  Prasanth S, Singh U, Kumar A, Tikkiwal VA, Chong PHJ. Forecasting spread of COVID-
19 using google trends: A hybrid GWO-deep learning approach. Chaos, Solitons & 
Fractals. 2021 Jan 1;142:110336.  

80.  Şahin U, Şahin T. Forecasting the cumulative number of confirmed cases of COVID-19 in 
Italy, UK and USA using fractional nonlinear grey Bernoulli model. Chaos, Solitons and 
Fractals. 2020;138.  

81.  Kalantari M. Forecasting COVID-19 pandemic using optimal singular spectrum analysis. 
Chaos, Solitons and Fractals. 2021;142.  

82.  Gecili E, Ziady A, Szczesniak RD. Forecasting COVID-19 confirmed cases, deaths and 
recoveries: Revisiting established time series modeling through novel applications for the 
USA and Italy. PLoS ONE. 2021;16(1 January).  

83.  da Silva RG, Ribeiro MHDM, Mariani VC, Coelho L dos S. Forecasting Brazilian and 
American COVID-19 cases based on artificial intelligence coupled with climatic 
exogenous variables. Chaos, Solitons and Fractals. 2020;139.  

84.  Nikolopoulos K, Punia S, Schäfers A, Tsinopoulos C, Vasilakis C. Forecasting and 
planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and 
governmental decisions. European Journal of Operational Research. 2021;290(1).  

85.  Arias Velásquez RM, Mejía Lara JV. Forecast and evaluation of COVID-19 spreading in 
USA with reduced-space Gaussian process regression. Chaos, Solitons and Fractals. 
2020;136.  

86.  Xu C, Yu Y, Chen YQ, Lu Z. Forecast analysis of the epidemics trend of COVID-19 in 
the USA by a generalized fractional-order SEIR model. Nonlinear Dynamics. 
2020;101(3).  

87.  Salgotra R, Gandomi M, Gandomi AH. Evolutionary modelling of the COVID-19 
pandemic in fifteen most affected countries. Chaos, Solitons & Fractals. 2020 Nov 
1;140:110118.  

88.  Guo Y, Yu H, Zhang G, Ma DT. Exploring the impacts of travel-implied policy factors on 
COVID-19 spread within communities based on multi-source data interpretations. Health 
and Place. 2021;69.  

89.  Sharma RR, Kumar M, Maheshwari S, Ray KP. EVDHM-ARIMA-Based Time Series 
Forecasting Model and Its Application for COVID-19 Cases. IEEE Transactions on 
Instrumentation and Measurement. 2021;70.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 26 

90.  Moghadas SM, Vilches TN, Zhang K, Nourbakhsh S, Sah P, Fitzpatrick MC, et al. 
Evaluation of COVID-19 vaccination strategies with a delayed second dose. PLoS 
Biology. 2021;19(4).  

91.  Kuo CP, Fu JS. Evaluating the impact of mobility on COVID-19 pandemic with machine 
learning hybrid predictions. Science of the Total Environment. 2021;758.  

92.  Li Q, Bedi T, Lehmann CU, Xiao G, Xie Y. Evaluating short-term forecasting of COVID-
19 cases among different epidemiological models under a Bayesian framework. 
Gigascience. 2021;10(2).  

93.  Mahajan A, Solanki R, Sivadas N. Estimation of undetected symptomatic and 
asymptomatic cases of COVID-19 infection and prediction of its spread in the USA. 
Journal of Medical Virology. 2021;93(5).  

94.  Lee SY, Lei B, Mallick B. Estimation of COVID-19 spread curves integrating global data 
and borrowing information. PLoS ONE. 2020;15(7 July).  

95.  Levin MW, Shang M, Stern R. Effects of short-term travel on COVID-19 spread: A novel 
SEIR model and case study in Minnesota. PLoS ONE. 2021;16(1 January).  

96.  Wang X, Du Z, Johnson KE, Pasco RF, Fox SJ, Lachmann M, et al. Effects of COVID-19 
vaccination timing and risk prioritization on mortality rates, United States. Emerging 
Infectious Diseases. 2021;27(7).  

97.  Tam KM, Walker N, Moreno J. Effect of mitigation measures on the spreading of 
COVID-19 in hard-hit states in the U.S. PLoS ONE. 2020;15(11 November).  

98.  Zeng X, Ghanem R. Dynamics identification and forecasting of COVID-19 by switching 
Kalman filters. Computational Mechanics. 2020;66(5).  

99.  Kirpich A, Koniukhovskii V, Shvartc V, Skums P, Weppelmann TA, Imyanitov E, et al. 
Development of an interactive, agent-based local stochastic model of COVID-19 
transmission and evaluation of mitigation strategies illustrated for the state of 
Massachusetts, USA. PLoS ONE. 2021;16(2 Febuary).  

