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Abstract

Randomized controlled trials (RCTs) are considered the gold standard for assessing
the causal effect of an exposure on an outcome, but are vulnerable to bias from missing
data. When outcomes are missing not at random (MNAR), estimates from complete
case analysis (CCA) will be biased. There is no statistical test for distinguishing be-
tween outcomes missing at random (MAR) and MNAR, and current strategies rely
on comparing dropout proportions and covariate distributions, and using auxiliary in-
formation to assess the likelihood of dropout being associated with the outcome. We
propose using the observed variance difference across treatment groups as a tool for
assessing the risk of dropout being MNAR. In an RCT, at randomization, the distribu-
tions of all covariates should be equal in the populations randomized to the intervention
and control arms. Under the assumption of homogeneous treatment effects, the vari-
ance of the outcome will also be equal in the two populations over the course of follow-
up. We show that under MAR dropout, the observed outcome variances, conditional
on the variables included in the model, are equal across groups, while MNAR dropout
may result in unequal variances. Consequently, unequal observed conditional group
variances are an indicator of MNAR dropout and possible bias of the estimated treat-
ment effect. Heterogeneity of treatment effect affects the intervention group variance,
and is another potential cause of observing different outcome variances. We show that,
for longitudinal data, we can isolate the effect of MNAR outcome-dependent dropout
by considering the variance difference at baseline in the same set of patients that are
observed at final follow-up. We illustrate our method in simulation and in applications
using individual-level patient data and summary data.

1 Introduction

Randomized controlled trials (RCTs) are considered the gold standard for assessing the
causal effect of an exposure on an outcome, but are vulnerable to bias due to missingness in
the outcome - or ‘dropout’. The impact of dropout depends on the missingness mechanism
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and the analysis model1–3. Three missingness mechanisms can be distinguished: missing
completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR)1. With MCAR, missingness is unrelated to any measured or unmeasured charac-
teristics and the observed sample is a representative subset of the full data. MAR means the
missingness can be explained by observed data and, with MNAR, missingness is a function
of the unobserved data.

Two common methods of dealing with dropout are complete case analysis (CCA) and mul-
tiple imputation (MI). A complete case analysis (CCA) is the analysis model intended to be
applied to the trial data at its outset, restricted only to individuals with observed outcomes.
With MI, missing outcome values are repeatedly imputed conditional on the observed data,
generating multiple complete datasets to which the analysis model is applied3–6, with the
resulting estimates subsequently pooled using Rubin’s rules4. Broadly, a CCA will be unbi-
ased under MCAR and MAR dropout, while MI will be unbiased under MCAR and MAR
dropout if the imputation model is correctly specified. Generally, both will biased when out-
comes are MNAR2,3,7. In this article, we consider the case of an RCT with an incomplete
continuous outcome, where the treatment effect is estimated using ordinary least squares
(OLS) linear regression. In such an RCT, a CCA will only be biased if the dropout is related
the outcome, conditional on the model covariates.7–9

In the presence of dropout, observed data generally cannot be used to establish if outcomes
are MNAR or MAR given the model covariates, and consequently whether the complete
case treatment effect estimate is likely to be biased. Current guidance for assessing risk
of bias due to dropout relies on checking if dropout is differential across treatment groups,
assessing the plausibility that dropout may be related to outcome (e.g., dropout due to lack
of efficacy)10,11, and comparing the baseline covariate distribution across treatment groups
in patients who are still observed at the end of follow-up.12. The European Medical Agency
(EMA) and the National Research Council (NRC), recommend using MAR-appropriate
methods for the primary analysis, followed by sensitivity analyses that weaken this assump-
tion13,14. These guidelines, however, are in practice implemented in a fraction of all trials,
with on average only 6% (of N=330 trials) describing the assumed missing data mecha-
nism15,16, 9% (N=237) justifying their choice of main analysis16, 19% (N=849) reporting
some kind of sensitivity analysis15–19, which rarely involves relaxing the primary analysis as-
sumptions17, and only 9% (N=200) discussing the risk of bias resulting from missing data19.
This discrepancy between recommended and implemented practice persists despite extensive
literature on the subject and may be due to the relative complexity of such analyses.

