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ABSTRACT 

Background: Temporal distribution shift negatively impacts the performance of clinical 

prediction models over time. Pretraining foundation models using self-supervised learning on 

electronic health records (EHR) may be effective in acquiring informative global patterns that 

can improve the robustness of task-specific models.  

Objective: To evaluate the utility of EHR foundation models in improving the in-distribution (ID) 

and out-of-distribution (OOD) performance of clinical prediction models.  

Methods: The cohort consisted of adult inpatients admitted between 2009-2021. Gated 

recurrent unit (GRU)- and transformer (TRANS)-based foundation models were pretrained on 

EHR of patients admitted between 2009-2012 and were subsequently used to construct patient 

representations (CLMBR). These representations were used to learn logistic regression models 

(CLMBRGRU and CLMBRTRANS) to predict hospital mortality, long length of stay, 30-day 

readmission, and ICU admission. We compared CLMBRGRU and CLMBRTRANS with baseline 

logistic regression models learned on count-based representations (count-LR) and end-to-end 

(ETE) GRU and transformer models in ID (2009-2012) and OOD (2013-2021) year groups. 

Performance was measured using area-under-the-receiver-operating-characteristic curve, area-

under-the-precision-recall curve, and absolute calibration error.  

Results:  Models trained on CLMBR generally showed better discrimination relative to count-LR 

in both ID and OOD year groups. In addition, they often matched or were better than their ETE 

counterparts. Finally, foundation models’ performance in the self-supervised learning task 

tracked closely with the ID and OOD performance of the downstream models.  

Conclusions: These results suggest that pretraining foundation models on electronic health 

records is a useful approach for developing clinical prediction models that perform well in the 

presence of temporal distribution shift. 
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INTRODUCTION 

The large increase in the adoption of electronic health records (EHR) has enabled the 

use of machine learning to develop highly performant clinical prediction models that have the 

potential to improve the care of patients[1]. However, the non-stationary healthcare environment 

can bring about changes in the data distribution between model development and 

deployment[2], which can degrade the model’s performance over time[3] and consequently its 

clinical utility[4]. In this study, we explored temporal distribution shift alongside the suitability of 

foundation models[5] – deep neural networks trained on large-scale unlabeled data using self-

supervised learning – and whether they can be adapted via transfer learning to improve the 

robustness of clinical prediction models in the presence of temporal distribution shift. 

The cause of temporal distribution shift in clinical medicine is often subtle[6] and the 

extent of its impact on model performance is heterogeneous across tasks[3, 7-9]. Nonetheless, 

the consequence of the impact on patient care and physician’s trust can be severe. An example 

is the widely implemented Epic sepsis model developed on data collected between 2013-2015 

that performed below expectation when evaluated at Michigan Medicine on data collected 

between 2018-2019 and resulted in a large number of spurious alerts[4].   

Recent approaches that mitigate the impact of temporal distribution shift on model 

performance in clinical medicine largely rely on model monitoring and updating policies that do 

not leverage the entire patient population available[10]. In addition, proactive approaches using 

domain generalization and adaptation have shown little to no success[3].  

To date, few studies have explored learning contextualized patient representations at 

scale. Findings from domains outside of clinical medicine suggest significant performance[11] 

and robustness[12, 13] benefits to pretraining foundation models. In this study, we adopt 

CLMBR,[14] an EHR foundation model pretrained on patient timelines comprised of sequential 

structured medical codes using autoregressive sequence modeling as the self-supervised 

learning task. Transfer of the structure learned by CLMBR from the entire patient population to 
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downstream models have demonstrated performance benefits compared to standard baselines 

including count-based models, especially when the number of patient records was small. 

In this study, we evaluated the utility of CLMBR in mitigating the impact of temporal 

distribution shift on model performance. We hypothesized that the global patterns embedded in 

CLMBR can be adapted into models that perform better than count-based representations in 

out-of-distribution (OOD) years. In addition, we characterized the robustness of popular 

architectures used in clinical settings, namely gated recurrent unit (GRU)[14] and transformers 

(TRANS)[15, 16]. Further, to understand the contribution of CLMBR, we evaluated both GRU 

and TRANS end-to-end (ETE) models. Therefore, the objectives were to compare the in-

distribution (ID) and OOD performance of CLMBRGRU, CLMBRTRANS, ETEGRU and ETETRANS 

compared to models trained using count-based representations.  