100.  Zeroual A, Harrou F, Dairi A, Sun Y. Deep learning methods for forecasting COVID-19 
time-Series data: A Comparative study. Chaos, Solitons & Fractals. 2020 Nov 
1;140:110121.  

101.  Shirin A, Lin YT, Sorrentino F. Data-driven optimized control of the COVID-19 
epidemics. Scientific Reports. 2021;11(1).  

102.  Bhardwaj R, Bangia A. Data driven estimation of novel COVID-19 transmission risks 
through hybrid soft-computing techniques. Chaos, Solitons & Fractals. 2020 Nov 
1;140:110152.  

103.  Ballı S. Data analysis of Covid-19 pandemic and short-term cumulative case forecasting 
using machine learning time series methods. Chaos, Solitons & Fractals. 2021 Jan 
1;142:110512.  

104.  Chen S, Chen Q, Yang J, Lin L, Li L, Jiao L, et al. Curbing the COVID-19 pandemic with 
facility-based isolation of mild cases: a mathematical modeling study. J Travel Med. 
2021;28(2).  

105.  Zhao H, Merchant NN, McNulty A, Radcliff TA, Cote MJ, Fischer RSB, et al. COVID-
19: Short term prediction model using daily incidence data. PLoS ONE. 2021;16(4 April).  

106.  Pacheco-Barrios K, Cardenas-Rojas A, Giannoni-Luza S, Fregni F. COVID-19 pandemic 
and Farr’s law: A global comparison and prediction of outbreak acceleration and 
deceleration rates. PLoS ONE. 2020;15(9 September).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 27 

107.  Gel ES, Jehn M, Lant T, Muldoon AR, Nelson T, Ross HM. COVID-19 healthcare 
demand projections: Arizona. PLoS ONE. 2020;15(12 December).  

108.  Bhouri MA, Costabal FS, Wang H, Linka K, Peirlinck M, Kuhl E, et al. COVID-19 
dynamics across the US: A deep learning study of human mobility and social behavior. 
Computer Methods in Applied Mechanics and Engineering. 2021;382.  

109.  Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. Covasim: 
An agent-based model of COVID-19 dynamics and interventions. PLoS Computational 
Biology. 2021;17(7).  

110.  Er S, Yang S, Zhao T. COUnty aggRegation mixup AuGmEntation (COURAGE) 
COVID-19 prediction. Scientific Reports. 2021;11(1).  

111.  Chan S, Chu J, Zhang Y, Nadarajah S. Count regression models for COVID-19. Physica 
A: Statistical Mechanics and its Applications. 2021;563.  

112.  Chen X, Zhang A, Wang H, Gallaher A, Zhu X. Compliance and containment in social 
distancing: mathematical modeling of COVID-19 across townships. International Journal 
of Geographical Information Science. 2021;35(3).  

113.  Dairi A, Harrou F, Zeroual A, Hittawe MM, Sun Y. Comparative study of machine 
learning methods for COVID-19 transmission forecasting. Vol. 118, Journal of 
Biomedical Informatics. 2021.  

114.  Zebrowski A, Rundle A, Pei S, Yaman T, Yang W, Carr BG, et al. A Spatiotemporal Tool 
to Project Hospital Critical Care Capacity and Mortality From COVID-19 in US Counties. 
https://doi.org/102105/AJPH2021306220 [Internet]. 2021 May 5 [cited 2021 Nov 
2];111(6):1113–22. Available from: 
https://ajph.aphapublications.org/doi/abs/10.2105/AJPH.2021.306220 

115.  Yan H, Zhu Y, Gu J, Huang Y, Sun H, Zhang X, et al. Better strategies for containing 
COVID-19 pandemic: A study of 25 countries via a vSIADR model. Proceedings of the 
Royal Society A: Mathematical, Physical and Engineering Sciences. 2021;477(2248).  

116.  Patel MD, Rosenstrom E, Ivy JS, Mayorga ME, Keskinocak P, Boyce RM, et al. 
Association of Simulated COVID-19 Vaccination and Nonpharmaceutical Interventions 
with Infections, Hospitalizations, and Mortality. JAMA Network Open. 2021;  

117.  Yu D, Zhu G, Wang X, Zhang C, Soltanalizadeh B, Wang X, et al. Assessing effects of 
reopening policies on COVID-19 pandemic in Texas with a data-driven transmission 
model. Infect Dis Model. 2021;6.  

118.  Zhang Y, Yu X, Sun HG, Tick GR, Wei W, Jin B. Applicability of time fractional 
derivative models for simulating the dynamics and mitigation scenarios of COVID-19. 
Chaos, Solitons and Fractals. 2020;138.  