In this paper, we propose using the observed variances of the outcome in the two arms of
the trial to assess the risk of CCA estimator bias due to MNAR dropout. We show, using
directed acyclic graphs (DAGs) and standard statistical theory, how MNAR may give rise to
unequal outcome variances between the fully-observed subjects in the two arms of the trial.
We illustrate this method using individual-level data and summary-level data. Individual-
level patient data were obtained from an RCT investigating the benefit of an acupuncture
treatment policy for patients with chronic headaches (ISRCTN96537534)20. The summary
data application used published statistics from a cluster-randomized clinical trial, which
investigated psychological outcomes following a nurse-led preventive psychological interven-
tion for critically ill patients (POPPI, registration ISRCTN53448131).
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2 Notation

Let U be some unmeasured continuous variable that acts on Y , with mean µU = γ and
error term εU , with a mean µεU = 0 and variance σ2

U :

U = γ + εU ,

and let C be some measured continuous variable, defined analogously:

C = δ + εC ,

We define the outcome variable, Y , as a linear function of treatment, X = j, where 1 denotes
the treatment group and 0 the control group, U and C, so that

Y = α+ βX + γU + δC + εY ,

with some intercept, α, β the treatment effect, γ and δ the effects of U and C on Y ,
respectively, and εY the error term with a mean µεY = 0 and variance σ2

Y .

Let yij denote the outcome for a patient i (i = 1, ..., nj) with treatment j = {0, 1}. Let
µj denote the population mean for arm j, with µj = E[Y |X = j], estimated by taking the
average:

µ̂j =
1

nj

nj∑
i=1

yij .

Let β denote the true treatment effect, given by the difference in treatment group means,
with β = µ1 − µ0, estimated by

β̂ = µ̂1 − µ̂0.

We use ‘full data’ to refer to the data on all members of the population and ‘observed
data’ for the sub-sample that is observed. We define a response indicator R, with rij = 1
when yij is observed, and rij = 0 when yij is missing. Let y∗ij denote the outcome for a
patient i (i = 1, ..., n∗

j ) in the observed data, in a given group, j, with population mean
µ∗
j = E[Y |X = j, R = 1] = E[Y∗|X = j], estimated by

µ̂∗
j =

1

n∗
j

nj∑
i=1

yijrij =
1

n∗
j

n∗
j∑

i=1

y∗ij .

We define the treatment effect in the observed data, β∗ = µ∗
1 − µ∗

0, estimated by

β̂∗ = µ̂∗
1 − µ̂∗

0.

The bias, B, of the CCA treatment effect estimate is given by the difference of the population
treatment effect in the full data (β) and in the observed data (β∗):

B = β∗ − β. (1)

By definition, the population variance of Y , for a given treatment arm, j, in the full data,
is given by
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σ2
j =var(Y |X = j) = E[Y − µ|X = j]2, (2)

and, in the observed data, by

σ2∗
j = E[Y − µ|X = j, R = 1]2 = E[Y ∗ − µ∗|X = j]2. (3)

The variance of a given arm, j, in the full data (2), is then estimated by

σ̂2
j =

1

nj

nj∑
i=1

(yij − µ̂j)
2,

and, in the observed data, (3) by

σ̂2∗
j =

1

n∗j

n∗j∑
i=1

(y∗ij − µ̂∗
j )

2.

We obtain the unbiased sample variance, ŝ2j by adjusting σ̂2
j and σ̂2∗

j with a factor cj =
nj

nj−1

and c∗j =
n∗j

n∗j−1 for the full data and observed data, respectively, so that ŝ2 = cj σ̂
2 and

ŝ2∗ = c∗j σ̂
2.

3 MAR and MNAR dropout and observed sample vari-
ances

In an RCT patients, are randomized to treatment, which makes it plausible to assume that
the treatment arms have equal outcome variances in the full data, prior to dropout, or, in the
case of repeated measurements, at baseline. Figure 1 shows a flowchart of a two-armed RCT
in five phases: (I) the relevant target population is identified; (II) a representative study
sample is obtained; (III) patients are randomized to an intervention or control group; (IV)
treatment is initiated; (V) patients are followed up, with dropout occurring over the course of
follow-up. As patients are randomized to treatment, the population group variances are the
same in (III), and will, in the absence of treatment effect heterogeneity, remain the same after
treatment initiation in (IV), and over the course of follow-up in (V), given that no dropout
occurs. Then, it follows that if dropout is present and the variances are different, this must
be due to dropout. Here, we use directed acyclic graphs (DAGs) to describe different MAR
and MNAR dropout mechanisms, and show, using standard statistical theory21, that the
treatment arm variances, conditional on the model covariates, are the same under an MAR
dropout mechanism, but may be different under an MNAR dropout mechanism.
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Figure 1: Flowchart of the phases of an RCT with an intervention and control arm: (I) target
population; (II) study sample; (III) randomization to intervention/comparator group; (IV)
treatment initiation; (V) continued follow-up, subject to patient dropout, which may be MAR
(left) or MNAR (right)

3.1 Proposition 1

Figure 2.A depicts an MAR dropout mechanism, where Y is some function f(X,U), and R
some function g(X). By definition, we can write the joint density of Y , U , and X as

P(Y,U,X) = P(Y,U |X)P(X). (4)

X d-separates U and Y from R, implying the conditional independence (U, Y ) ⊥⊥ R|X, so
that

P(R, Y, U |X) = P(R|X)P(Y,U |X).