 

METHODS 

Data Source 

We used data from the STAnford medicine Research data Repository (STARR)[17]. 

Data in STARR are routinely collected in the EHR of Stanford Medical Center, comprised of 

Stanford Health Care (primarily adult-directed care) and Lucile Packard Children’s Hospital 

(primarily pediatric-directed care). These data are mapped to the Observational Medical 

Outcomes Partnership Common Data Model (OMOP-CDM), which facilitates multi-center 

observational research[18, 19]. The resulting dataset was named STARR-OMOP. This study 

used de-identified data in which dates were jittered by up to 30 days but were accurate within a 

patient timeline. Because of de-identification, the requirement for Institutional Review Board 

approval was waived by Stanford Medical Center. 

 

Cohort 
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We included adult patients over the age of 18 with admissions to the inpatient unit 

between EHR inception (2009) and August 22, 2021. Admissions to the inpatient unit were 

either direct or transfers from the emergency department. Encounters with clinic visit alone and 

encounters in which patient death or discharges occurred on the same day of admission were 

excluded. For patients with multiple admissions, one was randomly selected so that each 

patient was only represented once in the dataset.  

 

Outcomes 

 We defined four clinical outcomes. Hospital mortality was defined as a patient death 

occurring during the hospital stay. Long length of stay (LOS) (long LOS) was defined as a 

hospital admission of seven or more days. Readmission in 30 days (30-day readmission) was 

defined as a readmission to an inpatient unit within 30 days after discharge. Intensive care unit 

(ICU) admission was defined as a patient transfer to the intensive care unit during the hospital 

admission. Each outcome was considered as a binary classification task where the prediction 

time (also the index time) was set as 11:59PM on the day of admission for the hospital mortality, 

long LOS and ICU admission tasks, and 11:59PM on the day of discharge for the 30-day 

readmission prediction task. For the 30-day readmission task, we removed patients who were 

re-admitted on the day of discharge, and for the ICU admission task, we removed patients 

transferred on the day of admission since these events would have occurred before prediction 

time. 

 

Patient Representations 

 EHR data corresponding to a particular patient can be treated as a sequence of days 

that is ordered by time, d1 … dN, where each day consists of a set of events represented by 

medical codes such as diagnoses, lab tests, procedures, and medication administrations or 

prescriptions as examples. In this study, we considered two approaches to construct patient 
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representations over the patient timelines as illustrated in Figure 1: count-based representations 

and CLMBR.   

 

Count based representations: The count-based representations were constructed using an 

open-source count-based featurizer[20] which follows standard practices for patient count-

based featurization.[1, 21] This approach constructed patient representations as binary features 

based on counts of both unique OMOP CDM concepts and derived elements recorded prior to 

the time of prediction. The feature set consisted of demographic and clinical features. 

Demographic features included sex at birth, race, ethnicity, and age at admission discretized 

into five-year intervals. Clinical features were constructed as the concatenation of the results of 

a time-dependent extraction procedure applied independently to data elements recorded in time 

bins defined relative to the time of prediction. The time bins were as follows: 24 hours prior, 1-7 

days prior, 8-30 days prior, and 31 days-any time prior. The time-dependent extraction 

procedure identified all unique OMOP CDM concepts from the following OMOP CDM tables: 

condition occurrence (diagnosis codes), drug exposure (administration or prescription of 

medications), procedure occurrence, measurement (includes laboratory tests), device exposure 

(exposure to implantable objects, medical equipment, supplies, and instruments) and 

observation (non-standardized tests or clinical observations). Continuous measurement results 

were represented as binary indicators for abnormal results for each measurement on the basis 

of whether the result was above or below the reference range.  

