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Summary:

We previously interrogated the relationship between SARS-CoV-2 genetic mutations and
associated patient outcomes using publicly available data downloaded from GISAID in October
2020 [1]. Using high-level patient data included in some GISAID submissions, we were able to
aggregate patient status values and differentiate between severe and mild COVID-19 outcomes.
In our previous publication, we utilized a logistic regression model with an L1 penalty (Lasso
regularization) and found several statistically significant associations between genetic mutations
and COVID-19 severity. In this work, we explore the applicability of our October 2020 findings to
a more current phase of the COVID-19 pandemic.

Here we first test our previous models on newer GISAID data downloaded in October 2021 to
evaluate the classification ability of each model on expanded datasets. The October 2021
dataset (n=53,787 samples) is approximately 15 times larger than our October 2020 dataset
(n=3,637 samples). We show limitations in using a supervised learning approach and a need for
expansion of the feature sets based on progression of the COVID-19 pandemic, such as
vaccination status. We then re-train on the newer GISAID data and compare the performance of
our two logistic regression models. Based on accuracy and Area Under the Curve (AUC)
metrics, we find that the AUC of the re-trained October 2021 model is modestly decreased as
compared to the October 2020 model. These results are consistent with the increased
emergence of multiple mutations, each with a potentially smaller impact on COVID-19 patient
outcomes. Bioinformatics scripts used in this study are available at https://github.com/JPEO-
CBRND/opendata-variant-analysis. As described in Voss et al. 2021, machine learning scripts
are available at https://github.com/Digital-Biobank/covid variant_severity.

Introduction:

The Global Initiative on Sharing Avian Influenza Data (GISAID) is a popular and publicly
available repository that houses SARS-CoV-2 sequencing data from the global community.
GISAID stores SARS-CoV-2 genomic data and sequencing metadata—including sequencing
technology and assembly method—as well as some patient metadata, including high-level
patient outcomes, region of origin, age, gender and date of collection.
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We have previously used the high-level patient metadata submitted by GISAID users to
differentiate between severe and mild patient outcomes. Briefly, we aggregated patient
outcomes into “Mild” outcomes (e.g., Outpatient, Asymptomatic, Mild,
Home/Isolated/Quarantined, Not Hospitalized) or “Severe” outcomes (e.g., Hospitalized
(including severe, moderate, and stable) and Deceased (Death)). We excluded entries whereby
the severity of the condition could not readily be discerned, (e.g., retesting, screened for travel,
not vaccinated, moderate covid, and live). Following this approach, in Voss et al., 2021, of 3,637
SARS-CoV-2 samples from GISAID with patient outcome metadata, 2,870 were classified as
severe patient outcomes and 767 as mild.

Using this patient outcome classification described previously (Voss et al., 2021), we showed
logistic regression models that included viral genomic mutations outperformed other models that
used only patient age, gender, sample region, and viral clade as features. Among individual
mutations, we found 16 SARS-CoV-2 mutations that have = 2-fold odds of being associated with
more severe outcomes, and 68 mutations associated with mild outcomes (odds ratio < 0.5).
While most assessed SARS-CoV-2 mutations are rare, 85% of genomes had at least one
mutation associated with patient outcomes.

Methods:

Metadata preprocessing, cohort building, mutation and metadata modeling, data visualization,
and statistical analyses were all done according to procedures in Voss et al., 2021 and are
diagramed in Figure 1. Briefly, an export of raw GISAID SARS-CoV-2 data was curated using
Nexstrain’s ncov-ingest shell scripts [2] and FASTA sequences were parsed from the data
export using Python (version 3.8.10). Of the 4,646,285 samples available in GISAID through
ncov-ingest on October 26™ 2021, we used a subset of 53,787 samples with patient outcome
metadata for our analyses. We utilized a total of 29,359 severe and 24,428 mild samples for our
analyses. FASTA sequences were aligned to the reference sequence, Wuhan-Hu-1 (NCBI:
NC_045512.2; GISAID: EPI_ISL_402125) using Minimap2. Resulting VCF (Variant Call Format)
files were merged using bcftools and annotated using SnpEff and filtered using SnpSift. We
applied a similar bioinformatics analysis pipeline to Rayko et al [7] and is available under the
scripts directory at https://github.com/JPEO-CBRND/opendata-variant-analysis.

