
1 | P a g e  
 

UOB Confidential 

From menarche to menopause: the impact of reproductive factors 1 

on the metabolic profile of over 65,000 women 2 

 3 

Gemma L Clayton1,2*, Maria Carolina Borges1,2*, Deborah A Lawlor1,2,3 4 

*Joint first authors 5 

1 MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 6 

2 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 7 

3 NIHR Bristol Biomedical Research Centre, Bristol, UK. 8 

 9 

Corresponding Author 10 

gemma.clayton@bristol.ac.uk 11 

University of Bristol, 12 

Oakfield House, Dr Gemma L Clayton 13 

 14 

Oakfield Road, 15 

Bristol, 16 

BS8 2BN 17 

 18 

Word count: 19 

Figures: 4 20 

Tables: 1 21 

  22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2023. ; https://doi.org/10.1101/2022.04.17.22273947doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:gemma.clayton@bristol.ac.uk
https://doi.org/10.1101/2022.04.17.22273947
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 | P a g e  
 

UOB Confidential 

Abstract (155) 23 
 24 

We explored the relation between age at menarche, parity and age at natural menopause with 25 

249 metabolic traits, measured using nuclear magnetic resonance (NMR), in up to 65,487 UK 26 

Biobank women using multivariable regression (MV), Mendelian randomization (MR) and a 27 

male negative control (parity only). Older age of menarche was related to a less atherogenic 28 

metabolic profile in MV and MR, which was largely attenuated when accounting for adult body 29 

mass index. In MV, higher parity related to complex changes in lipoprotein-related traits; these 30 

were not observed in male negative controls and were imprecisely estimated in MR. In MV 31 

and MR, older age at natural menopause was related to lower concentrations of inflammation 32 

markers, but inconsistent results were observed for LDL-related traits due to chronological 33 

age-specific effects. Our findings support a role of reproductive traits on later life metabolic 34 

profile and provide insights into identifying novel markers for the prevention of adverse 35 

cardiometabolic outcomes in women. 36 

37 
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Introduction 38 

  39 

Markers of women’s reproductive health, such as age at menarche, parity and age at 40 

menopause, have been associated with several common chronic conditions, including 41 

cardiometabolic diseases 1-6 and breast, ovarian and endometrial cancer 7-12. Some attempts 42 

have been made to explore the extent to which these associations are causal, as opposed to 43 

explained by residual confounding, using approaches such as Mendelian randomization (MR) 44 

and negative control designs, which are less prone to bias by key confounders from 45 

conventional observational studies. MR studies suggest a direct positive effect of age at 46 

menarche on breast cancer and an indirect inverse effect via body mass index (BMI) 13, as 47 

well as a possible bidirectional relationship between age at menarche and BMI 13,14. MR also 48 

supports a protective effect of older age at first birth on type 2 diabetes and cardiovascular 49 

diseases 15 and lower mean levels of BMI, fasting insulin and triglycerides in women and men 50 

16, while a partner negative control study provides some evidence of a ‘J-shaped’ effect of 51 

parity on coronary heart disease risk 5. In addition, evidence from MR studies indicate that 52 

older age at menopause increases the risk of breast, endometrial and ovarian cancer, reduces 53 

the risk of bone fractures and type 2 diabetes, and do not substantially affect BMI or 54 

cardiovascular diseases risk 17. 55 

Metabolites could act as mediators of the relationship of reproductive markers, and 56 

related hormonal changes, with chronic diseases 18-20. Determining the effect of women’s 57 

reproductive markers on multiple metabolites would be the first step to exploring this and could 58 

provide crucial insights into mechanisms underlying women’s long-term health. We have 59 

previously shown marked changes in metabolites, such as lipids, fatty acids, amino acids and 60 

inflammatory markers during pregnancy 20, through the menopausal transition 21, and among 61 

women on hormonal contraceptives containing estrogen 22. Many of these same metabolic 62 

measures are also related to cardiovascular diseases 19 and some cancers 23-26. The aim of 63 

this paper is to explore the extent to which women’s reproductive markers have a causal effect 64 

on 249 metabolic measures (covering lipids, fatty acids, amino acids, glycolysis, ketone bodies 65 

and an inflammatory marker). We focus on three reproductive traits that represent key events 66 

in women’s reproductive lives: (i) age at menarche, a marker of puberty timing, (ii) parity, a 67 

marker of repeated exposure to the physiological challenges of pregnancy, and (iii) age at 68 

menopause, a marker of reproductive aging. We explore the causal relationships between 69 

reproductive markers and metabolic measures by triangulating evidence 27 across 70 

multivariable regression, a negative control design (for parity only), and MR (Figure 1). Given 71 

each of these approaches has unique strengths and limitations, results that agree across them 72 

are less likely to be spurious 27. 73 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2023. ; https://doi.org/10.1101/2022.04.17.22273947doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.17.22273947
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 | P a g e  
 

UOB Confidential 

Results 74 

 We used data from 65,699 UK Biobank female participants with 249 metabolic 75 

measures quantified by nuclear magnetic resonance (NMR). Self-reported age at menarche 76 

(in years), parity (in number of live born children) and age at menopause (in years) were 77 

reported at baseline when participants mean age was 56 years old (range: 37 to 73). NMR 78 

metabolites were measured on blood samples taken at baseline or first repeat assessment 79 

(more details in methods). The characteristics of these participants are shown in Table 1 (and 80 

split by each of our reproductive markers (categorized) in Supplementary Tables 1-3). At 81 

recruitment (baseline) women were aged (mean) 56 (SD=8.0) years, 21% drank three or four 82 

times a week and 40% were previous/currents smokers. 81% of women had one or more live 83 

births whilst the mean age of menarche was 13 years (SD=1.3). 59% (37, 428) women 84 

reported they went through a natural menopause with a mean age of menopause of 49.7 years 85 

(SD=5.1). Supplementary Table 4 shows the distribution of NMR metabolic measures among 86 

UK Biobank females. The proportion of women with missing data across metabolic measures 87 

ranged from 0.3% to 6.1%.  88 

We used three approaches relying on different assumptions to explore the causal role 89 

of women’s reproductive markers on later life metabolic profile. For the first approach 90 

(‘multivariable regression’), we used linear regression models to estimate the association of 91 

reproductive markers with metabolic measures after adjusting for age at baseline, education 92 

and body composition at age 10. In sensitivity analyses, for the 55 non-derived metabolites, 93 

we categorised age at menarche, parity and age at natural menopause, tested for a linear 94 

trend and, where there was evidence of non-linearity, fit restricted cubic splines. For the 95 

second approach (‘negative control design’ – only applicable for parity), we used linear 96 

regression models to test whether number of live born children in men was associated with 97 

their metabolic measures; given men do not experience the repeated physiological stress of 98 

pregnancy, but are likely to demonstrate the same associations of confounders (eg. 99 

socioeconomic position, BMI, smoking) with number of live births, similar associations of 100 

number of live births with metabolic measures between men and women would indicate bias 101 

(e.g. due to confounding) rather than a causal effect of being exposed to the physiological 102 

stress of pregnancy on women’s metabolic profile. For the third approach (‘MR’), we selected 103 

single nucleotide polymorphisms (SNPs) as genetic instruments for each reproductive marker 104 

from previous genome-wide association studies (GWAS) and performed two-sample MR to 105 

estimate the effect of reproductive markers on metabolic measures using the standard inverse 106 

variance weighted (IVW) method. For both multivariable and MR analyses, we adopted P-107 

value < 0.00093, which accounts for the approximate number of independent tests as detailed 108 

in ‘Statistical analyses’. 109 
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 110 

Age at menarche 111 
 112 

In the main multivariable regression analyses (adjusting for age at baseline, education and 113 

body composition at age 10), older age at menarche was associated with higher concentration 114 

of glutamine, glycine, albumin, apolipoprotein A1, cholines, phosphatidylcholines, and 115 

sphingomyelins but lower concentration of alanine, branched-chain amino acids (isoleucine, 116 

leucine and valine), aromatic amino acids (phenylalanine and tyrosine), fatty acids 117 

(monounsaturated fatty acids (MUFA), omega-3 polyunsaturated fatty acids (PUFA), and 118 

saturated fatty acids (SFA)), glycolysis-related metabolites (glucose, lactate, pyruvate), 119 

acetoacetate, and glycoprotein acetyls (GlycA) (P < 0.00093) (Figure 2A and Supplementary 120 

Table 5). Older age at menarche was also associated with numerous lipoprotein-related traits 121 

at P < 0.00093, particularly with higher number of particles, size, and lipid content in high-122 

density lipoproteins (HDL) and lower number of particles, size, and lipid content in very low-123 

density lipoproteins (VLDL) (Figure 2A). The associations of age at menarche with HDL-124 

related traits were mostly due to larger HDL subclasses (i.e. medium, large and very large 125 

particles), while associations with VLDL-related traits were observed across VLDL subclasses 126 

(Supplementary Figure 1 and Supplementary Table 5). In sensitivity analyses with further 127 

adjustments for BMI, smoking and alcohol status at baseline, findings for an association of 128 

older age at menarche were largely or completely attenuated towards the null for most 129 

metabolic measures with few exceptions, such as glutamine, glycine, omega-3 PUFA, 130 

pyruvate, lactate, and acetoacetate (Supplementary Figure 2). There was evidence of non-131 

linearity between categories of age at menarche (<13, 13-14, >14 years) and 17 metabolites 132 

(Supplementary Table 6 and Supplementary Figure 3). Restricted cubic spline models (with 133 

3 knots at ages 11, 13, and 15 years) generally showed an increase in albumin, apolipoprotein 134 

A1, cholines, DHA, LA, and phosphatidylcholines with older age at menarche until 135 

approximately age 13, in line with our linear association, and then began to flatten and/or 136 

decrease (Supplementary Table 7 and Supplementary Figure 4). Whilst older age at 137 

menarche was related to an increase in GlycA until ~13 years and then began to flatten.  138 