 

Clinical language model-based representations – CLMBR: The core idea behind CLMBR is that 

if a sequence model is able to predict sets of medical codes over a patient timeline, then that 

model may have discovered informative global patterns that can be re-used in various other 

clinical prediction tasks. Note that the term “language model” in CLMBR merely reflects the 
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similarity in the computations involved between sequence modeling of medical codes and 

language modeling, and therefore does not indicate natural language processing of any kind. 

 First, we mapped clinical codes for labs, medications, diagnoses, and procedures to a 

finite vocabulary of discrete symbols. This vocabulary was then mapped into a clinical ontology 

to reduce sparsity and used to construct patient sequences for the CLMBR encoder. The 

medical codes were obtained from the same OMOP CDM tables as used for count-based 

representations except for the observation table. The Unified Medical Language System 

(UMLS)[22] was used to extend each medical code to the set of parents in its native ontology 

when applicable (ICD10 for diagnoses, CPT or MTHH for procedures, and ATC for 

medications). For instance, the occurrence of the ICD10 code “H61.23” for the diagnosis of 

impacted cerumen, bilateral, resulted in two additional parent codes, namely “H61.2” (impacted 

cerumen) and “H61” (other disorders of external ear).  

We chose GRU and transformer as the architectures for our sequence models as they 

have each demonstrated success in the sequence modeling of medical codes in the EHR[14, 

18, 19, 23]. To construct patient representations, sets of codes for each day in the patient 

timeline were first passed through the embedding bag layer of the networks, which computes 

the mean code embedding for each day. Next, each mean embedding was concatenated with a 

vector that captured time information including the patient’s age on that day, the time delta from 

the previous day, whether that day was the first day of the sequence, and the log transform of 

the age and time delta. Patient representations were then computed by feeding the 

concatenated vectors into the GRU or transformer (see Supplementary Methods for details on 

architecture), followed by a linear layer with output size equal to the number of dimensions of 

the patient representation, which was set to 800 in this study.  

To predict the set of codes for a given day, di, the patient representation from the 

previous day, di-1, was used. We formulated the set prediction problem as a series of 

independent binary classification problems, where the probability of a given code was computed 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.15.22273900doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.15.22273900
http://creativecommons.org/licenses/by/4.0/


via a sigmoid transformation of the dot product between the code embedding and the patient 

representation. To deal with the computational complexity of the matrix product induced by the 

large code space, we used a variant of the hierarchical softmax optimization[24] in which we 

replaced the softmax transformations with sigmoid transformations. The hierarchical structures 

of the code space were the same as the ones used for ontology extension (e.g., the hierarchical 

structure in the ICD10 vocabulary for ICD10 codes).  We used the binary cross entropy loss as 

the loss function during training.  

Once the sequence models were trained, we used them to construct representations 

(the output of the linear layer) for each patient in the cohort to be used by downstream models 

for clinical prediction tasks (CLMBRGRU and CLMBRTRANS). For hospital mortality, long LOS, and 

ICU admissions, patient representations were obtained up until the day of admission, whereas 

for 30-day readmission patient representations were obtained up until the day of discharge.   

  

Experimental Setup 

 First, we established baseline model performance for each of the four clinical prediction 

tasks and investigated whether model performance degraded over time as a result of temporal 

distribution shift. We trained logistic regression models on count-based representations 

constructed for patients admitted between 2009-2012 (count-LR) and evaluated the models on 

all years from 2009-2021. The years on which the models were trained (2009-2012) constituted 

the ID years and the subsequent years (2013-2021) constituted the OOD years for the baseline 

experiment. We also included oracle models that were trained and evaluated on each of the 

OOD years for comparison. 

Next, we compared ID and OOD performance for four different representation 

construction and modeling approaches relative to count-LR, namely CLMBRGRU, CLMBRTRANS, 

ETEGRU, and ETETRANS. For this experiment, ID years were 2009-2012 and the OOD years were 

2013-2016 and 2017-2021.  For statistical comparisons, we focused on comparing CLMBRGRU 
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and CLMBRTRANS vs. count-LR, CLMBRGRU and CLMBRTRANS vs. their respective ETE 

architecture, and CLMBRGRU vs. CLMBRTRANS. To gain insight into relative performance, we 

subtracted the model’s OOD performance in 2017-2021 by its ID performance in 2009-2012 for 

the same five representation construction and modeling approaches. To limit multiple testing, 

describing relative OOD performance and OOD statistical comparisons only focused on 2017-

2021 and not 2013-2016. 