The machine learning classification workflow, available at https://github.com/Digital-
Biobank/covid variant severity, first runs 00_long.py to join and converts annotated VCF files to
a single parquet file. Next, 00_red.py is run against GISAID metadata and aggregates patient
outcomes into positive (‘Mild’), or negative (‘Severe’) outcomes and stores the classification into
a recode dictionary. 01_wide.py, 02_var-freq.py, 02_join.py, and 03_clean.py are consecutively
run for pivoting to wide format, deriving mutation frequencies per sample, joining the VCF
parquet file with GISAID patient data, and further parsing. 04_logit.py runs training and testing
for the logistic regression models. Finally, 05_plot-variants.py is run to derive a table of highest
and lowest odds of mutations being classified into mild or severe outcomes.
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Figure 1. Bioinformatics and Machine Learning Classification workflows used for SARS-CoV-2 genetic variant calling and
annotation, and mutation and metadata modeling based on procedures used in Voss et al., 2021.

Analysis Tools Version
Python 3.8.10
Minimap2 2.22
Bcftools 1.13
SnpEff 5.0
Pandas 1.3.3
Matplotlib 343
Seaborn 0.11.2
Scikit-learn 1.0
NumPy 1.21.2
Statsmodels 0.12.2
SciPy 1.7.1
Joblib 0.14.1

Table 1. Versioning for Python utilities and third-party software tools used in shell scripts for machine learning classification and
bioinformatics workflows.

Scikit-learn [4] was used to fit logistic regression models with the L1 penalty (Lasso
regularization) and the default regularization strength (C = 1) to the patient (rows) and mutation
(columns). A train/test split was created on the data (67% train, 33% test). The training data
were split into five cross-validation folds using the Scikit-learn stratified K-fold cross-validation
generator. Test data was only used for evaluating the performance of trained models. Models
were persisted as pickle files using joblib. Scatter and bar plots were created using Pandas [3],
Matplotlib [5] and Seaborn [6]. ROC curves were plotted using Scikit-learn [4], and Matplotlib [5].
The versions of all tools used for bioinformatics and machine learning analysis are shown in
Table 1.

Similar to previous work (Voss et al., 2021), we trained a total of five logistic regression models
using different input features. For each model, Scikit-learn [4] was used to calculate the area
under the curve (AUC), a measure of goodness of fit of a binary classification model. AUC
confidence intervals, P-values, and diagnostic odds ratios (OR) were calculated using NumPy
[9] for each of the five logistic regression models. The Scikit-learn implementation of logistic
regression does not provide ORs or P-values for individual variables. ORs and Chi-square

test P-values for the association of mutations with Severe and Mild outcomes (Figure 5) were
calculated from mutation count data using Statsmodels and SciPy respectively [8]. Mutation
frequency was calculated using Pandas [3].

Results:
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l. Validation of Previous Methods

Before testing and retraining the logistic regression models on newer data downloaded in
October 2021, we first reproduced the previous results using the same dataset (Voss et al.,
2021). Reassessing the previous results, the model using age, gender, region, and variants as
features had the highest AUC (0.91) and accuracy (91%), followed by models that use fewer
features (age/gender/region/clade, age/gender/region, age/gender, and age). The SARS-CoV-2
mutations significantly associated with disease severity identified previously, were also
replicated in this reanalysis (Voss et al., 2021).

Il. Evaluation of Model Performance on the Expanded GISAID Dataset

Next, we evaluated the classification performance of the previous logistic regression models
(Voss et al., 2021) on the newer, expanded October 26", 2021 GISAID dataset. For this
evaluation, the genetic mutations included in the expanded October 2021 dataset was limited to
match the feature space of the trained previous logistic regression models (Voss et al., 2021).
Therefore, mutations observed in the October 2021 dataset, but not the October 2020 dataset,
were not included in this test dataset. The performance of the trained Voss et al., 2021 logistic
regression models was evaluated on the test split (67% train, 33% test) of the expanded
October 2021 dataset.