119.  Naz R, Al-Raeei M. Analysis of transmission dynamics of COVID-19 via closed-form 
solutions of a susceptible-infectious-quarantined-diseased model with a quarantine-
adjusted incidence function. Mathematical Methods in the Applied Sciences. 2021;44(14).  

120.  Nadler P, Wang S, Arcucci R, Yang X, Guo Y. An epidemiological modelling approach 
for COVID-19 via data assimilation. European Journal of Epidemiology. 2020;35(8).  

121.  Shamil MS, Farheen F, Ibtehaz N, Khan IM, Rahman MS. An Agent-Based Modeling of 
COVID-19: Validation, Analysis, and Recommendations. Cognitive Computation. 2021;  

122.  Upadhyay RK, Chatterjee S, Saha S, Azad RK. Age-group-targeted testing for COVID-19 
as a new prevention strategy. Nonlinear Dynamics. 2020;101(3).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 28 

123.  Ramazi P, Haratian A, Meghdadi M, Mari Oriyad A, Lewis MA, Maleki Z, et al. Accurate 
long-range forecasting of COVID-19 mortality in the USA. Scientific Reports. 
2021;11(1).  

124.  Muñoz-Fernández GA, Seoane JM, Seoane-Sepúlveda JB. A SIR-type model describing 
the successive waves of COVID-19. Chaos, Solitons and Fractals. 2021;144.  

125.  Cooper I, Mondal A, Antonopoulos CG. A SIR model assumption for the spread of 
COVID-19 in different communities. Chaos, Solitons and Fractals. 2020;139.  

126.  Koutsellis T, Nikas A. A predictive model and country risk assessment for COVID-19: An 
application of the Limited Failure Population concept. Chaos, Solitons and Fractals. 
2020;140.  

127.  Ren J, Yan Y, Zhao H, Ma P, Zabalza J, Hussain Z, et al. A Novel Intelligent 
Computational Approach to Model Epidemiological Trends and Assess the Impact of 
Non-Pharmacological Interventions for COVID-19. IEEE Journal of Biomedical and 
Health Informatics. 2020;24(12).  

128.  Ramezani SB, Amirlatifi A, Rahimi S. A novel compartmental model to capture the 
nonlinear trend of COVID-19. Computers in Biology and Medicine. 2021;134.  

129.  Mokhtari A, Mineo C, Kriseman J, Kremer P, Neal L, Larson J. A multi-method approach 
to modeling COVID-19 disease dynamics in the United States. Scientific Reports. 
2021;11(1).  

130.  Usherwood T, LaJoie Z, Srivastava V. A model and predictions for COVID-19 
considering population behavior and vaccination. Scientific Reports. 2021;11(1).  

131.  Rastgoftar H, Atkins E. A Mass-Conservation Model for Stability Analysis and Finite-
Time Estimation of Spread of COVID-19. IEEE Transactions on Computational Social 
Systems. 2021;8(4).  

132.  Lu Z, Yu Y, Chen YQ, Ren G, Xu C, Wang S, et al. A fractional-order SEIHDR model 
for COVID-19 with inter-city networked coupling effects. Vol. 101, Nonlinear Dynamics. 
2020.  

133.  Ertem Z, Araz OM, Cruz-Aponte M. A decision analytic approach for social distancing 
policies during early stages of COVID-19 pandemic. Decision Support Systems. 2021;  

134.  Paiva HM, Afonso RJM, de Oliveira IL, Garcia GF. A data-driven model to describe and 
forecast the dynamics of COVID-19 transmission. PLoS ONE. 2020;15(7 July).  

135.  Hasan A, Nasution Y. A compartmental epidemic model incorporating probable cases to 
model COVID-19 outbreak in regions with limited testing capacity. ISA Transactions. 
2021.  

136.  Brethouwer JT, van de Rijt A, Lindelauf R, Fokkink R. “Stay nearby or get checked”: A 
Covid-19 control strategy. Infect Dis Model. 2021;6.  

137.  Pei S, Kandula S, Shaman J. Differential effects of intervention timing on COVID-19 
spread in the United States. Science Advances. 2020 Dec 4;6(49).  