We also examined the contribution of CLMBR to downstream model performance by 

examining the Pearson correlation between each sequence model’s pretraining performance  

and the downstream logistic regression performance in each clinical prediction task. 

Performance was measured using binary cross-entropy loss.  

As a sensitivity analysis, we trained and compared task-specific models on count-based 

representations and CLMBR using light gradient-boosted machines (LightGBM) instead of 

logistic regression. In addition, to aid clinical interpretation of the changes in performance 

between count-LR and CLMBR-based models, we quantified the numbers of decisions that 

would have been affected if the CLMBR-based models were used instead of count-LR for tasks 

in which performance degraded over time. Specifically, we selected the better performing 

CLMBR model (CLMBRGRU vs CLMBRTRANS) and calculated the proportion of patients that would 

have been classified correctly and incorrectly with CLMBR-based models instead of count-LR 

across various risk thresholds.  

 

Model development: The cohort was divided into training (70%), validation (15%), and test 

(15%) sets with random sampling stratified by the year in which the admission occurred. We 

extracted count-based representations and CLMBR for each patient admission. For count-

based representations, we additionally pruned features with less than 25 observations in the 

training set. We then pruned the same features from the validation and test sets. To tune GRU 

and transformer for CLMBR, we performed grid search over the hyperparameter settings for 
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each architecture separately. For GRU, the hyperparameters consisted of learning rate, L2 

regularization strength and dropout rate. For transformer, we additionally tuned the number of 

transformer layers and the rate for code dropout. Supplementary Methods detail the 

hyperparameter grid and the selected hyperparameter settings. We trained GRUs and 

transformers on the timelines of 80% of the patients in the training set of 2009-2012 (29026 

patients, ~1.1 million patient days, and ~41.5 million medical codes), and selected 

hyperparameter settings based on model performance in the left out 20% of the training set. 

Then, using the selected GRU and transformer, we constructed CLMBRGRU and CLMBRTRANS for 

each patient in the cohort.  

After computing the representations, we trained logistic regression with L2-regularization 

and LightGBM models on count-based representations and CLMBR for each clinical outcome in 

the training set of 2009-2012. Hyperparameter tuning was done on L2 strength, which ranged 

from 10-6 to 102 in increments of powers of 10. We selected hyperparameter values based on 

the model’s binary cross entropy loss in the validation set of 2009-2012. The ETE models were 

trained for each clinical outcome separately on the training set of 2009-2012, and 

hyperparameter tuning was conducted using the same grid as CLMBRGRU and CLMBRTRANS for 

fair comparisons. We selected hyperparameter settings for ETE models based on model 

performance in the validation set of 2009-2012. Oracle models for each OOD year (2013-2021) 

as comparisons for count-LR were trained on count-based representations in the training set of 

the OOD year, and hyperparameters were selected based on performance in the validation set 

of the OOD year. Supplementary Methods provide details on the selected hyperparameter 

setting for logistic regression and ETE models for each clinical prediction task.  

 CLMBR and ETE models were implemented using Pytorch[25] and were trained on two 

Nvidia V100 GPUs. We used the Sci-kit Learn’s[26] implementation of logistic regression. 

Analyses were implemented in Python 3.8[27].  
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Model evaluation: We evaluated each model’s discrimination performance in the test sets using 

the area-under-the-receiver-operating-characteristic curve (AUROC) and the calibrated area-

under-the-precision-recall curve (AUPRC)[28]. The calibrated AUPRC computes the precision 

using a reference outcome prevalence, here set as the prevalence in the ID year group 2009-

2012. Thus, the calibrated AUPRC is invariant to change in outcome prevalence in OOD years 

and allows us to better interpret its variation over time. We used the absolute calibration error 

(ACE)[20] as a measure of calibration. ACE is similar to the integrated calibration index[29] but 

applies a logistic regression estimator to the logit of the predicted probability outputs rather than 

locally weighted least squares and is thus more computationally efficient. 