It follows that

P(R, Y, U,X) = P(R|X)P(Y,U,X), (5)

and rearranging (5) we obtain

P(Y, U,X) =
P(R,U, Y,X)

P(R|X)
= P(Y,U |R,X)

P(R,X)

P(R|X)
= P(Y,U |R,X)P(X). (6)
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Then, from (4) and (6) we observe that the density of (Y,U) conditional on (X,R) and
conditional on only X are the same:

P(Y, U |X) = P(Y,U |X,R).

As P(Y,U |X,R) = P(Y,U |X,R = 1), with the latter the density of the observed outcome,
(Y ∗, U), we conclude that

P(Y,U |X) = P(Y ∗, U |X).

Then, for X = {0, 1}, µX,R=0 = µX,R=1 and σ2
X,R=0 = σ2

X,R=1. Under the additional

assumption of homogeneous treatment effects, σ2
X=1 = σ2

X=0, from which it follows that the
variances in the observed sample are equal: σ2

X=1,R=1 = σ2
X=0,R=1.

Figure 2: Three directed acyclic graphs (DAGs), depicting the relationship between binary
treatment (X), continuous outcome (Y ), an unmeasured continuous variable (U), a measured
continuous variable (C) and the response indicator (R). The observed outcome is some function
f(Y,R) and denoted Y ∗. A1) Dropout dependent on X; B) Dropout dependent on X and C; C)
Dropout dependent on Y .

Similarly, for the MAR dropout mechanism in Figure 2.B, where Y is some function f(X,A,U),
and R some function g(X,C), we obtain:

P(Y,U |X,C) = P(Y, U |X,C,R) = P(Y ∗, U |X,C),

implying that the variance of the treatment groups in the observed sample, conditional on
the observed variable C, are equal.

Figure 2.C depicts an MNAR dropout mechanism, with Y some function f(X,U) and R
some function g(Y ). Y d-separates U and X from R, implying the conditional independence
(U,X) ⊥⊥ R|Y , so that

P(R,U,X|Y ) = P(R|Y )P(U,X|Y ).

This can be rewritten as

P(R, Y, U,X) = P(R|Y )P(Y,U,X),

and
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P(Y,U,X) =
P(R, Y, U,X)

P(R|Y )
= P(Y,U |R,X)

P(R|X)

P(R|Y )
P(X). (7)

From (4) and (7) we note that

P(Y,U |X) = P(Y,U |R,X)
P(R|X)

P(R|Y )
,

and that, under an MNAR dropout mechanism, the densities of (Y,U) conditional on (X,R)
and conditional on X are no longer the same: P(Y,U |X) ̸= P(Y,U |R,X). If we assume
treatment effect homogeneity (so that σ2

x=1 = σ2
x=0), this difference between full and ob-

served densities implies that the variances in the observed sample can be different. As MAR
dropout results in no such difference, unequal observed group variances imply an MNAR
dropout mechanism, which may, in turn indicate a biased estimate of the treatment effect.
Note, however, that MNAR dropout does not necessarily result in a variance difference.

4 Methods for testing differences in variances

Various methods are available for testing and estimating the difference in variance between
two groups, including Bartlett’s test22, Levene’s test23, the Brown-Forsythe test,24, the
Breusch-Pagan test25, and the studentized Breusch-Pagan test26. In this paper we em-
ploy the latter, as it has a straightforward implementation that allows for conditioning on
additional covariates, and is also robust against non-normally distributed errors. This is par-
ticularly relevant, as, in practice, outcomes are unlikely to be strictly normally distributed.
Even if the study sample is drawn from a population with normally distributed outcomes,
the observed outcome distribution would, after non-random dropout, no longer be normal.

The studentized Breusch-Pagan estimate is obtained as follows. First, the outcome, Y , is
regressed on the treatment variable, X, and optional additional covariates, C, in an OLS
regression:

Y = α+ βX + γC + εY . (8)

The regression residuals are obtained and squared (ε̂2Y ) and, in a second auxiliary OLS
regression, regressed on the treatment variable:

ε2Y = δ + κX + ηεY . (9)

The variance difference estimate is given by κ, and the test statistic is given by nR2, with
n the sample size and R2 obtained from the second, auxiliary regression.

5 A Simulation study

In this section, we examine in simulation the relationship between the bias of the CCA
treatment effect, estimated with OLS linear regression, and the variance difference after
dropout, estimated with the studentized Breusch-Pagan test.
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5.1 Methods

We performed a 1000-fold simulation at sample sizes of N1 = 500, N2 = 1000 and
N3 = 10000, for data with normally and log-normally distributed outcomes, and some
unmeasured variable, U , acting on the outcome. Outcomes were simulated with treatment
group variances of 8, 27% overall dropout (simulated under a logit model), with treatment
effects of β = 1 and β = 0. Five data-generating scenarios were considered, which are shown
as DAGs A-E in Figure 3, defined in the same manner as in Figure 2 (Section 3), with, e.g.,
in DAG B, Y MAR conditional on X. A detailed description of the simulation framework,
in accordance with ADEMP guidelines27, is given in Appendix A.1.