138.  Khan ZS, van Bussel F, Hussain F. A predictive model for Covid-19 spread applied to 
eight US states. 2020 Jun 10 [cited 2021 Nov 2]; Available from: 
https://arxiv.org/abs/2006.05955v4 

139.  Galasso J, Cao DM, Hochberg R. A random forest model for forecasting regional COVID-
19 cases utilizing reproduction number estimates and demographic data. medRxiv 
[Internet]. 2021 Sep 14 [cited 2021 Nov 2];2021.05.23.21257689. Available from: 
https://www.medrxiv.org/content/10.1101/2021.05.23.21257689v2 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 29 

140.  Zhang-James Y, Hess J, Salekin A, Wang D, Chen S, Winkelstein P, et al. A seq2seq 
model to forecast the COVID-19 cases, deaths and reproductive R numbers in US 
counties. medRxiv [Internet]. 2021 Apr 20 [cited 2021 Nov 2];2021.04.14.21255507. 
Available from: https://www.medrxiv.org/content/10.1101/2021.04.14.21255507v1 

141.  Rowland MA, Swannack TM, Mayo ML, Parno M, Farthing M, Dettwiller I, et al. 
COVID-19 infection data encode a dynamic reproduction number in response to policy 
decisions with secondary wave implications. Scientific Reports 2021 11:1 [Internet]. 2021 
May 25 [cited 2021 Nov 2];11(1):1–7. Available from: 
https://www.nature.com/articles/s41598-021-90227-1 

142.  Rodriguez A, Tabassum A, Cui J, Xie J, Ho J, Agarwal P, et al. DeepCOVID: An 
Operational Deep Learning-driven Framework for Explainable Real-time COVID-19 
Forecasting. medRxiv [Internet]. 2020 Sep 29 [cited 2021 Nov 2];2020.09.28.20203109. 
Available from: https://www.medrxiv.org/content/10.1101/2020.09.28.20203109v1 

143.  Biegel HR, Lega J. EpiCovDA: a mechanistic COVID-19 forecasting model with data 
assimilation. ArXiv. 2021.  

144.  Zou D, Wang L, Xu P, Chen J, Zhang W, Gu Q. Epidemic Model Guided Machine 
Learning for COVID-19 Forecasts in the United States. medRxiv [Internet]. 2020 May 25 
[cited 2021 Nov 2];2020.05.24.20111989. Available from: 
https://www.medrxiv.org/content/10.1101/2020.05.24.20111989v1 

145.  Srivastava A, Xu T, Prasanna VK. Fast and Accurate Forecasting of COVID-19 Deaths 
Using the SIkJα Model. 2020 Jul 10 [cited 2021 Nov 2]; Available from: 
https://arxiv.org/abs/2007.05180v2 

146.  team IC 19 health service utilization forecasting, Murray CJ. Forecasting COVID-19 
impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 
4 months. medRxiv [Internet]. 2020 Mar 30 [cited 2021 Nov 2];2020.03.27.20043752. 
Available from: https://www.medrxiv.org/content/10.1101/2020.03.27.20043752v1 

147.  Pei S, Shaman J. Initial Simulation of SARS-CoV2 Spread and Intervention Effects in the 
Continental US. medRxiv [Internet]. 2020 Mar 27 [cited 2021 Nov 
2];2020.03.21.20040303. Available from: 
https://www.medrxiv.org/content/10.1101/2020.03.21.20040303v2 

148.  Arik SO, Li CL, Yoon J, Sinha R, Epshteyn A, Le LT, et al. Interpretable Sequence 
Learning for COVID-19 Forecasting. Advances in Neural Information Processing Systems 
[Internet]. 2020 Aug 3 [cited 2021 Nov 2];2020-December. Available from: 
https://arxiv.org/abs/2008.00646v2 

149.  Neural Relational Autoregression for High-Resolution COVID-19 Forecasting [Internet]. 
[cited 2021 Nov 2]. Available from: https://ai.facebook.com/research/publications/neural-
relational-autoregression-for-high-resolution-covid-19-forecasting/ 

150.  Gibson GC, Reich NG, Sheldon D. Real-time Mechanistic Bayesian Forecasts of COVID-
19 Mortality. medRxiv [Internet]. 2020 [cited 2021 Nov 2]; Available from: 
/pmc/articles/PMC7781348/ 

151.  Gao J, Sharma R, Qian C, Glass LM, Spaeder J, Romberg J, et al. STAN: spatio-temporal 
attention network for pandemic prediction using real-world evidence. Journal of the 
American Medical Informatics Association [Internet]. 2021 Mar 18 [cited 2021 Nov 
2];28(4):733–43. Available from: 
https://academic.oup.com/jamia/article/28/4/733/6118380 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 30 

152.  Baxter A, Oruc BE, Keskinocak P, Asplund J, Serban N. Evaluating Scenarios for School 
Reopening under COVID19. medRxiv [Internet]. 2020 Jul 24 [cited 2021 Dec 
14];2020.07.22.20160036. Available from: 
https://www.medrxiv.org/content/10.1101/2020.07.22.20160036v1 

153.  Wang L, Wang G, Gao L, Li X, Yu S, Kim M, et al. Spatiotemporal Dynamics, 
Nowcasting and Forecasting of COVID-19 in the United States. 2020 Apr 29 [cited 2021 
Dec 14]; Available from: https://arxiv.org/abs/2004.14103v4 