 

Statistical Analysis: For each metric, we computed the median and 95% confidence interval (CI) 

of the distribution over performance in the test set obtained from 1000 bootstrap samples. To 

compare models, we computed the 95% CI of the differences between a pair of models over 

1000 bootstrap samples. Statistical significance was defined as comparisons where the 95% CI 

did not cross 0.    

 

RESULTS 

 Supplementary Table 1 presents cohort characteristics for each year and outcome 

prevalence. Figure 2 shows the impact of temporal distribution shift on performance (AUROC, 

AUPRC, and ACE) of count-LR trained on admissions from 2009-2012. Model degradation 

occurred in the OOD years (2013-2021) for long LOS and ICU admission prediction tasks, with 

larger degradations observed in 2017-2021.  

 Figure 3 shows the relative performance of CLMBR-based and ETE models compared 

to count-LR in ID (2009-2012) and OOD (2013-2016 and 2017-2021) year groups (see 

Supplementary Tables 2 and 3 for statistical results of pre-specified comparisons). First, 

CLMBRGRU and CLMBRTRANS outperformed count-LR in discrimination performance in both ID 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.15.22273900doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.15.22273900
http://creativecommons.org/licenses/by/4.0/


and OOD year groups across all tasks except for 30-day readmission. In terms of calibration, ID 

improvement was observed for 30-day readmission for CLMBRTRANS vs. count-LR but other 

comparisons between CLMBRGRU or CLMBRTRANS vs. count-LR did not show significant 

differences. In contrast, OOD (2017-2021) calibration results showed deterioration in hospital 

mortality and 30 day readmission tasks. Second, in general, the ID performance of CLMBRGRU 

and CLMBRTRANS were similar to or better than ETEGRU and ETETRANS respectively. However, 

differences in OOD 2017-2021 performance varied across tasks: CLMBR models generally 

performed better in predicting ICU admission, and the ETE models generally performed better in 

predicting long LOS. Third, CLMBRGRU outperformed CLMBRTRANS in discrimination 

performance in tasks other than 30-day readmission prediction for ID and for OOD hospital 

mortality and long LOS tasks.  

Figure 4 shows relative OOD performance compared to ID performance across 

representation construction and modeling approaches (see Supplementary Table 4 for statistical 

results). Comparison of CLMBRGRU or CLMBRTRANS vs. count-LR showed heterogeneous 

results. In terms of relative discrimination, both CLMBRGRU and CLMBRTRANS had significantly 

better relative AUROC vs. count-LR for long LOS but were similar for other tasks. In terms of 

relative calibration, CLMBRGRU and CLMBRTRANS were significantly worse than count-LR for 

hospital mortality and 30-day readmission tasks. Other comparisons of relative performance 

were heterogeneous. 

Figure 5 plots the average binary cross entropy loss of GRU sequence models (trained 

using various hyperparameter settings) in the pretraining validation set against the average 

binary cross entropy loss of their downstream logistic regression models in each task and year 

group (see Supplementary Figure 1 for the same analysis conducted on CLMBRTRANS). The 

performance of GRU sequence models had high correlations (Pearson correlation coefficient) 

with the ID and OOD performance of their downstream logistic regression models in all tasks 

except for 30-day readmission. 
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Figure 6 plots the proportion of patients re-classified differently using CLMBRGRU instead 

of count-LR in long LOS and ICU admission. There were generally more correct re-

classifications than incorrect re-classifications across risk thresholds and year groups for long 

LOS. For ICU admission, there were more correct re-classifications in lower thresholds.  

The sensitivity analysis where we trained and compared task-specific models on count-

based representations and CLMBR using LightGBM instead of logistic regression showed 

qualitatively similar findings (Supplementary Experiment).    