Figure 3: Bias of the complete case analysis (CCA) treatment effect (blue) on the left-hand
Y-axis and the variance difference (VD, red) on the right-hand Y-axis in the observed sample with
95% confidence intervals (CIs), for data simulated according to DAGs A-E with a true treatment
effect of (1) β = 1 and (2) β = 0. DAGs A-E represent (A) No dropout; (B) MAR dropout
dependent on treatment; (C) MNAR dropout dependent on outcome, Yf ; (D) MNAR dropout
dependent on treatment and an unmeasured covariate, U , interacting on the probability scale;
(E) MNAR dropout dependent on some unmeasured variable, U .

5.2 Results

Figure 3.1 summarizes the simulation results for a true treatment effect of β = 1, with
on the left-hand Y-axis, in blue, the bias, and on the right-hand axis, in red, the variance
difference after dropout, with a positive variance difference indicating a greater variance in
the intervention group than the comparator group. In scenarios C and D, outcomes are
MNAR and we observe bias and a positive variance difference.

In scenarios A, B, and E, the treatment effect estimate is unbiased with a zero variance
difference. In scenarios A and B, the outcomes are fully observed and MAR, respectively.
Even though Y is MNAR in scenario E (as U is unobserved), the treatment effect estimate
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is unbiased, as U and X are uncorrelated, and the estimate is obtained through OLS re-
gression28. Figure 3.2 shows the results under the null (β = 0), and we observe that all
scenarios save D are unbiased, with corresponding zero variance differences. The power to
detect a variance difference is smaller than the power to detect a treatment effect of the
same size29, and we observe that the confidence intervals (CIs) of the variance difference
are wider than those of the bias. Figure A.1 (Appendix A.2) shows comparable results from
simulations performed under different selection mechanism strengths. We observe similar
results in Figure A.2, where the outcomes follow a log-normal distribution, but note that the
CIs are wider than for normally distributed outcomes (Figure 3, Figure A.1). In Appendix
A.3, companions tables to Figures A.1 and A.2 are provided for each DAG (Figure 3),
with numerical estimates of the bias, variance difference, and additional quantities (Tables
A.1-A.5 for DAGs A-E).

6 MNAR dropout and heterogeneous treatment effects
in longitudinal data

In previous sections, we assumed homogeneous treatment effects, so that MNAR dropout
was the only potential source of a variance difference in the observed outcome. Now, we
consider longitudinal data, with outcomes measured at baseline and at final follow-up, and
allow for the presence of effect modification (EM), which results in a heterogeneous treatment
effect. We use ‘outcome at baseline’ to refer to a prognostic variable measured at baseline,
which uses the same scale as the outcome measured at follow-up (e.g., in the applied example
in Section 8.1, we consider the headache score measured at baseline and at 12 months). While
EM will result in a variance difference at follow-up29, it will not result in different treatment
arm variances at baseline, in either the full or observed data. In contrast, outcome-dependent
dropout may result in a variance difference at baseline in the observed data, as the outcome
at baseline affects the outcome at follow-up, which in turn causes dropout. In the simulation
below, we show that, for longitudinal data, the variance difference at baseline can be used
to distinguish between treatment effect heterogeneity and outcome-dependent dropout.

6.1 Methods

We performed a 1000-fold simulation of N = 1000, with equal numbers of patients random-
ized to the intervention and comparator groups, a true treatment effect β = 1, 27% overall
dropout (simulated under a logit model) and some unmeasured variable, U , acting on the
outcome at final follow-up. Outcomes at baseline (Yb) and final follow-up (Yf ) were drawn
from a multivariate normal distribution, with variances of 4 and 5, respectively, and a cor-
relation coefficient of 0.65. The variance difference of the observed sample was calculated at
final follow-up (VDf ) and, in the same set of patients, at baseline (VDb). CCA estimator
bias and VD estimates were obtained with and without adjusting for Yb (VDf(b)). The
presence of treatment effect heterogeneity was assessed by testing if severity at baseline acts
as an effect modifier. This was done by calculating the VD estimate adjusted for Yb and the
interaction between Yb and treatment, X (VDf(bI)).
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We considered four scenarios, analogous to scenarios A-D described in Section 5, but now
with outcomes measured at baseline and at follow-up, and each without and with EM (4):
A) No dropout; B) MAR dropout dependent on treatment, X; C) Yf -dependent MNAR
dropout D) MNAR dropout dependent on X and some unmeasured continuous covariate
U , with X and U interacting on the log probability scale. In scenarios A(EM)-D(EM), Yb

acts as a positive effect modifier (i.e., patients with higher baseline values have a better
treatment response and vice versa), simulated such that in the full data, EM increased the
intervention group variance at final follow-up by 4. A detailed description of the simulation
framework, in accordance with ADEMP guidelines27, is given in Appendix B.1.

