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Abstract

Adjustment for prognostic covariates increases the statistical power of randomized trials.
The factors influencing increase of power are well-known for trials with continuous
outcomes. Here, we study which factors influence power and sample size requirements in
time-to-event trials. We consider both parametric simulations and simulations derived from
the TCGA cohort of hepatocellular carcinoma (HCC) patients to assess how sample size
requirements are reduced with covariate adjustment. Simulations demonstrate that the
benefit of covariate adjustment increases with the prognostic performance of the adjustment
covariate (C-index) and with the cumulative incidence of the event in the trial. For a covariate
that has an intermediate prognostic performance (C-index=0.65), the reduction of sample
size varies from 1.7% when cumulative incidence is of 10% to 26.5% when cumulative
incidence is of 90%. Broadening eligibility criteria usually reduces statistical power while our
simulations show that it can be maintained with adequate covariate adjustment. In a
simulation of HCC trials, we find that the number of patients screened for eligibility can be

divided by 2.7 when broadening eligibility criteria. Last, we find that the Cox-Snell Ris is a

good approximation of the reduction in sample size requirements provided by covariate
adjustment. This metric can be used in the design of time-to-event trials to determine sample
size. Overall, more systematic adjustment for prognostic covariates leads to more efficient
and inclusive clinical trials especially when cumulative incidence is large as in metastatic and
advanced cancers.
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Key messages

® Covariate adjustment is a statistical technique that leverages prognostic scores
within the statistical analysis of a trial. We study its benefits for time-to-event trials.

® Power gain achieved with covariate adjustment is determined by the prognostic
performance of the covariate and by the cumulative incidence of events at the end of
the follow-up period.

e® Trials in indications with large cumulative incidence such as metastatic cancers can
benefit from covariate adjustment to improve their statistical power.
e Covariate adjustment maintains statistical power in trials when eligibility criteria are

NOTE: Thpmqg%gts new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

Adjustment for prognostic covariates improves precision and increases statistical power for
treatment effect estimation in randomized clinical trials[1-4]. Randomization guarantees the
validity of statistical analysis of randomized trials whether they are adjusted or unadjusted[5].
However, unadjusted analysis can be imprecise because of a large variability between
patient outcomes that is explained by several baseline covariates. Covariate adjustment
accounts for outcome variation between patients, leading to a more precise estimation of the
treatment effect[1]. While adjustment on important covariates can correct for chance
imbalance in important baseline covariates, adjustment covariates should be selected and
prespecified at the trial design stage based on their prognostic value and not on any
imbalance criterion assessed after randomization[6]. This methodological consensus is
currently being translated into regulatory guidance: EMA published a guideline in 2015 and
the FDA has issued a draft guidance in 2021[7,8]. Increase of precision when using
covariate adjustment translates to a reduced sample size for reaching a target of statistical
power, typically 80% in clinical trials.

For time-to-event trials that are frequent in oncology, we investigate to what extent trial and
indication characteristics determine the impact of covariate adjustment on statistical power
and on sample size requirements. These characteristics include the cumulative incidence of
the event of interest at the end of follow-up, the prognostic performance of covariates and
the censoring rate. Understanding the relationship between cumulative incidence and
reduction in sample size helps prioritize the disease indications where covariate adjustment
is the most impactful.

We also evaluate whether covariate adjustment can help to broaden trial eligibility criteria.
Eligibility criteria in clinical trials can be too restrictive which leads to limited generalizability
as well as difficulty in enrollment[10,11]. Beyond ensuring patient safety, restrictive eligibility
might be used to ensure homogeneity in the trial population[12,13]. In non-small cell lung
cancer, it was shown using observational cohorts that many inclusion criteria are superfluous
as they restrict the potential enrollment of trials even though the treatment is as efficacious
for the excluded patients as for the included patients[14]. As covariate adjustment allows to
analytically compensate for the heterogeneity in the patient population, we investigate
whether adequate covariate adjustment could allow to broaden eligibility criteria while
maintaining statistical power.