 

DISCUSSION 

 We observed count-LR models resulted in large performance degradation over time for 

some tasks, namely long LOS and ICU admission. Models trained on CLMBR generally 

displayed better discrimination relative to count-LR in ID and OOD year groups but could result 

in worse OOD calibration. In addition, models trained on CLMBR often matched and were 

sometimes even better than their ETE counterparts. Finally, in general, CLMBRGRU performed 

better than CLMBRTRANS, and its performance in the autoregressive sequence modeling task 

tracked closely with the ID and OOD performance of the downstream models for the majority of 

tasks considered.  

Large-scale self-supervised pretraining takes place less frequently and enables machine 

learning practitioners to focus on rapid adaptation of these foundation models to downstream 

tasks. This research paper contributes more evidence that this approach brings not only 

performance benefits over traditional count-based models, but robustness benefits in the 

presence of temporal distribution shift. These benefits decrease the need for model retraining 

and preserves the clinical utility of models deployed into practice. The strong relationship 

between sequence modeling performance and the performance of downstream clinical 

prediction tasks suggests that the observed favorable ID and OOD performance can be directly 
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attributed to the self-supervised pretraining. Whether the potential for worse calibration is 

clinically meaningful will depend on the specific use case. 

The transformer architecture was more difficult to tune and performed worse than the 

GRU in both CLMBR-based models and ETE models. This may be explained by the smaller 

training set size used in this study, which totaled to ~1.1 million patient days and ~41.5 million 

medical codes across ~29 thousand patients. In comparison, state of the art transformer-based 

natural language processing models leveraged much larger volumes of data, for example, 

~3,300 times larger (137 billion tokens) for BERT[11], and ~53,000 times larger (2.2 trillion 

tokens) for RoBERTa[30].  

We examined two attributes of OOD performance, namely absolute performance and 

relative (to ID) performance. It is notable that while CLMBR resulted in generally better absolute 

discrimination than count-LR, improvement in relative discrimination was more modest, with 

improvement only being observed for long LOS. It is likely that absolute performance is more 

meaningful to clinicians since better relative performance does not necessarily indicate better 

absolute performance[31]. However, decision makers may be more concerned about using a 

model that does not perform as well as that originally promised (relative performance). It is for 

that reason that we choose to report both aspects. 

Despite the reasonable performance of CLMBR-based models in OOD year groups, they 

are not immune to the impact of distribution shift as seen in predicting ICU admissions and long 

LOS. Increasing parameter size and training set size, which have demonstrated benefits in 

other modalities[30, 32], could provide additional improvements to robustness. In addition, 

structure and certain types of invariances could be incorporated during pretraining or at the 

adaptation stage using metadata[33], regularization[34], or contrastive learning[35].  

The strengths of this study include the evaluation of a novel approach to self-supervised 

representation learning on electronic health records, namely CLMBR, in both ID and OOD 

settings. Another strength is the adoption of interpretable metrics to evaluate the clinical impact 
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of using CLMBR-based models instead of models trained on count-based representations. 

However, this study is limited as we only used a single dataset with a limited number of tasks. 

Performance of CLMBR may differ in other settings and with other asks. Another limitation is 

that we lack insight into scenarios in which CLMBR may be more or less helpful. 

In conclusion, models trained on CLMBR generally displayed better discrimination 

relative to count-LR in both ID and OOD year groups. Models trained on CLMBR often matched 

or were better than their ETE counterparts. Finally, autoregressive sequence modeling 

performance tracked closely with the ID and OOD performance of the downstream models. 

These results suggest that pretraining EHR foundation models is a useful approach for 