For the MR analyses, we selected 389 SNPs as instruments for age at menarche, 139 

which explained 7.4% of its phenotypic variance with a corresponding mean F statistic of 63 140 

(Supplementary Table 8). Overall, MR estimates using IVW were in agreement with 141 

multivariable regression estimates in direction and magnitude (Figures 2A and 142 

Supplementary Figure 1); however, due to the higher degree of uncertainty for IVW 143 

estimates, no result passed our threshold for multiple testing correction (P < 0.00093). 144 

Following reviewer’s comments, we repeated the IVW analyses for a larger sample of women 145 

(N=216,514-241,244) for the eight biomarkers assayed using clinical chemistry techniques 146 
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that matched measures in the NMR metabolomics platform — i.e. albumin, apolipoprotein A1, 147 

apolipoprotein B, glucose, HDL-cholesterol, LDL-cholesterol, total cholesterol, and 148 

triglycerides. These results provided further evidence of older age at menarche being related 149 

to higher albumin, apolipoprotein A1, HDL-cholesterol, and lower triglycerides (P < 0.00093) 150 

(Figure 3). Given the a priori evidence of bidirectional effects between age at menarche and 151 

BMI, we also performed multivariable IVW accounting for adult BMI to estimate the direct 152 

effects of age at menarche on metabolic measures, which resulted in estimates partly or 153 

completely attenuated to the null for most metabolic measures with few exceptions, such as 154 

glutamine and glycine (Supplementary Figure 5 and 6). 155 

 156 

Parity 157 
 158 

In the main multivariable regression analyses (adjusting for age at baseline, education 159 

and body composition at age 10), higher parity was related to higher concentrations of glycine 160 

and leucine, but lower concentrations of histidine, fatty acids (docosahexaenoic acid (DHA), 161 

Omega 3, Omega 6 PUFA), pyruvate, ketone bodies  (acetate, acetoacetate, acetone and β-162 

hydroxybutyrate), and apolipoprotein A1 (P < 0.00093) (Figures 2B and Supplementary 163 

Table 9). Higher parity was also associated with numerous lipoprotein-related measures at P 164 

< 0.00093, particularly with lower and higher number of particles, size, and lipid content for 165 

HDL and VLDL, respectively, as well as lower size of LDL particles (Figure 2B). The 166 

associations of parity with lipoprotein-related measures were observed across most VLDL and 167 

HDL subclasses, whereas associations with LDL-related measures were mostly driven by 168 

larger LDL particles (Supplementary Figure 7 and Supplementary Table 9). In sensitivity 169 

analyses with further adjustments for BMI, smoking and alcohol status at baseline, higher 170 

parity associations were consistent for glycine, histidine, fatty acids, pyruvate, ketone bodies, 171 

apolipoprotein A1, and partly attenuated towards the null for VLDL- and HDL-related traits 172 

(Supplementary Figure 8). There was some evidence of non-linearity between parity 173 

(0,1,2,3+) and 28 metabolites (Supplementary Table 6 and Supplementary Figure 9). 174 

However, restricted cubic spline models (with knots at 1, 2, and 3) generally showed 175 

monotonic relationships for those with no to four pregnancies, consistent with the main 176 

analysis models (Supplementary Table 10 and Supplementary Figure 10). 177 

We used males as a negative control since men cannot experience the effects of being 178 

exposed to the stress test of pregnancy. Therefore, similar results between men and women 179 

would be indicative of bias, such as due to confounding by sociodemographic (e.g. education 180 

attainment) and biological (e.g. infertility) factors, rather than by an effect of repeated exposure 181 

to pregnancy. When using number of children in males as a negative control, we observed 182 

that associations for leucine, histidine, pyruvate, and ketone bodies were similar between men 183 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2023. ; https://doi.org/10.1101/2022.04.17.22273947doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.17.22273947
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 | P a g e  
 

UOB Confidential 

and women (i.e. directionally consistent, similar effect estimates and 95% confidence intervals 184 

overlapped between male and female estimates). On the other hand, association estimates 185 

for fatty acids, apolipoprotein A1, and lipoprotein-related traits were weaker or consistent with 186 

the null, and glycine was in opposite direction, in males compared to females (Figure 4). For 187 

the MR analyses, we selected 32 SNPs as instruments for parity, which explained 0.2% of its 188 

phenotypic variance with a corresponding mean F statistic of 31 (Supplementary Table 8). It 189 

is unclear whether estimates from multivariable regression and MR analyses are consistent 190 

with each other due to the high level of uncertainty in the latter (Figures 2B and 191 

Supplementary Figure 7), which persisted even when using the larger sample of women with 192 

selected biomarkers assayed by clinical chemistry (Figure 3).  193 

 194 

Age at natural menopause 195 
 196 

In the main multivariable regression analyses (adjusting for age at baseline, education 197 

and body composition at age 10), older age at menopause was related to higher glycine, PUFA 198 

(e.g. DHA and LA), albumin, apolipoprotein B and sphingomyelins, but lower concentration of 199 

MUFA, pyruvate, acetoacetate, creatinine and GlycA (P < 0.00093) (Figures 2C and 200 

Supplementary Table 11). Older age at menopause was also associated with numerous 201 

lipoprotein-related traits at P < 0.00093, particularly with higher number of particles and lipid 202 

content in LDL, larger size of HDL particles, and lower size of VLDL particles (Figure 2C). The 203 

associations between age at menopause and LDL-related traits were observed across LDL 204 

subclasses (i.e. from small to large), whereas associations with HDL-related traits were mostly 205 

driven by larger HDL particles (Supplementary Figure 11). In sensitivity analyses with further 206 

adjustments for BMI, smoking and alcohol status at baseline, associations between older age 207 

at natural menopause and metabolites remained similar, except for associations with HDL-208 

related traits which were partly attenuated (Supplementary Figure 12). There was evidence 209 

of non-linearity across 24 metabolites (Supplementary Table 6 and Supplementary Figure 210 

13) in the multivariable regression when menopause was categorised (<49, 49-50, 51-53, >53 211 

years). Restricted cubic spline models (with 4 knots) were generally consistent with the main 212 

analysis (assuming a linear association) until age at menopause ~55 years when most 213 

metabolites decreased (Supplementary Table 12 and Supplementary Figure 14). 214 

For the MR analyses, we selected 290 SNPs as instruments for age at natural 215 

menopause, which explained 8.2% of its phenotypic variance with a corresponding mean F 216 

statistic of 141 (Supplementary Table 8). Estimates from multivariable regression and MR 217 

analyses were inconsistent in direction for many metabolic measures (Figure 2C). In 218 

particular, in contrast to results from multivariable regression, MR analyses indicated older 219 

age at menopause to be related to lower concentration of fatty acids (e.g. LA), albumin, 220 
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apolipoprotein B, as well as lower number of particles, lipid content and size of LDL across 221 

subtypes (from small to large) (Figure 2C and Supplementary Figure 11). For some 222 

metabolites, such as GlycA and HDL-related traits, results were consistent in direction 223 

between multivariable regression and MR. For alanine, glutamine and glucose, MR analysis 224 

suggested older age of menopause to be related to lower circulating metabolite levels, which 225 

had not been observed in multivariable regression analysis (Figures 2C and Supplementary 226 

Table 11). As expected, there was more uncertainty in MR estimates and only results for 227 

glutamine and some LDL- and VLDL-related measures passed the threshold for multiple test 228 

correction (P < 0.00093). Repeating the MR analyses in the larger sample of women 229 

(N=216,514-241,244) with selected biomarkers assayed by clinical chemistry confirmed that 230 

older age at natural menopause was related to lower albumin, LDL-cholesterol, and total 231 

cholesterol at P < 0.00093 (Figure 3).  232 

We performed further analyses to investigate reasons underlying discrepant findings 233 

between multivariable and MR estimates for some metabolic measures. These analyses were 234 

restricted to the eight clinical chemistry biomarkers matching measures in the NMR platform 235 

to maximise statistical power since they have been measured in the full UK Biobank sample. 236 

First, we hypothesised that discrepant findings were related to differences in the sample used 237 

for multivariable regression, which excludes women with missing data on age at menopause 238 

(hereafter ‘selected sample’), and two-sample MR, which includes women even if they are 239 

missing data on age at natural menopause (hereafter ‘full sample’). To test that, we compared 240 

estimates from multivariable regression on the selected sample to MR on both the selected 241 

sample and full sample. In agreement with our hypothesis, multivariable regression and MR 242 

estimates for LDL-cholesterol and related traits (i.e. apolipoprotein B and total cholesterol) are 243 

comparable when restricting to the selected sample. In contrast, for albumin, discrepant 244 

results were related to differences between multivariable regression and MR rather than 245 

between selected and full sample (Supplementary Figure 15). Second, given women with 246 

missing data at age at menopause are typically pre-menopausal and younger, we explored 247 

age-stratified multivariable and MR estimates, which revealed a strong effect modification by 248 

chronological age on the association of age at menopause with LDL-c and related traits – e.g. 249 

older age at menopause is related to substantially lower LDL-cholesterol in younger women 250 

(≤ 50 y) (e.g. MV: -0.018 SD, 95%CI: -0.021, -0.015), but slightly higher LDL-cholesterol in 251 

older women (> 63 y) (e.g. MV: 0.004 SD, 95%CI: 0.003, 0.006) (Supplementary Figure 15). 252 

Differences related to chronological age at baseline were also observed for other biomarkers, 253 

such as albumin. This age patterned results were largely similar when excluding women using 254 

statins at baseline or with a history of using hormone replacement therapy (HRT) 255 

(Supplementary Figure 16). 256 
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 257 

Exploring the plausibility of MR assumptions 258 

 259 

We conducted a series of sensitivity analyses to explore the plausibility of key MR 260 

assumptions, required for the method to provide a valid test of the presence of a causal effect. 261 