Figures 2 and 3 below show comparisons of ROC curves and model performance statistics for
the Voss et al., 2021 logistic regression models on the original October 2020 dataset and the
expanded October 2021 dataset. An overall decline in performance is observed for the previous
models when applied to the expanded October 2021 dataset. Notably, testing the original
models on the October 2021 dataset reveals a decrease in performance for models that include
the region feature (AGRV AUC: 0.911 vs. 0.580; AGRC AUC: 0.818 vs. 0.571; AGR AUC: 0.817
vs. 0.564).
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Figure 2. Comparison of ROC curves for the previous (Voss et al.,2021) logistic regression models tested on the October 2020
dataset (left) and the expanded October 2021 dataset (right). A decrease in model performance is observed on the expanded
October 2021 dataset.
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AGRV 0.913 0.911 |67.7 0.000 AGRV 0.505 0.580 0.7 0.000000
AGRC 0.879 0.818 |28.8 0.000 AGRC 0.494 0.571 0.5 0.000000
AGR 0.862 0.817 |17.6 0.000 AGR 0.471 0.564 0.4 0.000000
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Figure 3. Comparison of previous (Voss et al.,2021) model performance statistics (left) and the previous models run on the
expanded October 2021 dataset (right)

lll. Re-Analysis on Expanded GISAID Dataset

To further investigate our previous findings [1], the nested logistic regression models were
retrained on the larger October 26™, 2021 GISAID SARS-CoV-2 dataset. Model retraining was
done using the train split of the expanded October 2021 dataset, while performance was
evaluated using the test split (67% train, 33% test). The performance of the retrained models
was then compared to the logistic regression models trained on the October 20", 2020 GISAID
SARS-CoV-2 dataset. ROC curves for the retrained models are shown in Figure 4A (left). The
model using age, gender, region, and variants (AGRV) as features continues to show the best
performance, as observed previously (Voss et al, 2021). The retrained AGRV model metrics,
shown in Figure 4B (right), have an overall decrease in model accuracy (from 0.913 to 0.810)
and AUC (from 0.911 to 0.885) as compared to previously published data (Voss et al., 2021)
shown in Figure 3A (left). This decrease in retrained AGRV model performance may indicate a
modest reduction in power to distinguish between severe and mild outcomes in the expanded
October 2021 dataset, or may be explained by inconsistent case severity definitions between
the 2020 and 2021 datasets. SARS-CoV-2 mutations most associated with severe and mild
outcomes, as measured by odds ratio, from the previous study (Voss et al., 2021) and the
expanded October 26", 2021 GISAID dataset are shown in Figure 5. None of the mutations with
the highest (n=20) and lowest (n=20) odds of being associated with severe or mild outcomes
from earlier findings (Voss et al., 2021) are also identified in the top 40 mutations of the larger
October 2021 dataset analysis. While there is no overlap in the mutations with the highest and
lowest mutations between earlier and the expanded October 26", 2021 GISAID dataset, 10 of
the top 20 mutations most associated with severe outcomes from the earlier study (Voss et al.,
2021) are also significantly associated with severe outcomes (OR = 2, P-value < 0.05) in the
expanded October 2021 dataset. Similarly, 14 of the top 20 mutations most associated with mild
outcomes (OR = 0.5, P-value < 0.05) from Voss et al., 2021 are also significantly associated
with mild outcomes in the expanded October 2021 dataset.
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Figure 4. ROC curves after retraining on the expanded October 26", 2021 GISAID dataset (left) and updated model performance
metrics (right). Previous (Voss et al., 2021) and retrained model performance is superior when genomic mutations are included as
features. A general decrease in model performance was observed for the retrained models on the October 2021 dataset in
comparison to the previous models, which used the October 20", 2020 dataset.