154.  Wilson DJ, thank Regis Barnichon I, Leduc S, Mertens K, Moretti E, Roth Tran B. 
Weather, Mobility, and COVID-19: A Panel Local Projections Estimator for 
Understanding and Forecasting Infectious Disease Spread. Federal Reserve Bank of San 
Francisco [Internet]. 2020 [cited 2022 Apr 1]; Available from: 
https://doi.org/10.24148/wp2020-23 

155.  Shi Y, Ban X. Capping Mobility to Control COVID-19: A Collision-based Infectious 
Disease Transmission Model. medRxiv [Internet]. 2020 Jul 28 [cited 2021 Nov 
2];2020.07.25.20162016. Available from: 
https://www.medrxiv.org/content/10.1101/2020.07.25.20162016v1 

156.  Wu D, Gao L, Xiong X, Chinazzi M, Vespignani A, Ma YA, et al. DeepGLEAM: A 
hybrid mechanistic and deep learning model for COVID-19 forecasting. 2021 Feb 12 
[cited 2022 Apr 15]; Available from: https://arxiv.org/abs/2102.06684v3 

157.  Pollett S, Johansson MA, Reich NG, Brett-Major D, del Valle SY, Venkatramanan S, et 
al. Recommended reporting items for epidemic forecasting and prediction research: The 
EPIFORGE 2020 guidelines. PLOS Medicine [Internet]. 2021 Oct 1 [cited 2021 Dec 
6];18(10):e1003793. Available from: 
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003793 

158.  COVID-19 Community Mobility Reports [Internet]. [cited 2021 Dec 14]. Available from: 
https://www.google.com/covid19/mobility/ 

159.  Covid-19 Social Distancing Scoreboard — Unacast [Internet]. [cited 2021 Dec 14]. 
Available from: https://www.unacast.com/covid19/social-distancing-scoreboard 

160.  SafeGraph | Academics [Internet]. [cited 2021 Dec 14]. Available from: 
https://www.safegraph.com/academics 

161.  COVID-19 - Mobility Trends Reports - Apple [Internet]. [cited 2021 Dec 14]. Available 
from: https://covid19.apple.com/mobility 

162.  Facebook Data For Good Movement Range Maps [Internet]. [cited 2021 Dec 14]. 
Available from: https://dataforgood.facebook.com/dfg/tools/movement-range-maps 

163.  endsCoronavirus Search Tr  - Google Trends [Internet]. [cited 2021 Dec 14]. Available 
from: https://trends.google.com/trends/story/GB_cu_JSW_pHABAADqAM_en 

164.  COVID-19 [Internet]. [cited 2021 Dec 14]. Available from: 
https://covid19.healthdata.org/global?view=mask-use&tab=trend 

165.  Facebook Data For Good COVID 19 Symptom Survey [Internet]. [cited 2021 Dec 14]. 
Available from: https://dataforgood.facebook.com/dfg/tools/covid-19-trends-and-impact-
survey#methodology 

166.  covid-19-data/mask-use at master · nytimes/covid-19-data · GitHub [Internet]. [cited 2021 
Dec 14]. Available from: https://github.com/nytimes/covid-19-data/tree/master/mask-use 

167.  Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel 
database of pandemic policies (Oxford COVID-19 Government Response Tracker). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 31 

Nature Human Behaviour 2021 5:4 [Internet]. 2021 Mar 8 [cited 2021 Dec 9];5(4):529–
38. Available from: https://www.nature.com/articles/s41562-021-01079-8 

168.  Adolph C, Amano K, Bang-Jensen B, Fullman N, Wilkerson J. Pandemic Politics: Timing 
State-Level Social Distancing Responses to COVID-19. Journal of Health Politics, Policy 
and Law. 2021 Apr 1;46(2):211–33.  

169.  Lutz CS, Huynh MP, Schroeder M, Anyatonwu S, Dahlgren FS, Danyluk G, et al. 
Applying infectious disease forecasting to public health: A path forward using influenza 
forecasting examples. BMC Public Health [Internet]. 2019 Dec 10 [cited 2021 Dec 
8];19(1):1–12. Available from: 
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-019-7966-8 

170.  Home - COVID 19 forecast hub [Internet]. [cited 2021 Dec 7]. Available from: 
https://covid19forecasthub.org/eval-reports/?state=US&week=2021-09-08 

171.  Johansson MA, Reich NG, Meyers LA, Lipsitch M. Preprints: An underutilized 
mechanism to accelerate outbreak science. PLOS Medicine [Internet]. 2018 Apr 1 [cited 
2021 Dec 14];15(4):e1002549. Available from: 
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002549 

172.  2019 Novel Coronavirus Research Compendium (NCRC) [Internet]. [cited 2021 Dec 8]. 
Available from: https://ncrc.jhsph.edu/ 