First, we tested whether MR findings are likely to be biased by population stratification, 262 

assortative mating and indirect genetic effects of parents using two approaches: (i) performing 263 

two-sample MR analyses using (sex-combined) data from a recent within-siblings GWAS, and 264 

(ii) conducting two-sample MR on negative control outcomes (i.e. skin colour and skin tanning 265 

ability). Two-sample MR estimates for the effect of genetic susceptibility for older age at 266 

menarche, parity, and age at natural menopause on five available biomarkers was broadly 267 

consistent when estimated among unrelated individuals or between siblings. Results for age 268 

at menarche were slightly overestimated for triglycerides and underestimated for glycated 269 

haemoglobin in unrelated individuals, while results for a positive relation between age at 270 

natural menopause and HDL-cholesterol was supported by analyses between siblings but not 271 

among unrelated individuals (Supplementary Figure 17). We did not observe an association 272 

of genetically-predicted reproductive markers with skin colour or tanning (Supplementary 273 

Table 13). Taken together, these sensitivity analyses indicate that our main MR estimates are 274 

unlikely to be substantially biased by population stratification, assortative mating and indirect 275 

genetic effects of parents.  276 

Second, we explored the presence of bias due to pleiotropic variants by using MR 277 

methods other than IVW: the weighted median estimator and MR-Egger. These methods can 278 

provide valid tests for the presence of a causal effect under different (and weaker) 279 

assumptions about the nature of the underlying horizontal pleiotropy compared to IVW. 280 

Estimates from IVW and weighted median were consistent in direction for most relationships 281 

between reproductive markers and metabolic measures. In most instances, estimates from 282 

MR-Egger method were uninformative given the high degree of uncertainty (Supplementary 283 

Figures 18, 19, 20).  284 

Third, we assessed potential bias due to sample overlap from including UK Biobank 285 

individuals in genetic association estimates for both exposures and outcomes. This was 286 

achieved by using data from previous GWAS that did not include UK Biobank, available for 287 

age at menarche and age at natural menopause, to select SNPs (and genetic associations 288 

estimates with exposures) for two-sample MR analyses (Supplementary Table 14). When 289 

using SNPs selected from previous GWASes that did not include UK Biobank participants, 290 

results for of age at menarche and age at natural menopause were largely consistent, although 291 
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less precise, compared to estimates from the main analyses using data with overlapping 292 

samples (Supplementary Figure 21 and 22).  293 

 294 

Discussion 295 

 296 

Our findings indicate that reproductive markers across women’s lifespan are 297 

associated with distinct metabolic signatures in later life. Age at menarche, parity and age at 298 

natural menopause were related to numerous metabolic measures, representing multiple 299 

dimensions of metabolism, including amino acids, fatty acids, glucose, ketone bodies, and 300 

lipoprotein metabolism (see Summary box for key findings).  301 

Age at menarche 302 

Age at menarche is frequently used as a proxy of puberty onset among females in 303 

epidemiological studies 2,28. Our findings for the relation of age at menarche with metabolic 304 

measures were broadly concordant between multivariable regression and MR analyses, and 305 

were supportive of older puberty onset being related to a less atherogenic metabolic profile 306 

among adult women.  307 

Both multivariable regression and MR estimates were markedly attenuated when 308 

accounting for adult BMI for most metabolic measures with few exceptions (e.g. glutamine and 309 

glycine), suggesting that the effect of age at menarche on adult metabolites are largely 310 

explained by adult BMI. There is evidence of a bi-directional relationship between puberty 311 

timing and adiposity, where pre-pubertal adiposity influences puberty timing, which in turn 312 

influences post-pubertal adiposity 13,28,29. In addition, genetic variants influencing age at 313 

menarche are known to influence BMI before and after puberty 28,29.  314 

The complex relationship between puberty timing and adiposity complicates inferences 315 

of the effect of age at menarche on the metabolic profile or disease risk in adulthood since the 316 

observed associations could reflect adult BMI mediating the effect of early age at menarche 317 

on metabolic measures or a confounding path from pre-puberty BMI. A previous one-sample 318 

MR study 28 investigating the effect of age at menarche on NMR metabolic measures reported 319 

that results were largely attenuated when accounting for BMI at 8 years old, which suggests 320 

that the estimated effect of age at menarche on the metabolic profile is largely confounded by 321 

pre-pubertal adiposity, though larger MR studies with repeat BMI and metabolic profiles before 322 

and after menarche are needed to rule out a potential causal mediated effect. In our study, 323 

accounting for self-reported adiposity in childhood in multivariable regression models did not 324 

substantially change effect estimates. This discrepancy might be related to residual 325 
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confounding in our study (e.g. due to higher measurement error in our measure of childhood 326 

adiposity) or different age distributions between ours (mean=55 years) and this previous study 327 

(mean=18 years).  328 

Parity 329 

Pregnant women undergo marked changes in physiology (e.g. lipid/glucose 330 

metabolism, adiposity, vascular function, hormone levels, and inflammatory response) and 331 

lifestyle (e.g. diet and physical activity 30), most of which return to their pre-pregnancy state 332 

after delivery 20,30. However, there are concerns that some of these changes might persist and 333 

accumulate over multiple pregnancies, impacting women’s cardiovascular health in the future, 334 

or that pregnancy acts as a stress test, unmasking an underlying high risk for cardiovascular 335 

disease 30,31. We used parity as a marker of being exposed to the physiological stress of 336 

multiple pregnancies. 337 

In multivariable regression analyses, we found that higher parity, proxied by number of 338 

children ever born, was associated with both favorable (e.g. less LDL particles) and 339 

unfavorable (e.g. higher number of particles and lipid content in VLDL) changes in the 340 

metabolic profile. Evidence from MR analyses is uncertain due to the high imprecision in effect 341 

estimates. Using males as a negative control, we showed that the associations between 342 

number of children ever born and metabolic measures among men were largely null for 343 

lipoprotein-related measures or in opposite direction for glycine compared to females. This 344 

inconsistency between female and male findings reinforces that the metabolic signature 345 

associated with parity among females largely reflects a causal effect of parity on the 346 

metabolome rather than spurious results due to confounding or selection bias (assuming 347 

confounding structures and selection mechanisms are similar between men and women). A 348 

possible mechanism is that higher parity leads to greater insulin resistance in pregnant women 349 

and subsequently increases the production and secretion of hepatic triglycerides, which can 350 

lead to an increased lipid content in VLDL particles. 351 

In line with our findings, other studies have reported that higher parity is related to 352 

higher cardiovascular disease risk in women 32. Negative control analyses (comparing 353 

associations of number of children in women and men) have been conducted previously in 354 

two UK cohorts, with one suggesting that associations with lipids and body composition in 355 

women may be due to confounding (as associations are similar in women and men) 33,34 and 356 

the second, the largest of these studies to date, and the only one to look at disease end points, 357 

finding evidence of a stronger association for risk factors and coronary heart disease in women 358 

than men suggesting parity itself has some influence on cardiovascular disease risk 5, 359 
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Furthermore, studies in women only that are able to control for pre-pregnancy measures, 360 

suggest pregnancy and parity have a potentially lasting effect on adverse lipid profiles 35,36. 361 

Age at natural menopause 362 

Previous conventional observational studies suggested older age at natural 363 

menopause to be associated with lower risk of cardiometabolic diseases 37 over and above 364 

the underlying age trajectory 21,38. In our study, estimates for VLDL- and LDL-related traits 365 

were inconsistent between multivariable regressions and MR; the former suggests older age 366 

at menopause to be related to a more atherogenic profile, while the latter indicates the 367 

opposite. On the other hand, both multivariable regression and MR estimates suggested older 368 

age at menopause to be related to higher lipid content in HDL particles and lower systemic 369 

inflammation, as proxied by GlycA. Consistent with Auro et al 39, a  recent multivariable 370 

analysis of 218 Finnish women going through the menopause transition found that menopause 371 

was similarly associated with a higher lipid content in HDL particles and lower systemic 372 

inflammation 40. Whilst a recent longitudinal study of up to 3892 women with up to 12 CVD risk 373 

factors measured as they went through the menopausal transitional also found higher HDL 374 

and non-HDL associations, stronger effects of chronological rather than reproductive aging 375 

were observed 41.  376 

Findings from our multivariable regression analyses for age at natural menopause 377 

should be interpreted with caution given 40% of women were excluded from these analyses 378 

as they had not experienced a natural menopause and 7% of the women had experienced 379 

menopause less than two years before study recruitment (when blood samples for NMR 380 

metabolomics were collected). In follow-up analyses, we have shown that discrepancy in 381 

findings between multivariable and MR for LDL-related traits were related to the exclusion of 382 

younger pre-menopausal women in multivariable regression. In addition, age-stratified 383 

analyses revealed that age at menopause is related to lower LDL-cholesterol in younger 384 

women but slightly higher LDL-cholesterol in older women. These results did not seem to be 385 

explained by higher intake of statins or HRT among older women, although such analyses 386 

should be interpreted with caution given the potential for collider stratification bias. Previous 387 

longitudinal studies indicated that LDL-cholesterol 41 and related traits increase sharply 388 

through the menopause transition and early postmenopausal years and then plateau with 389 

increasing postmenopausal years 42. In our cross-sectional analyses, we observed a non-390 

linear pattern for several metabolites, such that mean metabolite levels increase linearly with 391 

age at menopause until 50-55 years old and then decline. Taken together, we speculate that 392 

these findings explain the pattern by chronological age in the association between timing of 393 

menopause and LDL-related traits. However, larger longitudinal studies with longer follow-up 394 
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are needed to tease apart the complex nature, and possible time-varying, effect of 395 

reproductive aging on the metabolome. 396 

The largest two-sample MR analysis to date indicate that older age at menopause is 397 

related to lower risk of type 2 diabetes in females, but no difference in risk of cardiovascular 398 

disease or dyslipidemia (data combining males and females) 43. This is in agreement with our 399 

analyses suggesting older age at natural menopause is related to lower glucose, and with 400 

evidence from randomized controlled trials of estrogen therapy pointing to a protective effect 401 

on type 2 diabetes but no change in risk of cardiovascular diseases 44-46. The mechanisms 402 

underlying the putative protective effect of older menopause on the risk of metabolic diseases 403 

in MR studies is unclear, but might reflect an effect of prolonged exposure to sex hormones 404 

or of slower cell aging, given genetic variants associated with age at natural menopause are 405 

highly enriched for genes in DNA damage response pathways 43,47. The consistent results 406 

between MR of age at menopause and randomized controlled trials of estrogen therapy for 407 

type 2 diabetes indicates that prolonged exposure to sex hormones is likely to be involved.  408 