Amino Acid Variant ‘Amino Acid Variant

Mutation Change  MutationType o R Lower OddsRatio  Upper Odds Ratio P-Value Mutation Change  MUtationType ey Lower OddsRatio  Upper  Odds Ratio P-Value
G28321T T16T silent 0.00443 0.0005 0008377 0.140377 0.000884 €26885A N121K Missense 0.00303 0000158 0002535 0.040707 2.44€-05
G5554T K1763N Missense 0.00443 0.0005 0008377 0.140377 0.000884 T14654C V4797A Missense 0.000688 0.000689 0011227  0.18288 0001615
c1281T A339V Missense 0.003839 0.000574 0.009694  0.163589 0.001302 €12194G L3977V Missense 0.000576 0.00082 0013403 0.219117 0.002487
G25249T M12291 Missense 0.002953 0.000738 0012658  0.216972 0.002579 G5461T M17321 Missense 0.000502 0.000938 0015391 0.252447 0.003451
€22938A sas9Y Missense 0.002953 0.000738 0012658 0.216972 0.002579 T4149C V1295A Missense 0.000502 0.000938 0015391 0.252447 0003451
C25466T P25L Missense 0.002067 0.001029 0018162 0.320427 0.006198 €100026 s$3246C Missense 0.000446 0.001052 0017317 0.284942 0.004531
G15652T D5130Y DTom 0.001772 0.001184 002122 0380372 0.008887 81697 52635L Missense 0.000892 0.002438 001767  0.128076 6.51E-05
C15857T T51981 Missense 0001772 0001184 002122 0380372 0.008887 G25699GCCCCCC  P104_FI0SinsPP. 0.000428 0.001097 0018071 0297712 0004992
T13575C F4437F Silent 0.001772 0.001184 002122 0.380372 0.008887 A5995G Q19100 Silent 0.00039 0.001198 0019794 0327019 0.006124
C10868T 135351 silent 0001772 0.001184 002122 0380372 0.008887 A10333T Ta3s6T silent 0.000372 0.001256 0020784 0.343945 0.006823
C6445T D2060D Silent 0001772 0.001184 002122 0380372 0.008887 T28245C L1181 Silent 0000335 0.00139 0023095  0.383647 0.008585
€275321 Ha7Y Missense 0.001772 0.001184 002122 0380372 0.008887 A140106 V4582V Silent 0.000335 0.00139 0023095  0.383647 0.008585
6234387 A6265 Missense 0001772 0001184 002122 0.380372 0.008887 C26415T Ys7v silent 0.000335 0.00139 0023095  0.383647 0.008585
G19891T D6543Y Missense 0001772 0001184 002122 0380372 0.008887 C8802A T2846N Missense 0000335 0.00139 0023095  0.383647 0.008585
T772C V169V silent 0.001772 0.001184 002122 0380372 0.008887 A27477T T28T Silent 0.000651 0.003345 0024439 0178541 0000254
A2869G V868V silent 0001772 0001184 002122 0.380372 0.008887 C20548T 0.000316 0.001469 0024455 0.407139 0009704
A25506 D762G Missense 0001772 0.001184 002122 0380372 0.008887 T14190C 46427 Silent 0.000297 0.001557 0025084  0.43369 0011032
200817 S6606F Missense 0001772 0001184 002122 0380372 0.008887 C29245T v328v Silent 0.000595 0.003659 0026807  0.196382 0000368
T9880C N3205N silent 0001772 0.001184 002122 0380372 0.008887 €26509T 0000576 0.003777 0027702 0.203147 0000419
175187 L5752F Missense 0001477 0001392 0025501  0.467325 0.013412 623499C R646P Missense 0000279 0001656 0027718 0463938 0012625
195247 164201 Silent 0054932 2027021 3584261 6337837 1.14€-05 c11074CT 13606fs Frameshift 0.000688 3784569 61.649 1004.236 0003794
T27299C 1337 Missense 0026875 1.620729 3.724927 8561012 0.001953 TC22032T F157fs Frameshift 0000706 3.888891 6331735 1030.907 0003568
T29148C 12921 Missense 0027466 1661172 3815497  8.763701 0.001598 T21291C Y7009Y Silent 0.001432 8815626 6339692 455.9142 3.75€-05
6259797 G196V Missense 0014471 1.237142 3989678  12.86637 0.020549 G A3079T Missense 0.000725 3.993221 64.98581  1057.581 0.003359
€28863T S197L Missense 0.015948 1.379027 4.431706  14.24194 0.012436 G11389T V3708V Silent 0.001469 9.051207 65.0697 467.7903 3.34E-05
T9477A F3071Y Missense 0.015948 1.379027 4431706  14.24194 0.012436 C6195A P1977H Missense 0.000744 4.09756 66.65439 1084.257 0.003167
C28657T D128D Silent 0.016539 1.435939 4.608986  14.79363 0.010227 T15726A AS154A Silent 0.000781 4.30626 69.99188  1137.614 0.002824
C6310A S2015R Missense 0.048435 2.826946 6.055803 1297257 3.59E-06 A9900C N3212T Missense 0.000837 4.619372 7499898 1217.665 0.002397
c14724T F4820F Silent 0011518 1.354999 9886205 7213204 0.023847 c142207 D4652D Silent 0018666 42.88242 77.70532  140.8064 1.04E-46
288547 s194L Missense 0.036621 3.424594 10.80049  34.06262 4.9E-05 C12733A A4156A Silent 0.000874 4.828152 7833761 1271.041 0.002159
T16542C N5426N silent 0010337 1115817 1821737  297.4258 0.041663 AGGGG28380A R203fs Frameshift 0000892 4932554 800071  1297.733 0002052
C2836T] C857C Silent 01022:455) 23746468 191788001 R1392°5 72 0:003049 A497G T78A Missense 0.000892 4.932554 80.0071 1297.733 0.002052
€18894T c6210C Silent 0.011223 1.21471 19.8012 322783 0.036034 c2942T 1893L silent 0.002045 12.70696 91.02711 652.0784 7.11E-06
G29616T R20I Missense 0011518 1.247725 2032994 3312482 0.034396 A10075G A3270A silent 0.002231 13.88792 9941221 7116101 4.656-06
G17427T V5721V silent 0011518 1.247725 2032994 331.2482 0.034396 C18998T A6245V Missense 0.001116 6.185969 1000498  1618.173 0.001182
€23185T FS41F silent 0015062 1.645871 2670602 4333336 0.020865 €23457G T6325 Missense 0001171 6.499492 1050631 1698325 0001045
224447 D294D silent 0032782 4.099582 2041563 211.0653 0.00077 G13903A D4SA7N Missense 0002417 1351858 217.2038 3492717 0.000146
€12053T L3930F Missense 0018901 2081322 3367909  544.9809 0.013285 T20391G R6709R Silent 0002919 1635635 2626667  4218.166 8.39E-05
€26735T Y71y silent 0.08417 1005259 40.49564  163.1318 1.93€-07 G2150A D629N Missense 0.004165 23.42096 3756219 6024.168 2.82E-05
G25088T V1176F Missense 0036621 4148285 66.77665  1074.931 0.003042 A25336C E1258D Missense 0007028 39.78295 637.2302 1020694 5.05€-06