To answer both of those questions, we use parametric simulations as well as semi-synthetic
simulations based on data from patients with resected hepatocellular carcinoma (HCC). In
parametric simulations, event times are simulated based on an extensive exploration of the
parameter space. The semi-synthetic simulations are based on TCGA data[15]. The
covariate of interest, which is used for adjustment, is a deep-learning model based on
histological slides. This covariate nhamed HCCnet captures a prognostic signal on overall
survival for HCC after resection[16]. In both cases, the simulations rely on the proportional
hazards assumption.

Last, we determine how sample size could be determined if the prognostic signal carried by
the covariate is known a priori based on external data. For a continuous outcome, the Fleiss
formula relates the sample size of the adjusted analysis (denoted Nadj), which is required for
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a given statistical power, to the sample size of the unadjusted analysis (denoted NO).

Denoting by  the proportion of variance of the outcome explained by the covariate, the
Fleiss formula states that the sample size needed for the adjusted analyses is reduced by o
compared to the unadjusted one Nadj = No(l — rZ)[Q]. For instance a correlation r of 0.5

between a baseline covariate and the outcome translates to sample size requirements for
the adjusted analysis reduced by 25% compared to the unadjusted analysis. For a
time-to-event outcome, there is not a unique definition for the proportion of variation
explained by a covariate. Different measures to compute the proportion of explained
variance have been proposed for survival analysis [17,18]. Using the parametric simulations,
we assess whether a measure extends the Fleiss formula for a time-to-event setting.

Methods

Parametric simulations based on a time-to-event model

Parametric simulations are performed to estimate the observed reduction of the sample size
requirement and assess its relationship with a single adjustment covariate’s C-index and the
cumulative incidence of the event. Other parameters of interest are the size of the treatment
effect, the Weibull shape of the baseline hazard function and the drop-out rate. The
simulations rely on the proportional hazard assumption.

Survival times are generated following the Weibull distribution with shape w and scale
depending on the treatment hazard ratio hr, and on a standard Gaussian covariate x.
Censored times T9° are drawn from an exponential distribution with a specified drop-out
rate d. Denoting z the treatment allocation variable, k the intercept and 6 the coefficient of x,
this generative model can be formally summarized as follows for patient /:

hi(z) = hr? exp(k + 0z;),
Ti(z) ~ W(hi(2) V", w),
T;-dTOp ~ S(d)

All patients remaining at risk at 5 years are censored at that time. The treatment allocation is
independent of the covariate and there is the same number of patients in both arms. For
each set of input parameters, the auxiliary parameters k and 8 are numerically optimized to
reach a prespecified value A of the cumulative incidence in the control arm, and the C-index
C evaluated on the whole trial population.
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Figure 1: Workflow of parametric simulations. For a set of parameters corresponding to a
clinical trial scenario,10,000 instances of clinical trials are simulated to estimate statistical
power.

Once survival times are simulated, the presence of a treatment effect is tested in an
unadjusted analysis and an analysis adjusted for the covariate using the Wald test for the
treatment coefficient in a Cox regression. The statistical power for the unadjusted analysis
and the adjusted analysis is estimated on a grid of sample sizes based on 10,000 numerical
repetitions per sample size[19]. The resulting power curves give the sample sizes N,y and N,
required to reach a power of 80% for both analyses, from which the reduction of sample size
achieved with adjustment R, is deduced (Figure 1). These simulations explore a wide
range of parameter values (Table S1), allowing for an extensive study of R?,,; behavior as a
function of the cumulative incidence A and c-index C in different settings of proportional
hazards.

To indicate what are the most relevant indications for covariate adjustment, we provide
estimates of the cumulative incidence A in the control arm for several oncology trials.
Cumulative incidence is estimated by reading the value of the Kaplan-Meier curves
published in the manuscript describing the trial results.