Moreover, the lipid metabolism is regulated by estrogen, meaning that lower levels of estrogen 409 

during menopause can cause an increase in lipids, particularly LDL, HDL, and triglycerides. 410 

Strengths and limitations 411 

To the best of our knowledge, this is the largest study to examine the long-term impact 412 

of key events in reproductive life on the multiple metabolic measures in women. The use of 413 

large-scale metabolomics data and the integration of multiple analytical approaches are key 414 

strengths of our study as these allowed us to strengthen the inference of the causal impact of 415 

these reproductive markers on the metabolic health of females. 416 

It is important to note that the validity of our findings rely on the plausibility of the 417 

assumptions underlying each analytical approach. For multivariable regression, we cannot 418 

exclude the possibility of bias due to residual confounding, especially given we were unable 419 

to adjust for key confounders in multivariable regression as measures of these were not 420 

available at or before the exposure to reproductive factors. For the use of negative controls, 421 

we rely on the unverifiable assumption that residual confounding and selection bias is similar 422 

in females and males analyses. It is plausible that factors relating to metabolites, such as age, 423 

ethnicity, socioeconomic position, and BMI, relate similarly to number of children in females 424 

and males and hence that confounding structures are similar. For MR, we have conducted 425 

extensive sensitivity analyses supporting the validity of our results; however, we cannot rule 426 

out the possibility of bias due to violations of the core instrumental variable assumptions. In 427 

addition, MR analyses for parity was uninformative given the low proportion of phenotypic 428 

variance explained by the genetic instruments.  429 
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When assessing non-linearity, our multivariable regression results were generally 430 

consistent between the main analysis model (assuming a linear relationship) and categories 431 

for most metabolites. For metabolites that showed evidence of non-linearity, many seemed to 432 

plateau and decrease with older ages of menarche and menopause and similarly with higher 433 

parity (however, this was also where we had the least amount of data, which could be driving 434 

some of the non-linearity). We were unable to fit non-linear associations in an MR framework 435 

given this would require much larger sample sizes; future studies with larger sample sizes 436 

should be better powered to examine potential non-linear effects using MR and contrast those 437 

found in the multivariable regression. 438 

Whilst some key sources of bias may remain in each method, a key strength of our 439 

study is exploring and focusing on results that are consistent across the different methods. As 440 

the sources of bias differ between the methods causal inference is strengthened where there 441 

is consistency, as we see for example in associations between multivariable regression and 442 

MR for age at menarche, multivariable regression and negative control analyses for parity and 443 

multivariable regression and MR for age at natural menopause in relation to HDL-related 444 

measures and GlycA (but not LDL-related and other measures).  445 

Across all analytical approaches, we cannot discard the presence of selection biases 446 

from using UK Biobank data given the low recruitment rate of the study (5%) and inclusion of 447 

healthier/wealthier individuals compared to the general UK population 48. In addition, the 448 

metabolic traits measured by the NMR metabolomics platform cover a limited set of metabolic 449 

pathways49, and, therefore, future studies including data from more sensitive metabolomics 450 

techniques, such as mass spectrometry, may improve coverage of the metabolome and 451 

provide insights into additional biological processes related to reproductive events. 452 

Triangulating results across different methods is useful for causal inference and where there 453 

are discrepant results it is important to explore these. We have found that the discrepant 454 

results between MR and multivariable regression for the association of age at menopause with 455 

some of the metabolites (notably LDL-c and related metabolites) are due to the exclusion of 456 

women with missing data on age at menopause in multivariable regression and a potential 457 

effect modification by chronological age in the association between age at menopause and 458 

some metabolic measures. However, we acknowledge we lack power to fully explore the 459 

mechanisms for this given the current number of UK Biobank participants with NMR data. 460 

 461 

Conclusions 462 

Overall, older age at menarche/menopause were related to a more favorable metabolic 463 

profile, while a mixed pattern was observed for higher parity. Evidence supporting a relation 464 
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between later pubertal timing and a less atherogenic metabolic profile was largely explained 465 

by adult BMI, while findings supporting a relation between slower reproductive aging and a 466 

less atherogenic metabolic profile was mostly observed among younger women. These results 467 

could contribute to identifying novel markers for the prevention of adverse cardiometabolic 468 

outcomes in women and/or methods for accurate risk prediction. 469 

 470 

Methods 471 
 472 

Study participants 473 

UK Biobank is a population-based cohort consisting of approximately 500,000 men 474 

and women recruited between 2006 and 2010 from across the UK (age range at recruitment: 475 

38 years to 73 years old) 50. UK Biobank participants have provided a range of information via 476 

questionnaires and interviews, including on sociodemographic, lifestyle, health, and 477 

reproductive factors; as well as biological samples and physical measures (data available at 478 

www.ukbiobank.ac.uk). A subset of approximately 20,000 were selected for repeat 479 

assessment between 2012 and 2013. A full description of the study design, participants and 480 

quality control (QC) methods have been described in detail previously 51. UK Biobank received 481 

ethical approval from the Research Ethics Committee (REC reference for UK Biobank is 482 

11/NW/0382). The current work was approved under UK Biobank Project 30418 and 81499. 483 

 484 

Reproductive traits 485 

Women were asked a detailed set of questions about their reproductive health via a 486 

self-reported questionnaire. Parity was based on the number of live births reported whilst in 487 

men number of children were reported. Age at menarche and age at natural menopause were 488 

reported in years. Age at natural menopause therefore excluded women who had not yet gone 489 

through the menopause or who had a surgical menopause. Those who had not gone through 490 

a natural menopause (N=25,70) had either (i) not yet gone through the menopause (15,418, 491 

60%) (ii) had a surgical menopause or other (10,322, 40%) (Table 1, Supplementary Table 492 

3).  493 

 494 

NMR metabolic measures 495 

Metabolic traits were measured using a targeted high-throughput NMR metabolomics 496 

(Nightingale Health Ltd; biomarker quantification version 2020)52. This platform provides 497 

simultaneous quantification of 249 metabolic measures, consisting of concentrations of 165 498 
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metabolic measures and 84 derived ratios, encompassing routine lipids, lipoprotein subclass 499 

profiling (including lipid composition within 14 subclasses), fatty acid composition, and various 500 

low-molecular weight metabolites such as amino acids, ketone bodies and glycolysis 501 

metabolites. Technical details and epidemiological applications have been previously 502 

reviewed 18,53. Pre-release data from a random subset of 126,846 non-fasting plasma samples 503 

collected at baseline or first repeat assessment were made available to early access analysts. 504 

121,577 samples were retained for analyses after removing duplicates and observations not 505 

passing quality control (QC) (i.e. sample QC flag “Low protein”, biomarker QC flag “Technical 506 

error”, or samples with insufficient material). All metabolic measures were standardised and 507 

normalised prior to analyses using rank-based inverse normal transformation. 508 

 509 

Clinical chemistry measures 510 

We used data on the eight biomarkers assayed using clinical chemistry techniques, as 511 

previously described 54, that matched measures in the NMR metabolomics platform — i.e. 512 

albumin, apolipoprotein A1, apolipoprotein B, glucose, HDL-cholesterol, LDL-cholesterol, total 513 

cholesterol, and triglycerides. These measures are available in most UK Biobank participants 514 

and were used in Mendelian randomization analyses, as described under ‘Statistical 515 

analyses’, to increase statistical power and check agreement with results from NMR metabolic 516 

measures. All biomarkers were standardised and normalised prior to analyses using rank-517 

based inverse normal transformation. 518 

 519 

Summary data on genetic associations with metabolic measures 520 

Genotype data was available for 488,377 UK Biobank participants, of which 49,979 521 

were genotyped using the UK BiLEVE array and 438,398 using the UK Biobank axiom array. 522 

Pre-imputation QC, phasing and imputation are described elsewhere 55. Genotype imputation 523 

was performed using IMPUTE2 algorithms 56 to a reference set combining the UK10K 524 

haplotype and HRC reference panels 57. Post-imputation QC was performed as described in 525 

the “UK Biobank Genetic Data: MRC-IEU Quality Control” documentation 58. Genetic 526 

association data for metabolic measures was generated using the MRC IEU UK Biobank 527 

GWAS pipeline 59. Briefly, we restricted the sample to individuals of ‘European’ ancestry as 528 

defined by the largest cluster in an in-house k-means cluster analysis performed using the first 529 

4 principal components provided by UK Biobank in the statistical software environment R 530 

(n=464,708). Genome-wide association analysis (GWAS) was conducted using linear mixed 531 

model (LMM) association method as implemented in BOLT-LMM (v2.3) 60. Population 532 

structure was modelled using 143,006 directly genotyped SNPs (MAF > 0.01; genotyping rate 533 
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> 0.015; Hardy-Weinberg equilibrium p-value < 0.0001 and LD pruning to an r2 threshold of 534 