Figure 4: Four directed acyclic graphs (DAGs), depicting the relationship between binary
treatment (X), continuous outcome at baseline (Yb), continuous outcome at final follow-up (Yf ),
unmeasured continuous variable (U), and the selection indicator (R). The observed outcome is
some function f(Yf , R) and denoted Y ∗

f . These four DAGs illustrate the data generating
mechanisms used in the simulations of Table 1. Each scenario was considered with and without
treatment effect heterogeneity, resulting from Yb acting as an effect modifier, shown here as as
gray dashed arrow. (A) No dropout; (B) MAR dropout dependent on treatment, X; (C) MNAR
dropout dependent on Yf ;(D) MNAR dropout dependent on X and U , which interact on the
probability scale

6.2 Results

The simulation results are shown in Table 1. We first consider the four scenarios when
treatment effects are homogeneous (A-D). When dropout is absent (A) and when dropout is
MAR conditional on treatment (B), the treatment effect estimates are unbiased, irrespective
of conditioning on Yb, with on average zero variance differences at baseline (VDb) and at
follow-up (VDf ). When dropout is MNAR dependent on Yf (C), we observe a biased
treatment effect estimate and non-zero variance differences at baseline and at follow-up.
Conditioning on Yb results in an attenuated bias estimate and a smaller variance difference
at follow-up (VDf(b)). In contrast, when dropout is MNAR independent of Yf (D), we
observe that there is no variance difference at baseline, and that conditioning on Yb does
not affect the bias estimate nor the variance difference at follow-up. For all scenarios, there
is no effect of additionally conditioning on the Yb and treatment interaction term when
estimating the variance difference (VDf(bI)).

When Yb acts as an effect modifier, resulting in treatment effect heterogeneity, we observe
a variance difference at follow-up, regardless of dropout mechanism. In all four scenarios,
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conditioning on Yb when estimating the variance difference (VDf(b)) results in a smaller
variance difference, which is near zero in scenarios A, C and D. Additionally conditioning
on the Yb and treatment interaction term has little effect on scenarios A and C, but results
in an increased variance difference in scenario D, and a zero variance difference in B. Table
B.2 (Appendix B.3) describes the simulation results when unequal numbers of patients are
randomized to treatment groups. There, we observe that when Yb acts as an effect modifier,
conditioning on Yb results in a decreased VDf(b), while additionally conditioning on the
Yb and treatment interaction term consistently results in a smaller VDf(bI), regardless of
dropout mechanism. In Appendix B.2 and B.3, companion tables are provided for Table 1
and Table B.2 (Table B.1 and Table B.3, respectively), which include measures of simulation
performance.

In summary, a variance difference at baseline indicates outcome-dependent MNAR dropout,
while a variance difference at follow-up may be the result of either outcome-dependent
MNAR dropout, non-outcome-dependent MNAR dropout or heterogeneous treatment ef-
fects. A change in treatment effect estimate after conditioning on Yb suggests either treat-
ment effect heterogeneity, with baseline outcome affecting treatment response, or outcome-
dependent MNAR dropout. A decrease in variance difference at follow-up, after conditioning
on a variable, implies this variable either affects dropout or contributes to treatment effect
heterogeneity. Specifically, conditioning on outcome at baseline, Yb, will decrease variance
difference at follow-up when dropout is outcome-dependent or when Yb is an effect modifier.
We note that the size of the decrease in bias and variance difference depends on the correla-
tion strength between Yb and Yf , and, if present, the strength of EM, respectively. A further
change in variance difference at follow-up when conditioning on Yb and the interaction be-
tween Yb and treatment implies treatment effect heterogeneity resulting from EM caused
by Yb. When patients are randomized to unequally sized treatment groups, additionally
conditioning on the Yb and treatment interaction term consistently results in a decreased
variance difference, when Yb acts as an effect modifier.
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Table 1: Bias of the complete case analysis (CCA) treatment effect estimate and variance
difference in the observed sample with 95% confidence intervals (CIs), for longitudinal data, with
baseline (Yb) and follow-up (Yf ) measurements, simulated under different dropout mechanisms,
without (A) and with (B) effect modification (EM). Of 1000 patients, 50% were randomized to
each treatment group. Estimates were obtained without and with conditioning on the baseline
outcome, with variance differences calculated at baseline (VDb) and at final follow-up, for the set
of patients still observed at final follow-up. The variance difference at final follow-up was also
calculated conditional on Yb (VDf(b)), and conditional on Yb and the interaction between Yb and
treatment (VDf(bI)). A) No dropout in both groups; B) MAR dropout dependent on treatment;
C) MNAR dropout dependent on outcome, Yf ; D) MNAR dropout dependent on treatment and
an unmeasured covariate, U , interacting on the probability scale.