Semi-synthetic simulations based on HCC data from TCGA

To consider simulations that mimic distributions of covariates found in clinical data, we also
perform semi-synthetic simulations of resected HCC patients. The covariate used for
adjustment is a prognostic score based on H&E images processed with the HCCnet deep
learning algorithm[16]. The deep learning model was trained on another dataset than TCGA.
We consider the prognostic scores of HCCnet applied on 328 patients with early stage HCC
from the TCGA HCC dataset[15,16]. In the TCGA dataset, we have access to outcome
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measures including overall survival and 73 clinical variables with less than 50% of missing
data in addition to the HCCnet prognostic covariate.

We impute all missing values among the 73 clinical variables having less than 50% of
missing variables and more than one modality. For imputation, we use factorial analysis for
mixed data (FAMD), a principal component method for data involving both continuous and
categorical variables[20]. The imputed variables used as adjustment are tumor staging (1%
missing values) and ECOG score which have 20% missing values. The imputed variables
used as eligibility criteria in our simulation study are the ECOG score, the Child Pugh
classification (33% missing), the macrovascular invasion (15% missing) and B or C hepatitis
infection status (15% and 5% missing values respectively).

The simulations follow the same assumptions as the parametric model while preserving the
observed survival curve and dependence of survival on covariates. To do so, a Cox model of
overall survival is fitted on the available prognostic variables (tumor staging, ECOG score
and the HCCnet variable). For each simulated patient, we sample her/his clinical covariates
from TCGA. The hazard rate is defined as for parametric simulations except that there is a

matrix X of covariates instead of a single covariate, and 0 is replaced by 9 the vector of
coefficients obtained from the fitted Cox model. The Weibull distribution is replaced by the
empirical survival function that depends on the hazard rate and on the baseline survival

function SA‘O estimated with Kaplan-Meier:

)=nh
t]z,X;) = So(t)),
i(2) ~ ST | 2, X5).

As before, k is numerically optimized in order to set the incidence of outcome in the control
arm to the observed incidence of outcome. Finally, all patients with events after 5 years are
censored at that time.

We choose a sample size of 760 individuals as it is the average sample size of 4 ongoing
trials for adjuvant treatment in early stage HCC[21-24]. The treatment effect size hr is set so
that the estimated statistical power with adjustment for the clinical variables (tumor staging
and ECOG score) is 80% for a sample size of 760 individuals. Randomization of the
treatment assignment is stratified on tumor staging. To estimate the reduction of sample size
obtained when adding HCCNet as adjustment covariate, we consider varying values of the
sample size, find the minimal values where power reaches 80% and compute the relative
reduction of sample size compared to the sample size of 760 individuals. Statistical power is
estimated based on 5,000 repetitions.

Effect of covariate adjustment when broadening eligibility criteria

Using the parametric simulations and the semi-synthetic simulations, we evaluate if the
effect of covariate adjustment is changed when considering less restrictive inclusion criteria.
For parametric simulations, the restricted inclusion criteria is based on the values of the
prognostic covariate X. Only patients with values of X below 0, i.e. patients at lower risk, are
included in the simulated trial with the most restrictive eligibility criteria. There are then 4
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scenarios when combining the two possible eligibility criteria (all patients or restricted
inclusion) and the two choices of adjustments (no adjustment or adjustment for X).
Parameters of the simulations include the hazard ratio of the covariate, the intercept of the
Cox model, the Weibull shape and the treatment hazard ratio which are setto 6 = 3,k = 0
w =1, and hr = 0.7 respectively. The observed cumulative incidence is 96.5% when all
patients are included, and 93.5% for the restricted inclusion.

In the case of the HCC semi-synthetic simulations, we consider that including all TCGA
patients selected for HCCnet validation is the less restrictive inclusion criteria and we define
two additional levels of restricted eligibility criteria (Table 1). The mildly restrictive eligibility
level has two inclusion criteria present in all 4 ongoing large trials for adjuvant treatment in
early stage HCC[21-24]: only patients with a Child-Pugh score of A and with an ECOG
status of 0 or 1 are included. The most restrictive eligibility criteria further restrict the ECOG
status to 0 as in the STORM ftrial[25], exclude patients with a dual infection of hepatitis B and
hepatitis C as in the KEYNOTE-937 trial[23] and exclude patients with macrovascular
invasion as in the IMBRAVEOQSO0 trial[22]. We consider only the eligibility criteria that were
available in the TCGA HCC dataset. There are therefore 6 different scenarios when
combining the three levels of eligibility criteria and the two choices of adjustment: whether or
not HCCnet is considered as an adjustment variable in addition to tumor staging and ECOG.
In the scenario with the most restrictive eligibility levels, every patient has an ECOG of 0 and
therefore the analyses are not adjusted for ECOG.