0.1 using PLINKv2.00). Models were adjusted for genotyping array and fasting time and were 535 

restricted to the subsample of women.  536 

 537 

Covariables 538 

For multivariable analyses, confounders were defined a priori based on them being 539 

known or plausible causal factors for reproductive traits and cardiovascular risk via 540 

higher/lower metabolites. A minimal set of adjustments were made in the main multivariable 541 

regression analyses as most confounders were not assessed prior to or around when the 542 

reproductive traits occurred. Specifically, we adjusted for education as a categorical variable 543 

(University, A-levels, O levels (or equivalent) or other), age at baseline and retrospectively 544 

reported body size at age 10 (average, thinner, plumper) in all regression analyses. In 545 

additional analyses we also partially adjusted for the full set of defined confounders using 546 

baseline measurements (mostly after the occurrence of exposures) as correlates of the before 547 

exposure measures (see below in statistical analyses). 548 

 549 

Statistical analyses 550 

We used multiple approaches (i.e. multivariable regression, negative control and MR) 551 

relying on different assumptions to explore the causal role of reproductive traits on later life 552 

metabolic profile. All analysis was conducted using Stata16 (StataCorp, College Station, TX) 553 

or R 4.1.1 (R Foundation for Statistical Computing, Vienna, Austria) and results presented as 554 

differences in means for each metabolic trait in standard deviation (SD) units per 1 child 555 

difference for number of children and per 1 year difference for age at menarche and age at 556 

menopause, facilitating the comparison of results from different methods.  557 

For both multivariable and MR analyses, we corrected for multiple testing using the 558 

Bonferroni method considering 3*18=54 independent tests (P=0.05/54≈0.00093). This was 559 

based on the three exposures included in our analyses (i.e. age at menarche, parity, and age 560 

at natural menopause) and the 18 independent features explaining over 95% of variance in 561 

the highly correlated NMR metabolic measures in our dataset as estimated by principal 562 

component analysis 61.  563 

 564 

(a) Multivariable regression 565 

 In the main analyses we used linear regression, with three sets of models: (1) no 566 

adjustments, (2) adjusted for education, age at baseline and body composition at age 10 and 567 
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(3) model (2) additionally adjusted for baseline variables collected at the first assessment at 568 

(mean) age 56 years (SD=8) including BMI, smoking and alcohol status. By adjusting for the 569 

baseline variables at the first assessment we can either block the confounding path or create 570 

bias if these variables are mediators. If the results change between model (2) and (3) it is hard 571 

to distinguish whether its correct adjustment for confounding or whether it is a mediated path. 572 

Because of this we considered model (2) to be the best causal estimate and present models 573 

(1) and (3) in supplementary material. For age at menarche, education will have been 574 

measured after the exposure. However, as it is influenced by parental education, income and 575 

occupation (occurring before menarche) unlikely to be determined by age at menarche, we a 576 

priori considered a proxy of early life 62. In sensitivity analyses we assessed whether there 577 

was a non-linear relationship between each reproductive trait and 55 non-derived metabolites. 578 

For ease of presentation, we excluded measures that were derived (eg ratios) or related to 579 

lipoprotein subfractions as these are highly correlated with one or more of the 55 non-derived 580 

metabolites. We compared the categorised reproductive trait entered into the model as a 581 

categorical variable and as a continuous variable using a likelihood ratio test. Age at menarche 582 

and age at menopause were categorised into tertiles (<13, 13-14, >14 years) and quartiles 583 

(<49, 49-50, 51-53, >53 years), respectively. Parity was categorised as 0, 1, 2, and 3+. Results 584 

were plotted against the first reference category and the p-value for linear trend reported. For 585 

any metabolites that showed evidence of non-linearity, restricted cubic splines (with either 3, 586 

4, or 5 knots placed at percentiles as suggested by Harrell63 for each reproductive trait) were 587 

fit and compared to the main analysis model (assuming a linear association) using AIC (BIC 588 

and root mean square error also shown).   589 

 590 

(b) Negative control analyses 591 

Negative control analyses aim to emulate a condition that cannot involve the 592 

hypothesized causal mechanism but is likely to have similar sources of bias that may have 593 

been present in the association of interest 5,27. We used males as negative controls to assess 594 

potential biases in the association between parity (proxied by number of live births) and 595 

metabolic measures in women. If associations between number of live births and metabolic 596 

measures in women reflect a causal effect of parity on women’s metabolic health, one would 597 

expect number of live births to be associated with metabolic measures in women but not in 598 

men given men do not experience pregnancy. Similar to the multivariable regression analyses, 599 

we test the association between number of children (men) and their measured metabolites 600 

and present three sets of models: (1) with no adjustments, (2) adjusted for education, age at 601 

baseline and retrospectively self-reported body composition at age 10 and (3) model (2) 602 
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additionally adjusted for baseline variables collected at the first assessment at (mean) age 56 603 

years (SD=8) including BMI, smoking and alcohol status.  604 

 605 

(c) Mendelian randomization 606 

We used two-sample MR to explore the effect of older age at menarche, higher parity, and 607 

older age at natural menopause on women’s metabolic profile. Publicly available GWAS 608 

summary data were used for SNP-reproductive traits associations (sample 1) and UK Biobank 609 

summary GWAS data for SNP-metabolite associations (sample 2). This approach does not 610 

require all participants to have data on both exposure and outcome, and, therefore, allows us 611 

to retain the largest possible sample sizes, meaning that power to detect a causal effect is 612 

increased 64.  613 

 614 

Selection of genetic instruments 615 

 616 

Age at menarche 617 

Genetic instruments were selected from a GWAS of age at menarche, which included 618 

329,345 women of European ancestry (Supplementary Table 14) 65. Linear regression 619 

models were used to estimate the association between genetic variants and age at menarche 620 

(in years) adjusting for age at study visit and study-specific covariables. For our analyses, we 621 

selected the 389 independent SNPs reported by the GWAS to be strongly associated with age 622 

at menarche (P-value < 5*10-8) in the discovery metanalyses. Given the age at menarche 623 

GWAS included UK Biobank participants (maximum estimated sample overlap: ~20%), we 624 

have also selected an additional set of age at menarche-associated genetic variants (N = 68 625 

SNPs) using data from a previous GWAS that did not including UK Biobank (details in 626 

‘Sensitivity analyses’ below and Supplementary Table 14) 66. 627 

 628 

Parity 629 

Genetic instruments were selected from a GWAS of number of children ever born , as 630 

a proxy of parity, which included 785,604 men and women of European ancestry from 45 631 

studies (Supplementary Table 14) 67. Number of children ever born was treated as a 632 

continuous measure and included both parous and nulliparous women. Linear regression 633 

models were used to estimate the association between genetic variants and number of 634 

children ever born adjusting for principal components of ancestry, birth year, its square and 635 

cubic, to control for non-linear birth cohort effects. Family-based studies controlled for family 636 
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structure or excluded relatives. The sex-combined metanalysis also included interactions of 637 

birth year and its polynomials with sex. For our analyses, we used the 32 independent SNPs 638 

reported by the GWAS to be strongly associated with number of children ever born (P-value 639 

< 5*10-8) in either the sex-combined (28 SNPs) or female-specific (4 SNPs) metanalyses and 640 

summary association data from the female-specific metanalyses. The GWAS included UK 641 

Biobank (maximum estimated sample overlap: 14%). 642 

 643 

Age at natural menopause 644 

Genetic instruments were selected from a GWAS of age at natural menopause 645 

conducted in 201,323 women of European ancestry (Supplementary Table 14) 17. Linear 646 

regression models were used to estimate the association between genetic variants and age 647 

at natural menopause (in years). For our analyses, we selected 290 SNPs reported by the 648 

GWAS to be strongly associated with age at natural menopause (P-value < 5*10-8). Where 649 

available, we used association data from the sample combining discovery and replication 650 

stages (N = 496,151). Given the age at menarche GWAS included UK Biobank participants 651 

(maximum estimated sample overlap: 13% considering the GWAS combined discovery and 652 

replication samples), we have also selected an additional set of age at natural menopause-653 

associated genetic variants (N = 42 SNPs) using data from a previous GWAS that did not 654 

include UK Biobank (details in ‘Sensitivity analyses’ below and Supplementary Table 14) 68. 655 

 656 

Main analyses 657 

We used a standard two-sample MR method, the inverse variance weighted (IVW) 658 

estimator, to explore the effect of age at menarche, parity and age at natural menopause on 659 

women’s metabolic profile by combining genetic association estimates for reproductive traits 660 

(extracted from published GWASes data) with genetic association estimates for the metabolic 661 

measures (generated from UK Biobank data). Given a priori evidence of a potential 662 

bidirectional relationship between age at menarche and BMI, we also used multivariable IVW 663 

to test the effect of age at menarche on metabolic measures accounting for adult BMI. For 664 

multivariable IVW analysis, apart from the data previously described, we used summary 665 

genetic association data for BMI extracted from the 2015 metanalysis by the GIANT 666 

consortium (N = 339,224 individuals not including UK Biobank participants) 69. 667 

 668 

Sensitivity analyses 669 

Several sensitivity analyses were conducted to explore the plausibility of the three core 670 

MR assumptions, which are required for the method to provide a valid test of the presence of 671 

a causal effect. 672 
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  673 

Assumption 1: the genetic instrument must be associated with the reproductive trait  674 

We selected genetic variants reported to be strongly associated with reproductive in 675 

the largest available GWAS and estimated the proportion of phenotypic variance explained 676 

(R2) and F-statistics for the association of SNPs with reproductive traits among females as an 677 

indicator of instrument strength.  678 

  679 

Assumption 2: the association between genetic instrument and outcome is unconfounded 680 

One of the main motivations for using MR is to avoid unmeasured confounding. 681 

However, there is growing evidence that, in some instances, MR studies can be confounded 682 

when using data from unrelated individuals due to population stratification, assortative mating 683 

and indirect genetic effects of parents 70,71. We used two approaches to explore whether these 684 

were likely to bias our main results. First, we used sex-combined data from a recent within-685 

sibship GWAS, including up to 159,701 siblings from 17 cohorts, to test the effect of genetic 686 

susceptibility to higher age at menarche, parity and age at menopause on metabolic markers 687 