Supplementary Table 1 from Voss et al., 2021 Supplementary Table 1 on October 2021 dataset

Figure 5. The 40 SARS-CoV-2 mutations with the highest (n=20) and lowest (n=20) odds of being associated with severe or mild
outcomes from the previous study (Voss et al., 2021) on the left, and this updated analysis using a GISAID dataset from October
2021 (right). Mutations are ordered by odds ratio, and amino acid change, variant frequency, confidence intervals, and P-values are
provided.

IV. Expansion of Analytical Models on Original Dataset
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We explored additional machine learning binary classifiers, including Random Forest, Naive
Bayes, and Neural Network algorithms, and compared their performance to the logistic
regression model. Similar to our previous study (Voss et al., 2021), 3,386 samples were used
for this analysis, with 2,694 associated with severe outcomes and 692 with mild patient
outcomes. Age, gender, region, and variants (AGRV) were used as features for each model. A
stratified 67% train and 33% test data split was created using Sci-kit learn model selection
module [4], and a 5-fold cross-validation was performed to select the best parameters for each
model. Random Forest, Naive Bayes, and Neural Network algorithms were run using Sci-kit
learn ensemble, naive_bayes, and neural_network modules respectively. As shown in Figure 6,
the random forest model outperformed the other models, including the logistic regression model,
with an AUC of 0.936, accuracy of 0.918 and odds ratio of 116.7.
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Figure 6. Comparison of alternative machine learning algorithms for binary classification (Random Forest, Neural Network, and
Naive Bayes) to Logistic Regression using October 20", 2020 dataset and AGRYV feature set (age/gender/region/variant). The
random forest model had the highest performance and the naive bayes model had the lowest performance.

Discussion:

Herein we further investigated the results published earlier (Voss et al., 2021) by evaluating the
performance of the logistic model for classifying COVID-19 severity on a larger SARS-CoV-2
dataset curated from GISAID on October 26™, 2021. Testing the previous (Voss et al. 2021) and
retrained logistic regression models on the expanded October 2021 GISAID dataset revealed a
general reduction in model performance. Previous results (Voss et al., 2021) indicated that
using age, gender, region, and variant (AGRV) features enabled the best performance for
COVID-19 patient outcome classification. The performance of the retrained logistic regression
models on the October 2021 GISAID dataset continues to demonstrate that inclusion of
genomic mutation features improves classification of COVID-19 patient outcomes. A modest
2.7% reduction in AUC was observed for the AGRYV logistic regression models re-trained on the
October 2021 dataset in comparison to the AGRYV logistic regression model from the previous
study.