Unadjusted for outcome at baseline Adjusted for outcome at baseline

Bias (95% CI) VDb (95% CI) VDf (95% CI) Bias (95% CI) VDf(b) (95% CI) VDf(bI) (95% CI)

No dropout

A 0.00 (-0.28,0.27) 0.00 (-0.71,0.72) 0.01 (-0.88,0.90) 0.00 (-0.22,0.22) 0.01 (-0.50,0.53) 0.01 (-0.50,0.53)
A(EM) -0.01 (-0.33,0.31) -0.01 (-0.72,0.7) 3.89 (2.62,5.16) 0.00 (-0.23,0.22) 0.01 (-0.50,0.52) 0.01 (-0.50,0.51)

MAR dropout

B 0.01 (-0.33,0.34) 0.01 (-0.82,0.84) 0.02 (-1.00,1.03) 0.00 (-0.25,0.25) 0.02 (-0.59,0.64) 0.03 (-0.59,0.64)
B(EM) 0.00 (-0.37,0.38) 0.01 (-0.82,0.84) 3.89 (2.41,5.38) 0.00 (-0.27,0.27) -0.24 (-0.89,0.40) 0.00 (-0.63,0.63)

Outcome-dependent MNAR dropout

C -0.44 (-0.70,-0.19) -0.18 (-0.85,0.49) -0.52 (-1.13,0.08) -0.32 (-0.53,-0.10) -0.26 (-0.68,0.16) -0.26 (-0.68,0.16)
C(EM) -0.99 (-1.26,-0.72) -0.80 (-0.85,0.49) 1.07 (0.24,1.91) -0.64 (-0.86,-0.42) 0.04 (-0.41,0.49) -0.03 (-0.47,0.42)

Non-outcome-dependent MNAR dropout

D -0.27 (-0.60,0.06) 0.02 (-0.79,0.84) 0.15 (-0.82,1.12) -0.28 (-0.52,-0.04) 0.15 (-0.39,0.68) 0.15 (-0.39,0.69)
D(EM) -0.28 (-0.63,0.08) 0.00 (-0.82,0.82) 3.99 (2.57,5.41) -0.28 (-0.53,-0.03) -0.04 (-0.61,0.52) 0.12 (-0.43,0.68)
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7 Using conditional group variances to evaluate impu-
tation models

In Section 3, we showed that for an MAR dropout mechanism, the group variances in the
observed sample are equal, when conditioning on all variables that affect missingness. This
property, in conjunction with the assumption of homogeneous treatment effects, can be used
to assess the possibility of bias in an CCA analysis, by comparing the group variances while
conditioning on all model variables. In an MI model, given that dropout is MAR conditional
on the imputation model variables and the imputation model is correctly specified, we would
expect the variance difference to be zero across the imputed datasets.

7.1 Methods

We performed a 1000-fold simulation of N = 1000 and N = 10000, a true treatment effect
β = 1, 27% overall dropout (simulated under a logit model), variables A and B acting on
outcome Y , for data with normally distributed outcomes and treatment group variances
of 8. Two data-generating scenarios were considered, shown as DAGs in Figure 5, defined
in the same manner as in Figure 2, with, e.g., in DAG M1, Y MAR conditional on X
and B. We performed a CCA regression conditional on A, and an MI regression using
the same analysis model, but with B additionally included in the imputation model. The
corresponding variance differences for both models were estimated conditional on A. A
detailed description of the simulation framework, in accordance with ADEMP guidelines27,
is given in Appendix C.1.

Figure 5: Two directed acyclic graphs (DAGs), depicting the relationship between binary
treatment (X), continuous outcome (Y ), two measured continuous variable (A and B) and the
selection indicator (R). The observed outcome is some function f(Y,R) and denoted Y ∗. (M1) Y
is MAR conditional on X and B, with X and B interacting on the probability scale; (M2) Y
MNAR, conditional on X and B, with dropout dependent on X, B, and Y , with X and B
interacting on the log probability scale.

7.2 Results

The simulation results for N = 1000 are shown in Table 2. In scenario M1 (Figure 5.M1)
dropout is MAR conditional on X and B and the CCA treatment effect estimate, obtained
conditional on A, is biased, with the corresponding variance difference non-zero. Fitting
the same analysis model, which regresses Y on X and A, to data imputed conditional on
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Y , X, A and B, results in an unbiased treatment effect estimate and a near-zero variance
difference. In scenario M2 (Figure 5.M2), dropout is a function of Y , in addition to B and
X, and the MI estimate is no longer unbiased and the variance difference remains positive,
as the imputation model fails account for the effect of Y on dropout.