developing clinical prediction models that perform well ID as well as OOD. 
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Figure 1. An overview of the two approaches of constructing patient representations 
used in this study. The purple box in the construction of count-based representations 
represents the reference range comparison and binary feature construction procedures 
for a specific time-bin. The construction of CLMBR illustrates the self-supervised 
pretraining stage, hence the inclusion of the self-supervised learning objective. The 
construction of CLMBR for the purpose of transfer learning (e.g., for predicting hospital 
mortality) does not include the self-supervised learning objective. 
Abbreviations: CLMBR: clinical language model-based representations. 
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Figure 2. The impact of temporal distribution shift on the performance (AUROC, 
AUPRC, and ACE) of logistic regression models trained on count-based 
representations. Shaded regions indicate time windows in which performance in out-of-
distribution years (2013-2021) is worse (red) or better (green) than performance in the 
in-distribution year group (2009-2012). Oracle models were trained and evaluated on 
each of the out-of-distribution years. Error bars indicate 95% confidence interval 
obtained from 1000 bootstrap iterations.  
Abbreviations: AUROC: area under the receiver operating characteristics curve; 
AUPRC: area under the precision recall curve; ACE: absolute calibration error; LOS: 
length of stay; ICU: intensive care unit.  
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.15.22273900doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.15.22273900
http://creativecommons.org/licenses/by/4.0/


Figures 3. Change in performance (AUROC, AUPRC, and ACE) across representation 
construction and modeling approaches relative to count-based logistic regression 
models (Count-LR) in 2009-2012 (09-12), 2013-2016 (13-16), and 2017-2021 (17-21). 
Performance of count-LR was subtracted to obtain relative performance. Green regions 
indicate the range of values that is better with respect to count-LR, and red regions 
indicate the range of values that is worse. Error bars indicate 95% confidence interval 
obtained from 1000 bootstrap iterations. Supplementary Tables 2 and 3 detail the 
statistical results.  
Abbreviations: AUROC: area under the receiver operating characteristics curve; 
AUPRC: area under the precision recall curve; ACE: absolute calibration error; LOS: 
length of stay; ICU: intensive care unit; CLMBR: clinical language model-based 
representation; GRU: gated recurrent unit; Trans: transformer; LR: logistic regression; 
ETE: end-to-end. 
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Figure 4. Relative out-of-distribution (OOD) performance (AUROC, AUPRC, and ACE) 
across representation construction and modeling approaches. Each relative 
performance was obtained by subtracting the model’s OOD performance in 2017-2021 
(17-21) by its in-distribution (ID) performance in 2009-2012 (09-12) represented by the 
solid line. Colored regions indicate the range of values that is worse (red) or better 
(green) with respect to the relative OOD performance of logistic regression models 
trained on count-based representations. Error bars indicate 95% confidence interval 
obtained from 1000 bootstrap iterations. Supplementary Table 5 details the statistical 
results.  
Abbreviations: AUROC: area under the receiver operating characteristics curve; 
AUPRC: area under the precision recall curve; ACE: absolute calibration error; LOS: 
length of stay; ICU: intensive care unit; CLMBR: clinical language model-based 
representation; GRU: gated recurrent unit; Trans: transformer; LR: logistic regression; 
ETE: end-to-end. 
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Figure 5. Correlation between the GRU sequence model’s validation performance and 
the performance of the downstream logistic regression models in each clinical prediction
tasks. Performance for both the sequence model and the logistic regression model were 
measured using binary cross entropy loss. Each point in the scatter plot represents the 
GRU’s performance in the validation set and its downstream logistic regression model’s 
performance in the test set. Each GRU sequence model was pretrained using a 
different hyperparameter setting from the hyperparameter grid. Shaded error envelope 
represents the 95% confidence interval around the regression line.  
Abbreviations:  GRU: gated recurrent unit; LOS: length of stay; ICU: intensive care unit. 
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Figure 6. The proportion of patients correctly and incorrectly re-classified by 
CLMBRGRU. Green bars indicate the proportion of patients that were incorrectly 
classified by count-LR but were correctly re-classified by CLMBRGRU. Orange bars 
indicate the proportion of patients that were correctly classified by count-LR but were 
incorrectly re-classified by CLMBRGRU. Together, these represent the percentage of 
decisions that would have been affected if CLMBRGRU models were used instead of 
count-LR.  
Abbreviations:  count-LR: logistic regression models trained on count-based 
representations; CLMBRGRU: logistic regression models trained on gated recurrent unit-
based CLMBR. CLMBR: clinical language model-based representations; LOS: length of 
stay; ICU: intensive care unit. 
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