(i.e. LDL-cholesterol, triglycerides, HDL-cholesterol, C-reactive protein, and glycated 688 

haemoglobin) 70. C-reactive protein and glycated haemoglobin were used as proxies for 689 

inflammation and hyperglycaemia, respectively, given GlycA and glucose were not available. 690 

Within-sibling MR designs control for variation in parental genotypes, and so should not be 691 

affected by population stratification, assortative mating and indirect genetic effects of parents 692 

70-72. Second, we performed IVW on negative control outcomes (i.e. skin colour and skin 693 

tanning ability) since these could not conceivably be affected by the exposures and any 694 

evidence for an association between reproductive traits and, these negative control outcomes 695 

would be indicative of residual population stratification in the exposure GWAS 73. 696 

  697 

Assumption 3: the genetic instrument does not affect the outcome except through its possible 698 

effect on the exposure  699 

A key violation of this assumption is known as horizontal pleiotropy, where genetic 700 

variants influence the outcome through pathways that are not mediated by the exposure 74. 701 

We explored the presence of bias due to horizontal pleiotropy by using other MR methods: 702 

the weighted median estimator and MR-Egger. These methods can provide valid tests of a 703 

causal effect under different (and weaker) assumptions about the nature of the underlying 704 

horizontal pleiotropy. The weighted median estimator requires that at least 50% of the weight 705 

in the analysis stems from valid instruments. The MR-Egger estimator assumes that the 706 

instrument strength is independent of its the direct effects on the outcome (i.e. INSIDE 707 

assumption).  708 

 709 
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In addition to the core assumptions, the two-sample MR approach assumes that 710 

genetic associations with exposure and outcome were estimated from two comparable but 711 

non-overlapping samples. We restricted our analyses to European adult individuals to ensure 712 

that samples were comparable. We assessed potential bias due to sample overlap by 713 

conducting MR using SNPs selected from previous GWAS of age at menarche and age at 714 

natural menopause that did not include UK Biobank (Supplementary Table 14). 715 

716 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2023. ; https://doi.org/10.1101/2022.04.17.22273947doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.17.22273947
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 | P a g e  
 

UOB Confidential 

Acknowledgements 717 

We are extremely grateful to Nightingale for the use of their data and for their helpful 718 

discussions throughout. We want to acknowledge participants and investigators from UK 719 

Biobank and the multiple large-scale GWAS consortia which made summary data available. 720 

This work used the computational facilities of the Advanced Computing Research Centre, 721 

University of Bristol - http://www.bristol.ac.uk/acrc/. The current analysis was approved under 722 

UK Biobank Project 30418 and 81499. We are also grateful to Professor Kate Tilling 723 

(University of Bristol), Prof Zoltan Kutalik, and Leona Knusel (University of Lausanne) who 724 

helped us with additional analyses undertaken to explore discrepant results between 725 

multivariable regression and two sample MR for the association of age at natural menopause 726 

with biomarkers. 727 

Availability of data and materials 728 

Analysis scripts and the analysis plan can be found on the following GitHub page: 729 

https://github.com/gc13313/nmr_repro. 730 

Ethical approval and consent to participate 731 

UK Biobank received ethical approval from the Research Ethics Committee (REC reference 732 

for UK Biobank is 11/NW/0382). The current analysis was approved under UK Biobank Project 733 

30418 and 81499. 734 

Funding 735 

This research is supported by the University of Bristol and UK Medical Research Council 736 

(MRC) (MC_UU_00011/6, all authors), the European Union’s Horizon 2020 research and 737 

innovation programme under grant agreement No 733206 LifeCycle (GLC and DAL), a 738 

University of Bristol Vice-Chancellor’s Fellowship (MCB), the British Heart Foundation 739 

(AA/18/7/34219, MCB and DAL and CH/F/20/90003, DAL) and the UK National Institute of 740 

Health Research (NF-0616-10102, DAL).  741 

The funders had no role in study design, data collection and analysis, decision to publish, or 742 

preparation of the manuscript. For the purpose of Open Access, the author has applied a CC 743 

BY public copyright licence to any Author Accepted Manuscript version arising from this 744 

submission.  745 

This publication is the work of the authors and all authors will serve as guarantors for the 746 

contents of this paper. 747 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2023. ; https://doi.org/10.1101/2022.04.17.22273947doi: medRxiv preprint 

http://www.bristol.ac.uk/acrc/
https://doi.org/10.1101/2022.04.17.22273947
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 | P a g e  
 

UOB Confidential 

Author contributions 748 

DAL conceived the study. DAL, MCB and GLC designed the study. MCB and GLC performed 749 

the analyses. MCB and GLC wrote the original draft of the manuscript with input from DAL. All 750 

authors were involved in the interpretation of results, helped refine the manuscript, and 751 

approved its final version. 752 

 753 

Declarations of Interest  754 

DAL reports receiving support from several national and international government and charity 755 

research funders, and grants from Roche Diagnostics and Medtronic Ltd for work unrelated to 756 

that presented here. GLC and MCB declare that they have no competing interests. 757 

 758 

Abbreviations 759 
  

Ala Alanine 

ApoA1 Apolipoprotein A1 

ApoB Apolipoprotein B 

ApoB_by_ApoA1 Ratio of apolipoprotein B to apolipoprotein A1 

Cholines Total cholines 

Clinical_LDL_C Clinical LDL cholesterol 

DHA Docosahexaenoic acid 

DHA_pct Ratio of docosahexaenoic acid to total fatty acids 

Gln Glutamine 

Gly Glycine 

GlycA Glycoprotein acetyls 

HDL_C HDL cholesterol 

HDL_CE Cholesteryl esters in HDL 

HDL_FC Free cholesterol in HDL 

HDL_L Total lipids in HDL 

HDL_P Concentration of HDL particles 

HDL_PL Phospholipids in HDL 

HDL_TG Triglycerides in HDL 

HDL_size Average diameter for HDL particles 

His Histidine 

IDL_C Cholesterol in IDL 

IDL_CE Cholesteryl esters in IDL 

IDL_CE_pct Cholesteryl esters to total lipids ratio in IDL 

IDL_C_pct Cholesterol to total lipids ratio in IDL 

IDL_FC Free cholesterol in IDL 

IDL_FC_pct Free cholesterol to total lipids ratio in IDL 

IDL_L Total lipids in IDL 

IDL_P Concentration of IDL particles 

IDL_PL Phospholipids in IDL 

IDL_PL_pct Phospholipids to total lipids ratio in IDL 

IDL_TG Triglycerides in IDL 

IDL_TG_pct Triglycerides to total lipids ratio in IDL 

Ile Isoleucine 

LA Linoleic acid 
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LA_pct Ratio of linoleic acid to total fatty acids 

LDL_C LDL cholesterol 

LDL_CE Cholesteryl esters in LDL 

LDL_FC Free cholesterol in LDL 

LDL_L Total lipids in LDL 

LDL_P Concentration of LDL particles 

LDL_PL Phospholipids in LDL 

LDL_TG Triglycerides in LDL 

LDL_size Average diameter for LDL particles 

L_HDL_C Cholesterol in large HDL 

L_HDL_CE Cholesteryl esters in large HDL 

L_HDL_CE_pct Cholesteryl esters to total lipids ratio in large HDL 

L_HDL_C_pct Cholesterol to total lipids ratio in large HDL 

L_HDL_FC Free cholesterol in large HDL 

L_HDL_FC_pct Free cholesterol to total lipids ratio in large HDL 

L_HDL_L Total lipids in large HDL 

L_HDL_P Concentration of large HDL particles 

L_HDL_PL Phospholipids in large HDL 

L_HDL_PL_pct Phospholipids to total lipids ratio in large HDL 

L_HDL_TG Triglycerides in large HDL 

L_HDL_TG_pct Triglycerides to total lipids ratio in large HDL 

L_LDL_C Cholesterol in large LDL 

L_LDL_CE Cholesteryl esters in large LDL 

L_LDL_CE_pct Cholesteryl esters to total lipids ratio in large LDL 

L_LDL_C_pct Cholesterol to total lipids ratio in large LDL 

L_LDL_FC Free cholesterol in large LDL 

L_LDL_FC_pct Free cholesterol to total lipids ratio in large LDL 

L_LDL_L Total lipids in large LDL 

L_LDL_P Concentration of large LDL particles 

L_LDL_PL Phospholipids in large LDL 

L_LDL_PL_pct Phospholipids to total lipids ratio in large LDL 

L_LDL_TG Triglycerides in large LDL 

L_LDL_TG_pct Triglycerides to total lipids ratio in large LDL 

L_VLDL_C Cholesterol in large VLDL 

L_VLDL_CE Cholesteryl esters in large VLDL 

L_VLDL_CE_pct Cholesteryl esters to total lipids ratio in large VLDL 

L_VLDL_C_pct Cholesterol to total lipids ratio in large VLDL 

L_VLDL_FC Free cholesterol in large VLDL 

L_VLDL_FC_pct Free cholesterol to total lipids ratio in large VLDL 

L_VLDL_L Total lipids in large VLDL 

L_VLDL_P Concentration of large VLDL particles 

L_VLDL_PL Phospholipids in large VLDL 

L_VLDL_PL_pct Phospholipids to total lipids ratio in large VLDL 

L_VLDL_TG Triglycerides in large VLDL 

L_VLDL_TG_pct Triglycerides to total lipids ratio in large VLDL 

Leu Leucine 

MUFA Monounsaturated fatty acids 

MUFA_pct Ratio of monounsaturated fatty acids to total fatty acids 

M_HDL_C Cholesterol in medium HDL 

M_HDL_CE Cholesteryl esters in medium HDL 

M_HDL_CE_pct Cholesteryl esters to total lipids ratio in medium HDL 

M_HDL_C_pct Cholesterol to total lipids ratio in medium HDL 

M_HDL_FC Free cholesterol in medium HDL 

M_HDL_FC_pct Free cholesterol to total lipids ratio in medium HDL 

M_HDL_L Total lipids in medium HDL 
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M_HDL_P Concentration of medium HDL particles 