173.  Gardner L, Ratcliff J, Dong E, Katz A. A need for open public data standards and sharing 
in light of COVID-19. The Lancet Infectious Diseases [Internet]. 2021 Apr 1 [cited 2021 
Dec 9];21(4):e80. Available from: 
http://www.thelancet.com/article/S1473309920306356/fulltext 

174.  Reinhart A, Brooks L, Jahja M, Rumack A, Tang J, Agrawal S, et al. An Open Repository 
of Real-Time COVID-19 Indicators. medRxiv [Internet]. 2021 Nov 11 [cited 2021 Dec 
9];2021.07.12.21259660. Available from: 
https://www.medrxiv.org/content/10.1101/2021.07.12.21259660v2 

175.  Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between 
mobility patterns and COVID-19 transmission in the USA: a mathematical modelling 
study. The Lancet Infectious Diseases. 2020 Nov 1;20(11):1247–54.  

176.  Pollett S, Johansson MA, Reich NG, Brett-Major D, del Valle SY, Venkatramanan S, et 
al. Recommended reporting items for epidemic forecasting and prediction research: The 
EPIFORGE 2020 guidelines. PLOS Medicine [Internet]. 2021 Oct 1 [cited 2021 Dec 
8];18(10):e1003793. Available from: 
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003793 

177.  Meredith HR, Arehart E, Grantz KH, Beams A, Sheets T, Nelson R, et al. Coordinated 
Strategy for a Model-Based Decision Support Tool for Coronavirus Disease, Utah, USA. 
Emerging Infectious Diseases [Internet]. 2021 May 1 [cited 2021 Dec 9];27(5):1259. 
Available from: /pmc/articles/PMC8084489/ 

  
 
 
 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 32 

Supplementary Information 
 
Scopus Query: 

TITLE ( {covid-19} OR {sars-cov-2} )  
AND TITLE-ABS-KEY ( "model*" OR "forecast*" OR "project*" OR "predict*" )  
AND TITLE-ABS-KEY ( "US" OR "USA" OR "United States" OR "America" )  
AND NOT TITLE ( {protein} OR {clinical} OR {ct} OR {mental health} OR {psychological} OR  
     {cell} OR {cellular} OR {rna} OR {diagnos*} OR {antiviral} OR {antibod*} OR {plasma} )  
AND NOT TITLE-ABS-KEY ( "cancer" OR "molecul*" OR "cytokine" OR "receptor" OR 

"protein" OR "x-ray" OR "surgery" OR "surgical" )  
AND ( LIMIT-TO ( PUBSTAGE , "final" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO 

(LANGUAGE , "English" ) ).  
 
 
Supplementary Table 1. Categorizations for All Papers 
 

Category Sub-Category Papers 

Forecasting 
Window 

Short-term 22, 26, 31, 33, 37, 39, 41, 43, 44, 45, 48, 49, 51, 52, 56, 57, 59, 60, 64, 66, 67, 
69, 70, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 98, 100, 105, 108, 
110, 111, 114, 126, 129, 132, 134, 135, 139, 140, 141, 142, 143, 144, 145, 
148, 149, 150, 151, 153, 154, 156 

Long-term 21, 23, 24, 25, 27, 28, 29, 30, 32, 34, 35, 36, 38, 40, 42, 46, 47, 50, 52, 53, 54, 
55, 58, 59, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 76, 77, 81, 85, 86, 90, 93, 94, 
95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108, 109, 112, 113, 114, 115, 
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 128, 130, 131, 133, 
136, 137, 138, 141, 146, 147, 152, 154, 155 

Method Compartmental 21, 24, 25, 30, 32, 34, 35, 36, 38, 40, 41, 46, 47, 50, 53, 58, 59, 61, 62, 63, 68, 
71, 72, 73, 84, 86, 90, 92, 93, 95, 96, 97, 99, 101, 104, 107, 109, 112, 114, 
115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 128, 130, 131, 132, 133, 
134, 135, 136, 137, 138, 141, 144, 145, 147, 152 

Agent-based 28, 32, 35, 36, 53, 71, 90, 99, 109, 116, 121, 152 

Hybrid 23, 28, 37, 44, 45, 52, 55, 65, 66, 74, 76, 108, 129, 148, 150, 153, 154 

Statistical 22, 26, 27, 29, 30, 31, 33, 39, 42, 43, 48, 49, 51, 54, 56, 57, 60, 64, 67, 69, 70, 
72, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 94, 98, 100, 102, 
103, 105, 106, 110, 111, 113, 123, 126, 127, 139, 140, 142, 143, 146, 149, 
151, 155, 156 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 33 

Data Cases 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 
89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 
138, 139, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 151, 152, 153, 
154 