For both types of simulations, changing the inclusion criteria changes the number of events
which affects statistical power directly. To provide a fair comparison between the methods
with or without adjustment, we present the statistical power of the different scenarios as a
function of the number of events. In both cases, no drop-out was added and 5000 repetitions
were performed to evaluate statistical power. In both cases, patients at lower risk of the
event are selected when we consider the more restrictive criteria. We also evaluate how
broadening the eligibility criteria would impact the number of patients that need to be
screened for enroliment to succeed.

Eligibility level Nested inclusion criteria N (%)
Less restrictive All TCGA patients selected for HCCnet 328 (100%)
validation[16]
Mildly restrictive Child Pugh classification is A 275 (84%)
ECOG <1
Most restrictive ECOG score of 0 180 (55%)

No macrovascular invasion
No cumulated hepatitis B and C infection

Table 1: Definition of eligibility criteria used for the semi-synthetic simulations based on the
TCGA dataset.

Proposed R? measures for survival analysis

Several categories of measures have been proposed to extend the R? measure to
time-to-event data[17,18]. We consider explained variation (EV) and explained randomness
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(ER) measures. Explained variation measures are extensions of the proportion of explained
variance that is used in linear regression. Explained randomness measures, on the other
hand, are based on entropy measures and compare the quantity of information contained in

models with and without the covariates of interest. In the simulations, we study the behavior
2 2

22 2 ) o202
of three EV measures: R, RPMand RR[26—28], and five ER measures: R, PPy Py

0 and

Ris [26,27,29-31]. The proposed R? measures are computed over the grid of simulation

parameters and compared to the observed reduction in sample size.

Results

Evaluation of the factors impacting sample size reduction with parametric simulations

The parametric simulations show that the sample size reduction obtained with covariate
adjustment varies between 0 and 80%. It increases as a function of the covariate prognostic
performance measured with the C-index, and of cumulative incidence, which corresponds to
the probability of an event (death, progression...) before the end of the follow-up period.
When we consider a cumulative incidence of A = 10%, covariate adjustment reduces the
sample size by 1.7% for a covariate with a C-index of 0.65, by 5.4% for a C-index of 0.75,
and by 16.1% for a C-index is 0.85. For an intermediate value of A = 50%, the reduction is
11.7%, 35.4%, 64.9% for the three C-index values of 0.65, 0.75, and 0.85. For a high
cumulative incidence value of A = 90%, the reduction is 26.5%, 54.1%, 80.5% for the same
values of C-index (Figure 2).

Cumulative incidence values depend on indication, on the nature of the event (progression,
death...) and on the duration of follow-up (Table 2). We find a wide range of values for
cumulative incidence in several oncology trials. It ranges from 18.6% at 5 years for disease
recurrence in early breast cancer to 98% at 3 years for death in metastatic pancreatic cancer
(Table 2).
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Figure 2: Reduction in sample size R?,,, as a function of the prognostic performance
(C-index) of the covariate for a range of cumulative incidence values. Cumulative
incidence A is measured at the end of the follow-up period. In the simulations,the hazard
ratio is set at hr=0.7, the drop-out rate at d=0.01, and the shape parameter of the Weibull
distribution at w=0.5. The cumulative incidence values that are provided for the breast
cancer and HCC indications come from clinical trials selected in table 2. eBC: early breast
cancer; eHCC: early resectable hepatocellular carcinoma; mBC: metastatic breast cancer;
aHCC: advanced hepatocellular carcinoma.

We find that other parameters of the simulations do not impact the reduction of sample size
obtained with covariate adjustment. These additional parameters are the size of the
treatment effect (hazard ratio), the Weibull shape parameter and the drop-out rate (Figure
S1).