M_HDL_PL Phospholipids in medium HDL 

M_HDL_PL_pct Phospholipids to total lipids ratio in medium HDL 

M_HDL_TG Triglycerides in medium HDL 

M_HDL_TG_pct Triglycerides to total lipids ratio in medium HDL 

M_LDL_C Cholesterol in medium LDL 

M_LDL_CE Cholesteryl esters in medium LDL 

M_LDL_CE_pct Cholesteryl esters to total lipids ratio in medium LDL 

M_LDL_C_pct Cholesterol to total lipids ratio in medium LDL 

M_LDL_FC Free cholesterol in medium LDL 

M_LDL_FC_pct Free cholesterol to total lipids ratio in medium LDL 

M_LDL_L Total lipids in medium LDL 

M_LDL_P Concentration of medium LDL particles 

M_LDL_PL Phospholipids in medium LDL 

M_LDL_PL_pct Phospholipids to total lipids ratio in medium LDL 

M_LDL_TG Triglycerides in medium LDL 

M_LDL_TG_pct Triglycerides to total lipids ratio in medium LDL 

M_VLDL_C Cholesterol in medium VLDL 

M_VLDL_CE Cholesteryl esters in medium VLDL 

M_VLDL_CE_pct Cholesteryl esters to total lipids ratio in medium VLDL 

M_VLDL_C_pct Cholesterol to total lipids ratio in medium VLDL 

M_VLDL_FC Free cholesterol in medium VLDL 

M_VLDL_FC_pct Free cholesterol to total lipids ratio in medium VLDL 

M_VLDL_L Total lipids in medium VLDL 

M_VLDL_P Concentration of medium VLDL particles 

M_VLDL_PL Phospholipids in medium VLDL 

M_VLDL_PL_pct Phospholipids to total lipids ratio in medium VLDL 

M_VLDL_TG Triglycerides in medium VLDL 

M_VLDL_TG_pct Triglycerides to total lipids ratio in medium VLDL 

Omega_3 Omega-3 fatty acids 

Omega_3_pct Ratio of omega-3 fatty acids to total fatty acids 

Omega_6 Omega-6 fatty acids 

Omega_6_by_Omega_3 Ratio of omega-6 fatty acids to omega-3 fatty acids 

Omega_6_pct Ratio of omega-6 fatty acids to total fatty acids 

PUFA Polyunsaturated fatty acids 

PUFA_by_MUFA Ratio of polyunsaturated fatty acids to monounsaturated fatty acids 

PUFA_pct Ratio of polyunsaturated fatty acids to total fatty acids 

Phe Phenylalanine 

Phosphatidylc Phosphatidylcholines 

Phosphoglyc Phosphoglycerides 

Remnant_C Remnant cholesterol (non-HDL, non-LDL -cholesterol) 

SFA Saturated fatty acids 

SFA_pct Ratio of saturated fatty acids to total fatty acids 

S_HDL_C Cholesterol in small HDL 

S_HDL_CE Cholesteryl esters in small HDL 

S_HDL_CE_pct Cholesteryl esters to total lipids ratio in small HDL 

S_HDL_C_pct Cholesterol to total lipids ratio in small HDL 

S_HDL_FC Free cholesterol in small HDL 

S_HDL_FC_pct Free cholesterol to total lipids ratio in small HDL 

S_HDL_L Total lipids in small HDL 

S_HDL_P Concentration of small HDL particles 

S_HDL_PL Phospholipids in small HDL 

S_HDL_PL_pct Phospholipids to total lipids ratio in small HDL 

S_HDL_TG Triglycerides in small HDL 

S_HDL_TG_pct Triglycerides to total lipids ratio in small HDL 
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S_LDL_C Cholesterol in small LDL 

S_LDL_CE Cholesteryl esters in small LDL 

S_LDL_CE_pct Cholesteryl esters to total lipids ratio in small LDL 

S_LDL_C_pct Cholesterol to total lipids ratio in small LDL 

S_LDL_FC Free cholesterol in small LDL 

S_LDL_FC_pct Free cholesterol to total lipids ratio in small LDL 

S_LDL_L Total lipids in small LDL 

S_LDL_P Concentration of small LDL particles 

S_LDL_PL Phospholipids in small LDL 

S_LDL_PL_pct Phospholipids to total lipids ratio in small LDL 

S_LDL_TG Triglycerides in small LDL 

S_LDL_TG_pct Triglycerides to total lipids ratio in small LDL 

S_VLDL_C Cholesterol in small VLDL 

S_VLDL_CE Cholesteryl esters in small VLDL 

S_VLDL_CE_pct Cholesteryl esters to total lipids ratio in small VLDL 

S_VLDL_C_pct Cholesterol to total lipids ratio in small VLDL 

S_VLDL_FC Free cholesterol in small VLDL 

S_VLDL_FC_pct Free cholesterol to total lipids ratio in small VLDL 

S_VLDL_L Total lipids in small VLDL 

S_VLDL_P Concentration of small VLDL particles 

S_VLDL_PL Phospholipids in small VLDL 

S_VLDL_PL_pct Phospholipids to total lipids ratio in small VLDL 

S_VLDL_TG Triglycerides in small VLDL 

S_VLDL_TG_pct Triglycerides to total lipids ratio in small VLDL 

TG_by_PG Ratio of triglycerides to phosphoglycerides 

Total_BCAA 
Total concentration of branched-chain amino acids (leucine + isoleucine + 
valine) 

Total_C Total cholesterol 

Total_CE Total esterified cholesterol 

Total_FA Total fatty acids 

Total_FC Total free cholesterol 

Total_L Total lipids in lipoprotein particles 

Total_P Total concentration of lipoprotein particles 

Total_PL Total phospholipids in lipoprotein particles 

Total_TG Total triglycerides 

Tyr Tyrosine 

Unsaturation Degree of unsaturation 

VLDL_C VLDL cholesterol 

VLDL_CE Cholesteryl esters in VLDL 

VLDL_FC Free cholesterol in VLDL 

VLDL_L Total lipids in VLDL 

VLDL_P Concentration of VLDL particles 

VLDL_PL Phospholipids in VLDL 

VLDL_TG Triglycerides in VLDL 

VLDL_size Average diameter for VLDL particles 

Val Valine 

XL_HDL_C Cholesterol in very large HDL 

XL_HDL_CE Cholesteryl esters in very large HDL 

XL_HDL_CE_pct Cholesteryl esters to total lipids ratio in very large HDL 

XL_HDL_C_pct Cholesterol to total lipids ratio in very large HDL 

XL_HDL_FC Free cholesterol in very large HDL 

XL_HDL_FC_pct Free cholesterol to total lipids ratio in very large HDL 

XL_HDL_L Total lipids in very large HDL 

XL_HDL_P Concentration of very large HDL particles 

XL_HDL_PL Phospholipids in very large HDL 
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XL_HDL_PL_pct Phospholipids to total lipids ratio in very large HDL 

XL_HDL_TG Triglycerides in very large HDL 

XL_HDL_TG_pct Triglycerides to total lipids ratio in very large HDL 

XL_VLDL_C Cholesterol in very large VLDL 

XL_VLDL_CE Cholesteryl esters in very large VLDL 

XL_VLDL_CE_pct Cholesteryl esters to total lipids ratio in very large VLDL 

XL_VLDL_C_pct Cholesterol to total lipids ratio in very large VLDL 

XL_VLDL_FC Free cholesterol in very large VLDL 

XL_VLDL_FC_pct Free cholesterol to total lipids ratio in very large VLDL 

XL_VLDL_L Total lipids in very large VLDL 

XL_VLDL_P Concentration of very large VLDL particles 

XL_VLDL_PL Phospholipids in very large VLDL 

XL_VLDL_PL_pct Phospholipids to total lipids ratio in very large VLDL 

XL_VLDL_TG Triglycerides in very large VLDL 

XL_VLDL_TG_pct Triglycerides to total lipids ratio in very large VLDL 

XS_VLDL_C Cholesterol in very small VLDL 

XS_VLDL_CE Cholesteryl esters in very small VLDL 

XS_VLDL_CE_pct Cholesteryl esters to total lipids ratio in very small VLDL 

XS_VLDL_C_pct Cholesterol to total lipids ratio in very small VLDL 

XS_VLDL_FC Free cholesterol in very small VLDL 

XS_VLDL_FC_pct Free cholesterol to total lipids ratio in very small VLDL 

XS_VLDL_L Total lipids in very small VLDL 

XS_VLDL_P Concentration of very small VLDL particles 

XS_VLDL_PL Phospholipids in very small VLDL 

XS_VLDL_PL_pct Phospholipids to total lipids ratio in very small VLDL 

XS_VLDL_TG Triglycerides in very small VLDL 

XS_VLDL_TG_pct Triglycerides to total lipids ratio in very small VLDL 

XXL_VLDL_C Cholesterol in chylomicrons and extremely large VLDL 

XXL_VLDL_CE Cholesteryl esters in chylomicrons and extremely large VLDL 

XXL_VLDL_CE_pct Cholesteryl esters to total lipids ratio in chylomicrons and extremely large VLDL 

XXL_VLDL_C_pct Cholesterol to total lipids ratio in chylomicrons and extremely large VLDL 

XXL_VLDL_FC Free cholesterol in chylomicrons and extremely large VLDL 

XXL_VLDL_FC_pct Free cholesterol to total lipids ratio in chylomicrons and extremely large VLDL 

XXL_VLDL_L Total lipids in chylomicrons and extremely large VLDL 

XXL_VLDL_P Concentration of chylomicrons and extremely large VLDL particles 

XXL_VLDL_PL Phospholipids in chylomicrons and extremely large VLDL 

XXL_VLDL_PL_pct Phospholipids to total lipids ratio in chylomicrons and extremely large VLDL 

XXL_VLDL_TG Triglycerides in chylomicrons and extremely large VLDL 

XXL_VLDL_TG_pct Triglycerides to total lipids ratio in chylomicrons and extremely large VLDL 

bOHbutyrate 3-Hydroxybutyrate 

non_HDL_C Total cholesterol minus HDL-C 
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Figure 1 Infographic summarising the different approaches taken to 

assess associations between reproductive traits and 

metabolites 

Figure 2A Multivariable regression and Mendelian randomization 

estimates for the associations between older age at menarche 

and metabolic measures. 