Climate 68, 83, 84, 91, 94, 123, 148, 149, 154 

Deaths 21, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 
49, 50, 52, 53, 54, 56, 58, 59, 61, 63, 64, 65, 66, 67, 69, 71, 74, 75, 76, 78, 79, 
81, 82, 83, 84, 85, 86, 87, 93, 96, 97, 102, 104, 106, 107, 109, 110, 113, 115, 
117, 118, 122, 123, 124, 125, 128, 129, 131, 134, 137, 138, 140, 142, 143, 
144, 145, 146, 148, 150, 153, 154, 155, 156 

Demographics 23, 28, 29, 31, 32, 33, 35, 36, 41, 53, 55, 62, 67, 68, 81, 84, 90, 91, 94, 96, 99, 
106, 109, 110, 116, 121, 122, 129, 139, 140, 148, 151, 152, 153 

Health risk 
factors 

23, 36, 84, 90, 94, 96, 139 

Hospital 
resources 

23, 25, 45, 61, 94, 114, 129, 142, 146, 148, 153 

Hospitalization 
and vaccination 
costs 

36 

Hospitalizations 23, 25, 40, 53, 63, 71, 90, 93, 96, 104, 109, 114, 142, 146, 148, 151 

Human 
behavior 

23, 61, 69, 71, 79, 81, 109, 121, 140 

Mobility 21, 25, 29, 31, 32, 33, 35, 38, 39, 48, 49, 61, 68, 71, 72, 81, 84, 88, 91, 95, 96, 
108, 110, 112, 114, 116, 123, 137, 139, 142, 148, 149, 153, 154, 155, 156 

Policy 23, 33, 39, 45, 48, 49, 67, 81, 84, 88, 91, 115, 117, 121, 146, 153 

Rt 139 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 34 

Stock market 
data 

70 

Testing 61, 71, 78, 81, 93, 94, 109, 123, 139, 142, 148, 149 

Vaccination 36, 90, 94 

Wastewater 
concentration of 
covid 

57 

Geographic 
Resolution 

County or lower 23, 25, 28, 31, 32, 33, 35, 37, 40, 41, 45, 49, 53, 54, 55, 57, 62, 75, 76, 88, 91, 
95, 96, 98, 99, 101, 108, 109, 110, 112, 116, 121, 129, 130, 136, 137, 139, 
140, 145, 147, 148, 149, 151, 153, 154, 155 

National 22, 24, 26, 27, 29, 34, 36, 42, 43, 45, 46, 47, 48, 49, 51, 54, 56, 58, 60, 64, 65, 
66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 
90, 92, 93, 94, 98, 100, 102, 103, 104, 106, 109, 111, 113, 114, 115, 118, 119, 
120, 122, 123, 124, 125, 126, 127, 131, 132, 133, 134, 136, 137, 142, 144, 
145, 154 

National 
regional 

48, 72, 104, 118, 132 

State 21, 25, 30, 37, 38, 39, 44, 49, 50, 52, 54, 58, 59, 61, 63, 68, 71, 83, 85, 95, 97, 
98, 99, 105, 107, 109, 110, 112, 116, 117, 125, 128, 129, 130, 133, 135, 138, 
141, 142, 143, 144, 145, 146, 148, 150, 151, 152, 153, 156 

State regional 63, 105 

Target Attack rate 51 

Cases 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 
47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 70, 71, 
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 
94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 
127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 
142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 154, 155 

Costs 36 

Critical care bed 
demand 

114 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 35 

Critical care 
beds 

78, 146 

Curves of 
probabilities 
that 
cases/deaths/rec
overies will 
exceed certain 
values 

24 

Deaths 21, 23, 24, 25, 26, 27, 34, 37, 39, 40, 43, 47, 50, 52, 53, 54, 56, 59, 61, 63, 65, 
66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 85, 87, 90, 93, 96, 97, 99, 102, 104, 106, 
107, 109, 110, 115, 116, 117, 118, 122, 123, 124, 125, 128, 131, 132, 133, 
134, 137, 138, 140, 142, 143, 144, 145, 146, 148, 150, 152, 153, 155, 156 

Demand on the 
supply chain 

84 

Duration of 
outbreak 

51, 64 

Growth rate 42, 60, 76, 77, 80, 84 

Hospitalizations 23, 36, 40, 53, 62, 63, 71, 90, 96, 107, 109, 116, 146, 148 

Icu admissions 36, 40, 63, 74 

Parameters 37 

Recoveries 24, 100, 113 

Rt 30, 39, 46, 108, 115, 121, 133, 135, 136, 137, 140, 141 

Spectral slope 55 

Stock prices 70 

Symptomatic 
cases 

73 

Tests 109 

Total deaths 85, 93 

Ventilators 78, 146, 148 

Number of 
Dates 

Predictions 

<2 months 39, 82, 88, 98, 140, 144, 145, 148, 151, 156 

>2 months 27, 31, 33, 60, 84, 92, 105, 110, 139, 142, 143, 149, 150, 153, 154 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.22273992doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.18.22273992
http://creativecommons.org/licenses/by/4.0/