The drop-out rates of d=0.01 or d=0.1 result in different average censoring rates depending
on the values taken by other parameters. The median censoring rate (computed over the set
of other parameters’ value) before the end of follow-up was 3.7% when d=0.01 (min-max:
0.7%-4.8%) and 28.1% when d=0.1 (min-max: 5.4%-38.4%).

Indication Trial Cumulative incidence A in control arm
HR+ early breast BIG 1-98 [32] Probability of disease recurrence at 5
cancer (eBC) Letrozole vs tamoxifen years: 18.6%

HCC after resection of | STORM[25] Probability of death at 5 years: 32%
local ablation (eHCC) | Sorafenib vs placebo
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Metastatic
hormone-sensitive
prostate cancer

ENZAMETI[33]
Enzalutamide vs standard
nonsteroidal antiandrogen
therapy in addition to
testosterone suppression

Probability of death at 4 years: 36%

PD-L1+ advanced
NSCLC

KEYNOTE-024[34]
Pembrolizumab vs
chemotherapy

Probability of death at 1.5 years: 50%

HR+ metastatic
breast cancer in
premenopausal
patients (mBC)

MONALEESA-7[35]
Ribociclib vs placebo in
addition to endocrine
therapy

Probability of death at 3.5 years: 54%

Resected pancreatic
cancer

PRODIGE 24[36]
Modified FOLFIRINOX vs
gemcitabine

Probability of death at 5 years: 70%

Advanced HCC

CheckMate 459[37]

Probability of death at 3 years: 83%

(aHCC) Nivolumab vs sorafenib
Malignant pleural CheckMate 743[38] Probability of death at 3 years: 85%
mesothelioma Nivolumab+lpilimumab vs

chemotherapy
Metastatic pancreatic | OXIPAN[39] Probability of death at 3 years: 98%
cancer FOLFIRINOX vs

gemcitabine

Table 2: Cumulative incidence of events of interest in the control arms of a selection of trials.
For a given C-index of a prognostic covariate, the impact of covariate adjustment will be
larger for indications with large cumulative incidence of events. HR+: Hormone receptor
positive; PD-L1+: programmed death ligand 1 positive; NSCLC: non-small cell lung cancer

Comparing semi-synthetic HCC simulations and parametric simulations

We consider semi-synthetic simulations based on the TGCA HCC cohort to evaluate power
gain obtained with a deep learning variable. We find that adjusting on the deep learning
covariate HCCnet, in addition to tumor staging and ECOG, reduces the required sample size

by ijs = 16.4% (figure S2). In terms of statistical power, the increase provided by the deep

learning covariate is 6.4% for the sample size that provides a power of 80% when adjusting
on ECOG and tumor staging only.

We evaluate the compatibility of this result with the results of the parametric simulations. The
cumulative incidence of death in the HCC-TCGA population is 50% at 5 years. The Cox
model with tumor staging and ECOG score has a C-index of 0.65 in the source population,
while adding HCCnet results in a C-index of 0.72. We label by 1 the quantities associated
with adjustment for the clinical variables (tumor staging and ECOG) and by 2 the quantities
associated with the additional adjustment of the HCCnet covariate (tumor staging, ECOG

and HCCnet). Applying Fleiss equation for the two adjustments using the Ribsi obtained with

parametric simulations (Figure 2) we obtain
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2 2
NN = (1 _ Robs,z)/(1 _ Robs'l) ~ 0.73/0.88 = 0.829 = 100% — 17.0% .
Therefore, results obtained with semi-synthetic simulations are coherent with the findings of
the parametric simulations.

Covariate adjustment when broadening eligibility criteria

When broadening eligibility criteria, statistical power of unadjusted analysis is reduced for a
fixed number of events (Figure 3). By contrast, if we consider covariate adjustment in the
parametric simulations, power is almost not affected by eligibility criteria. In the
semi-synthetic simulations, we find that further adjusting on the additional HCCnet covariate
reduces the extent to which power is affected by changes of eligibility criteria (Figure 3).