Based on the variance difference in the observed and imputed data, we would conclude,
for scenario M1, that including variable B in the imputation model will result in a less
biased estimate, while for M2 we would infer that the imputation model fails to address
the dropout mechanism, suggesting that the data are MNAR given the variables in the
imputation model. In Appendix C.2, a companion table is provided for Table 2 (Table C.1),
which includes results for a sample size of N = 10000 and various measures of simulation
performance.

Table 2: Bias of CCA and MI treatment effect estimates and variance differences (VDs) with
95% confidence intervals (CIs), for data (N = 1000) simulated according to DAGs M1 and M2
(Figure 5). M1) Y is a function of A, B and treatment, X, with dropout dependent on A and B;
M2) Analogous to M1, with dropout additionally dependent on Y . Shown is the CCA treatment
effect estimate, conditional on A, with corresponding VD, alongside the MI treatment effect
estimate and VD (VDMI), estimated conditional on A, with both A and B included in the
imputation model. Dropout proportions in the comparator and intervention group are denoted p0
and p1, respectively.

Observed data Imputed data Dropout

Bias (95% CI) VD (95% CI) Bias (95% CI) VD(MI) (95% CI) p0 p1

M1 -0.35 (-0.68,-0.02) 0.25 (-0.82,1.33) -0.02 (-0.37,0.33) 0.08 (-0.82,0.97) 0.18 0.37

M2 -0.56 (-0.85,-0.28) 0.75 (-0.04,1.54) -0.49 (-0.75,-0.23) 0.77 (0.14,1.4) 0.19 0.36
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8 Application

8.1 An application using individual-level data from the acupunc-
ture trial

We now apply our method to individual-level data from an RCT, which compared the
effect of two treatments on 401 patients suffering from chronic headaches. The primary
outcome was the headache score at 12 months, with higher values indicating worse symp-
toms20. Patients were randomly allocated to acupuncture intervention (N=205) or usual
care (N=196). The trial found a beneficial effect of acupuncture treatment, with a mean
difference in headache score of -4.6 (95% CI: -7.0, -2.2), adjusted for baseline headache score
and minimization variables age, sex, headache type, number of years of headache disorder,
and site (general practices in England and Wales). At 12 months, 21% and 29% of patients
in the acupuncture and usual care group, respectively, had dropped out. The investigators
noted that while dropouts were generally comparable across the two groups, their baseline
headache score was on average higher.

Using the variance differences at 12 months (VD12) and at baseline (VDb), we assessed the
risk of bias due to MNAR dropout for an unadjusted CCA model (M1), a model adjusted
for the minimization variables (M2), and a model adjusted for the minimization variables
and baseline headache score (M3). VD12 and VDb were estimated using the studentized
Breusch-Pagan test, for the subset of patients still observed at 12 months.

Table 3: CCA treatment effect estimates and variance differences (VDs) with 95% confidence
intervals (CIs) for data from the acupuncture RCT, which compared the effect of a treatment
policy using acupuncture versus usual care on headache scores at 12 month follow-up. VDs were
calculated at baseline (VDb) and at 12 months (VD12), for the set of patients still observed at 12
months. M1) Headache score is regressed on treatment; M2) Regression is adjusted for five
minimization variables; M3) Regression is adjusted for five minimization variables and the
baseline headache score (analysis model used in the published trial results).

β̂ 95% CI VDb 95% CI VD12 95% CI

M1 -6.1 (-9.58,-2.61) -81.46 (-183.21,20.30) -100.28 (-222.00,21.44)
M2 -6.07 (-9.54,-2.60) -99.08 (-220.88,22.71)
M3 -4.64 (-7.08,-2.19) 21.23 (-26.83,69.30)

The unadjusted model (M1), regressing headache score on treatment, showed a beneficial
effect of acupuncture therapy (-6.1, 95% CI:-9.6,-2.6) and lower outcome variances for the
acupuncture group at baseline and at 12 months, with VDb=-81.5 (95% CI: -183.2,20.3)
and VD12=-100.3 (95% CI: -222.0,21.4), respectively. Adjusting for the five minimization
variables (M2), did not affect the estimated treatment effect or VD12, while additionally
adjusting for baseline headache score resulted in an attenuated treatment effect of -4.64
(95% CI: -7.08,-2.19) and a near zero VD12, suggesting that baseline headache score may
act as an effect modifier, with the observed VD12 the result of EM in the intervention
group, or that dropout is MNAR dependent on outcome. The variances were also different
at baseline (VDb), which points to outcome-dependent MNAR dropout. In summary, our
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results suggest that the CCA estimate, adjusted for minimization variables and baseline
headache score may be biased due to outcome-dependent dropout, and that the true effect
may be more modest. This bias is, however, likely partly adjusted for by conditioning
on baseline headache score. A next step would involve performing an MNAR sensitivity
analysis.