 36 

Were Made 
From 

1 point 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 85, 86, 87, 89, 90, 91, 
93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 111, 112, 
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 141, 146, 147, 152, 
155 

Performance 
Evaluation 

Evaluate one 
model 

31, 44, 48, 49, 52, 59, 67, 86, 88, 89, 91, 108, 114, 129, 135, 154 

Baseline 39, 69, 79, 110, 150, 151, 156 

Compare 
internally 

22, 26, 33, 39, 56, 57, 60, 69, 70, 78, 79, 80, 81, 82, 83, 84, 87, 91, 92, 100, 
110, 148, 150, 151, 153, 156 

Compare to hub 110, 139, 140, 142, 143, 145, 148, 149, 150 

None 37, 41, 43, 45, 51, 64, 66, 75, 98, 105, 111, 126, 132, 134, 141, 144 

Not evaluable 21, 23, 24, 25, 27, 28, 29, 30, 32, 34, 35, 36, 38, 40, 42, 46, 47, 50, 53, 54, 55, 
58, 61, 62, 63, 65, 68, 71, 72, 73, 74, 76, 77, 85, 90, 93, 94, 95, 96, 97, 99, 
101, 102, 103, 104, 106, 107, 109, 112, 113, 115, 116, 117, 118, 119, 120, 
121, 122, 123, 124, 125, 127, 128, 130, 131, 133, 136, 137, 138, 146, 147, 
152, 155 

Uncertainty CIs/PIs 21, 23, 25, 34, 35, 36, 37, 39, 40, 41, 43, 45, 47, 50, 52, 53, 54, 55, 57, 58, 61, 
63, 65, 67, 69, 70, 71, 73, 76, 78, 82, 84, 89, 90, 91, 92, 93, 94, 96, 98, 99, 
102, 104, 105, 106, 108, 109, 111, 115, 121, 127, 129, 133, 134, 135, 136, 
137, 142, 143, 144, 146, 148, 150, 151, 153, 154, 156 

Exceedance 
probabilities 

24 

None 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 42, 44, 46, 48, 49, 51, 56, 59, 60, 62, 64, 
66, 68, 72, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 88, 95, 97, 100, 101, 103, 
107, 110, 112, 113, 114, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 
128, 130, 131, 132, 138, 139, 140, 141, 145, 147, 149, 152, 155 

Sensitivity 
analysis 

22, 28, 32, 46, 50, 53, 61, 71, 74, 90, 95, 96, 104, 107, 108, 116, 117, 138 
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Limitations Data availability 21, 33, 34, 41, 45, 50, 53, 59, 61, 62, 78, 84, 88, 106, 108, 117, 122, 129, 130, 
134, 140, 154 

Data quality 21, 30, 34, 41, 43, 47, 49, 54, 57, 61, 63, 78, 81, 84, 88, 95, 99, 101, 105, 106, 
107, 108, 109, 111, 114, 117, 120, 122, 125, 127, 129, 138, 139, 140, 142, 
151, 153, 154 

Disregarded 
factors 

21, 22, 23, 25, 28, 31, 32, 34, 35, 36, 38, 40, 43, 45, 47, 49, 50, 52, 53, 54, 59, 
62, 63, 65, 71, 74, 82, 84, 91, 94, 95, 97, 101, 104, 106, 107, 108, 109, 110, 
111, 114, 116, 117, 120, 126, 129, 130, 133, 138, 146, 151, 152, 154 

Limitations 
specific to the 
methods used 

30, 34, 39, 49, 51, 52, 53, 57, 61, 63, 82, 89, 92, 98, 99, 104, 105, 106, 108, 
109, 110, 116, 122, 129, 134, 136, 139, 143, 151, 154 

Limited 
generalizability 

22, 23, 35, 40, 49, 53, 88, 91, 111, 112, 116 

None 26, 27, 37, 42, 44, 46, 48, 55, 56, 58, 60, 64, 66, 67, 68, 69, 70, 72, 73, 75, 76, 
77, 79, 80, 83, 85, 87, 93, 100, 102, 103, 113, 115, 118, 119, 121, 123, 124, 
128, 131, 132, 135, 145, 147, 148, 149, 150, 155, 156 

Unknowable 
factors 

24, 29, 30, 32, 33, 34, 35, 36, 47, 52, 53, 54, 63, 86, 90, 96, 97, 101, 105, 108, 
109, 112, 116, 117, 126, 127, 129, 130, 133, 134, 137, 140, 141, 144, 146 
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