The performance of the previously (Voss et al. 2021) trained AGR (age/gender/region), AGRC
(age/gender/region/clade), and AGRV (age/gender/region/variant) models was severely
degraded when tested on the expanded October 2021 dataset. This diminished performance
could be the result of new individual mutations and SARS-CoV-2 variants that weren’t observed
in the October 2020 dataset, and vaccination and treatment advances from October 2020 to
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October 2021. Notably, the AGR, AGRC, and AGRV models all included region in their feature
set, and the differential availability of vaccination and treatment advances would be expected to
impact region features. We further investigated the potential deleterious impact of the region
feature on the previous (Voss et al. 2021) models when applied to the expanded October 2021
dataset by testing an AGV (age/gender/variant) model and comparing its performance to the AG
and AGRV models. We find that the AGV model has an AUC and accuracy that is similar to the
AG model, rather than the AGRV model (AUC: AG=0.705, AGV=0.709, AGRV=0.580;
Accuracy: AG=0.552, AGV=0.550, AGRV=0.505).

Figure 5 lists the top twenty mutations with highest and lowest odds ratios for association with
severe and mild outcomes from the October 2020 and expanded October 2021 datasets. The
top three mutations most associated with severe outcomes in the October 2021 dataset are
T20391G (ORF1ab: R6709R), G2150A (ORF1ab: D629N), and A25336C (S: E1258D).
E1258D, a missense mutation located at the cytoplasmic tail of the spike protein [10] that is
observed with a frequency of 0.7%, has the highest odds (OR=637.23) for association with
severe outcomes. Interestingly, an independent study using machine learning approaches to
model COVID-19 disease outcomes also identified E1258D as a key predictor of disease
severity [11]. This linage independent mutation is recurrent and arises independently in samples
taken from donors and cell lines, indicating potential selection in host environments [12]. The
three mutations most associated with mild outcomes include C26885A (M: N121K; OR=0.0030),
T14654C (ORF1ab: V4797A), and C12194G (ORF1ab: L3977V). N121K, a missense mutation
in the membrane protein observed with frequency of 0.3%, is most associated (OR = 0.0025)
with mild outcomes. The presence of this mutation was identified as a key predictor of
asymptomatic outcomes in previous machine learning modeling of COVID-19 disease outcomes
[13].

In a comparison of machine learning algorithms, we found Random Forest to be the best
performing algorithm for classification. The superior performance of the random forest model
over the logistic regression and naive bayes models may indicate the presence of nonlinear
interactions between features (e.g., SARS-CoV-2 mutations). Indeed, Random Forest is a well
utilized machine learning method for genomic data analysis because this algorithm applies well
to problems with many more features than observations and accounts for interactions between
features [14][15]. In addition to exploring machine learning algorithm options, the space of
outcome variables can also be explored. For example, a promising direction for future modeling
is the investigation of mutations associated with transmissibility.

The utilization of supervised learning machine learning poses a limitation in our analysis. Since
labeled outcomes are required to train these models, the number of samples available for
training is reduced by 99% (53,787 of 4,646,285). In addition, machine learning models trained
on older samples may not be sufficiently exposed to new mutations. For example, while many of
the more than 50 mutations present in Omicron were observed previously in other variants of
concern, some Omicron mutations were rare or previously unobserved and many previously
observed mutations hadn’t co-occurred in the same samples [16]. Supervised machine learning
models cannot effectively utilize previously unobserved mutations and mutations combinations
because parameters have not been fit for these features. A promising approach for addressing
these limitations is semi-supervised learning. This machine learning approach uses both labeled
data and unlabeled data for model training. Semi-supervised learning may outperform
supervised learning approaches when the amount of unlabeled data is much larger than labeled
data [17]. Within the field of genomics, recent example uses of semi-supervised learning include
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microRNA classification [18], somatic genomic variant classification [19], and identify disease
associated genes [20].
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