8.2 An application using summary-level data from the POPPI trial

The POPPI trial investigated whether a preventive, complex psychological intervention,
initiated in the intensive care unit (ICU), would reduce the development of subsequent
post-traumatic stress disorder (PTSD) symptoms at 6 months in ICU patients30. Symptom
severity was quantified using the PTSD Symptom scale-self-report (PSS-SR) questionnaire,
with higher values indicating greater severity. Twenty-four ICUs were randomized to in-
tervention or control, with intervention ICUs providing usual care during a baseline period
and the preventive intervention during the intervention period, and control ICUs provid-
ing usual care throughout. At 6 months follow-up, 79.3% of patients had completed the
PSS-SR questionnaire, with no difference across study arms. The trial found no beneficial
effect of intervention, with a mean difference in PSS-SR score of -0.03 (95% CI: -2.58, 2.52),
adjusted for age, sex, race/ethnicity, deprivation, preexisting anxiety/depression, planned
admission following elective surgery and the Intensive Care National Audit Research Centre
(ICNARC) Physiology Score.

Using summary statistics from the published study, we performed a t-test for the vari-
ance difference29 between groups at 6 months, to assess if the study’s reported null result
may have been biased by MNAR dropout. Published estimates were means with 95% CIs,
adjusted for the previously listed variables, which we used to calculate the variances and
corresponding VDs. We found no evidence for a variance difference across groups at base-
line (VDb=11.2; 95% CI: -22.7,45.2), but a greater variance in the intervention group at 6
months (VD6=52.5; 95% CI: 18.8,86.2).

No variance difference across groups at baseline indicates dropout is not outcome-dependent,
while the variance difference at follow-up suggests there may be treatment effect heterogene-
ity or MNAR dropout that does not depend on outcome. The latter, however, is unlikely,
as dropout was balanced across treatment groups. For non-outcome-dependent dropout
to result in bias and a variance difference, this requires an interaction with treatment in
the dropout mechanism. This would have resulted in unbalanced dropout. In summary,
our results suggest there is no MNAR dropout, but that there may be treatment effect
heterogeneity, which, on average, results in a null treatment effect.
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Discussion

In this paper, we show that in RCTs, under the assumption of homogeneous treatment
effects, a difference in observed outcome variances between treatment groups, conditional
on the model variables, implies an MNAR dropout mechanism and by extension a biased
CCA treatment effect estimate. In contrast, when outcomes are MAR, the conditional
treatment group variances will be equal and the CCA estimate will be unbiased.

Treatment effect heterogeneity can be thought of as non-random variability in treatment
response that is attributable to patient characteristics. How plausible it is that heterogene-
ity is absent depends strongly on intervention type and study population. Efficacy trials,
for example, typically have stricter inclusion criteria, resulting in more homogeneous study
populations, and are less prone to large variations in treatment response. In contrast, prag-
matic trials with broad eligibility criteria are more likely to have heterogeneous treatment
effects31. As treatment effect heterogeneity affects the intervention group variance29, it is a
second potential cause of observed outcome variance differences. We show that in longitudi-
nal trials, we can isolate the effect of outcome-dependent MNAR dropout by considering the
variance difference at baseline. This baseline variable can be a baseline prognostic variable
measured on the same scale as the final outcome, as in the applied examples in Section 8,
or alternatively, any baseline prognostic variable that has a causal effect on the outcome of
interest.

Dealing with missing outcomes is challenging, as the underlying dropout mechanism typ-
ically cannot be inferred from the observed data. Existing approaches for investigating
whether data are MNAR involve examining covariate distributions and dropout propor-
tions, and using expert knowledge and/or auxiliary information to assess the plausibility of
outcome-related dropout10–12. Despite the availability of useful methods and institutions
like the NRC and EMA strongly encouraging improved practice13,14, the vast majority of
trials do not undertake or report any kind of sensitivity analysis or, indeed, perform any
kind of risk of bias assessment15–19.

We propose employing the (conditional) variance difference as a MNAR bias assessment
tool, and, indirectly, as a model building tool, which can be used to assess the added value
of including variables for explaining the missingness mechanism. This method is easily
implemented, using existing tests available in standard software, and has a straightforward
interpretation of results. In Section 8, we demonstrated how variance differences can be
used to assess the risk of MNAR bias for various models, using both individual-level data
from the acupuncture trial, and summary-level data from the POPPI trial.
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