Results are presented as standard unit changes in metabolic measure per 1 

year increase in age at menarche. Circles denote point estimates and 

indicate p-value < 0.00093 (closed circle) or ≥ 0.00093 (open circles). 

Horizontal bars denote 95% confidence intervals. Multivariable regression 

models were adjusted for age at recruitment, body size at age 10 and 

education. Mendelian randomization models were estimated using the 

inverse variance weighted method. Abbreviations for Figures 2A-C and 4 are 

given in ‘Abbreviations’ at the end of the manuscript. 

Figure 2B Multivariable regression and Mendelian randomization 

estimates for the associations between higher parity and 

metabolic measures. 

Mendelian randomization estimates for the associations 

between reproductive traits (i.e. older age at menarche, higher 

parity, and older age at natural menopause) and metabolic 

measures 

Results are presented as standard unit changes in metabolic measure per 1 

additional birth. Circles denote point estimates and indicate p-value < 

0.00093 (closed circle) or ≥ 0.00093 (open circles). Horizontal bars denote 

95% confidence intervals. Multivariable regression models were adjusted for 

age at recruitment, body size at age 10 and education. Mendelian 

randomization models were estimated using the inverse variance weighted 

method. Abbreviations for Figures 2A-C and 4 are given in ‘Abbreviations’ at 

the end of the manuscript. 

Figure 2C Multivariable regression and Mendelian randomization 

estimates for the associations between older age at natural 

menopause and metabolic measures. 

Results are presented as standard unit changes in metabolic measure per 1 

year increase in age at natural menopause. Circles denote point estimates 

and indicate p-value < 0.00093 (closed circle) or ≥ 0.00093 (open circles). 

Horizontal bars denote 95% confidence intervals. Multivariable regression 

models were adjusted for age at recruitment, body size at age 10 and 
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education. Mendelian randomization models were estimated using the 

inverse variance weighted method. Abbreviations for Figures 2A-C and 4 are 

given in ‘Abbreviations’ at the end of the manuscript. 

Figure 3 Mendelian randomization estimates for the relation between 

reproductive traits and metabolic measures among females 

assayed using NMR metabolomics (black) or clinical chemistry 

methods (pink) 

Results are presented as standard unit changes in metabolic measure per 1 

year increase in age at menarche, 1 additional birth, or 1 year increase in 

age at natural menopause. Circles denote point estimates and indicate p-

value < 0.00093 (closed circle) or ≥ 0.00093 (open circles). Horizontal bars 

denote 95% confidence intervals.  

Figure 4 Multivariable regression estimates for the associations of parity 

(women) or number of children (men) with metabolic measures: 

negative control analyses  

Results are presented as standard unit changes in metabolic measure per 1 

additional birth/child. Circles denote point estimates and indicate p-value < 

0.00093 (closed circle) or ≥ 0.00093 (open circles). Horizontal bars denote 

95% confidence intervals. Multivariable regression models were adjusted for 

age at recruitment, body size at age 10 and education. Abbreviations for 

Figures 2A, 2B and 4 are given in ‘Abbreviations’ 

Table 1 Distribution of characteristics of UK Biobank participants with 

NMR metabolomics data 

Summary box Summary of key findings 
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Fig 1. Overview of study design: key assumptions and biases 

 

 

The figure illustrates key assumptions and sources of bias for each method (and differences across methods) 

in the context of our study. An exhaustive review of assumptions/biases for each method is outside the scope 

of this work. However, we acknowledge that there are other potential sources of biases that could affect 

findings such as selection bias related to the low response in UKB. 
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Figure 2A. Multivariable regression and Mendelian randomization estimates for the associations between older age at 

menarche and metabolic measures. 
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Figure 2B. Multivariable regression and Mendelian randomization estimates for the associations between 

higher parity and metabolic measures. 
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Figure 2C. Multivariable regression and Mendelian randomization estimates for the associations between older 

age at natural menopause and metabolic measures. 
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Figure 3. Mendelian randomization estimates for the relation between older age at menarche and metabolic 

measures among females measured using NMR metabolomics (black) or clinical chemistry methods (pink) 
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Figure 4. Multivariable regression estimates for the associations of parity (women) or number of children (men) 
with metabolic measures: negative control analyses Models adjusted for age at baseline, education, and body 
composition at age 10. 
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Table 1. Distribution of characteristics of UK Biobank participants (females only) with NMR metabolomics 

data 

 

 N=65699 

Age when attended assessment centre, mean (sd) 56.4 (8.0) 

Age in 5-y groups, n (%)   

  40- 6623 (10.1) 

  45- 8781 (13.4) 

  50- 10378 (15.8) 

  55- 12299 (18.7) 

  60- 16089 (24.5) 

  65- 11529 (17.5) 

Ethnic background, n (%)   

  White 62063 (94.8) 

  Mixed 420 (0.6) 

  Asian 1069 (1.6) 

  Black 1059 (1.6) 

  Chinese 220 (0.3) 

  Others 609 (0.9) 

Qualifications, n (%)   

  None of the above 10955 (16.9) 

  O level or CSEs or other 25619 (39.4) 

  A level 7626 (11.7) 

  College/ university 20749 (31.9) 

Townsend deprivation index at recruitment, mean (sd) -1.4 (3.0) 

Comparative body size at age 10, n (%)   

 Average 32767 (50.7) 

  Thinner 20416 (31.6) 

  Plumper 11435 (17.7) 

Body mass index (BMI), mean (sd) 27.1 (5.2) 

Alcohol intake frequency., n (%)   

  Daily or almost daily 10516 (16.0) 

  Three or four times a week 13712 (20.9) 

  Once or twice a week 16872 (25.7) 

  One to three times a month 8655 (13.2) 

  Special occasions only 9630 (14.7) 

  Never 6186 (9.4) 

Smoking status, n (%)   

  Never 38915 (59.5) 

  Previous 20609 (31.5) 

  Current 5834 (8.9) 

Age when periods started (menarche), mean (sd) 13.0 (1.6) 

Categories of age at menarche, n (%)   

  <13 years 24811 (39.0) 

  13-14 years 28057 (44.1) 

  >14 10762 (16.9) 

Number of live births, n (%)   

  0 12367 (18.9) 
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  1 8900 (13.6) 

  2 28526 (43.5) 

  3+ 15767 (24.0) 

Had menopause, n (%)   

  Premenopausal 15418 (24.5) 

  Postmenopausal 37248 (59.1) 

  Surgical 7564 (12.0) 

  Other 2758 (4.4) 

Age at menopause (last menstrual period), mean (sd) 49.7 (5.1) 

Categories of age at menopause, n (%)   

  <40 1520 (4.1) 

  40-44 3378 (9.1) 

  45-49 8903 (23.9) 

  50-51 8740 (23.4) 

  52-54 9144 (24.5) 

  55+ 5606 (15.0) 

Statin use - Nurses int., n (%)   

  No Statins 58279 (88.7) 

  Statins 7420 (11.3) 

Ever used hormone-replacement therapy (HRT), n (%)   

  No 40330 (61.7) 

  Yes 25036 (38.3) 

Years on HRT, n (%)   

  Never 40330 (64.8) 

  0-2 6294 (10.1) 

  3-6 5504 (8.8) 

  7-10 5192 (8.3) 

  >10 4908 (7.9) 

 

 

 

 

*Age at natural menopause therefore excluded women who had not yet gone through the menopause or who had a 

surgical menopause or who answered ‘other’. 
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Summary box 

 

What is new? 

▪ Markers of women’s reproductive health are associated with several common chronic conditions. 

Whilst some attempts have been made to explore the extent to which these associations are causal, 

metabolites could act as mediators of the relationship between reproductive markers and chronic 

diseases. 

▪ Older age of menarche was related to a less atherogenic metabolic profile in multivariable regression 

and Mendelian randomization, however, this was largely attenuated when accounting for adult body 

mass index.  

▪ In multivariable regression, higher parity related to complex changes in lipoprotein-related traits. 

Whilst these were not observed in male negative controls, suggesting a potential causal effect in 

females, they were not replicated in the Mendelian randomization, possibly due to imprecise 

estimates.  

▪ Older age at natural menopause was related to lower concentrations of inflammation markers in both 

multivariable regression and Mendelian randomization. Consistent results were observed for LDL-

related traits when stratified by chronological age. 

Implications 

▪ Given that the age at menarche results were largely attenuated to the null when accounting for adult 

BMI, it is likely that age at menarche itself may not causally relate to the metabolic profile.  

▪ These results, particularly for parity and age at menopause, could contribute to identifying novel 

markers for the prevention of adverse cardiometabolic outcomes in women and/or methods for 

accurate risk prediction. For example, consistent with other studies, higher parity was associated 

with unfavourable (e.g. higher number of particles and lipid content in VLDL and higher glycine) 

changes in the metabolic profile. Similarly, older age at menopause was related to higher lipid 

content in HDL particles and lower systemic inflammation, as proxied by GlycA. 
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