While the adjusted analyses with different eligibility criteria have the same statistical power,
they imply a very different screened population size. Screened individuals are patients for
which eligibility criteria is evaluated to test if they can be enrolled in the clinical trial. In the
HCC example, the required size of the screened population is 635 for the less restrictive
inclusion while it is 1690 for the most restrictive population. Therefore, the size of the
screened population is divided by 2.7 when broadening eligibility criteria while attaining the
same statistical power. This difference is explained by the smaller proportion of patients
included as well as the smaller proportion of events with the restrictive eligibility criteria (35%
at 5 years versus 50% in the entire population).

. Inclusion
Inclusion

== 100%
== 100%
== 84%
== 50%
55%
Analysis .
Adjusted on
== Adjusted HCCnet+
= = Unadjusted Clinical
= = Clinical only
250 500 750 250 300 350 400
Mean number of events Mean number of events

Figure 3: Effect of broader eligibility criteria and of covariate adjustment on statistical
power. A: results of the parametric simulations where the least at risk patients are
selected in the 50% inclusion scenario. B: results of the semi-synthetic simulation based
on the HCC-TCGA cohort. The three levels of inclusion are based on eligibility criteria of
past and ongoing trials outlined in table 1.
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Fit with R> measures from the literature

We compare various R® measures for time-to-event endpoints to the reduction of sample
size szs provided by covariate adjustment for the grid of parameters considered in

parametric simulations (Figure S3). Most measures do not depend on the cumulative
incidence of the event at the end of follow-up (Figure S3), which is not compatible with the
results found for the reduction of sample size provided by covariate adjustment (Figure 2).

Most measures increase only as a function of the C-index (Figure S3). The Cox-Snell Ris
best captures the observed sample size reduction in all our simulations. The median
absolute error is minimal for the Ris, and is of 2.0% (first and third quartiles are 0.9% and

3.6% respectively). Median absolute error for other R’ measures are: 4.3% for RiM
(2.0%-10.2%), 4.8% for R (2.2%-11.0%), 6.5% for R, (2.5%-16.2%), 8.8% for R’

(3.8%-19.1%), 9.2% for p_, (3.7%-19.0%), 10.0% for p. (3.5%-22.0%) and 11.2% for p.
(3.9%-26.1%).

Using the Fleiss formula and the Cox-Snell Ri’s measure, we find that further adjusting on

HCCnet—in addition to clinical covariates—in a resected HCC trial would decrease the sample
size by 7.4%, which is an underestimation of the 16.4% reduction in sample size found with
the semi-synthetic simulations.

Discussion

The impact of covariate adjustment depends on several characteristics related to indications
and clinical trials. Our simulations confirm the expected result that the power gains increase
with the prognostic performance, measured by C-index, of the covariates used in covariate
adjustment. Other parameters that were considered such as Weibull shape, drop-out rate or
effect size do not play an important role in determining power gain. Previous work on the
topic already identified that the drop-out rate and effect size do not impact the precision
gains obtained with covariate adjustment[2].

Cumulative incidence at the end of the follow-up period is another major determinant of the
impact of covariate adjustment. Compared to earlier work[2], we considered a finite time
horizon (i.e. follow-up of 5 years) which allowed us to identify the strong dependence on
cumulative incidence. Dependence on cumulative incidence is related to the dependence on
the prevalence of events that occur for binary outcomes[3]. We investigated cumulative
incidence for several published trials in oncology. Covariate adjustment will have limited
impact for trials of new endocrine therapies for early breast cancer. For indications with low
cumulative incidence, prognostic information can be more useful to perform prognostic
enrichment than for covariate adjustment[40]. For aggressive cancers such as
mesothelioma, metastatic breast cancer or metastatic pancreatic cancer, covariate
adjustment provides notable gains in precision.
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Another advantage of covariate adjustment is that it removes incentive to homogeneize the
population with restrictive eligibility criteria. In the two simulation scenarios, the adjusted
analysis is just as powerful whether there are strict eligibility criteria or not. However, the size
of the population that needs to be screened for inclusion can be reduced substantially with
the least restrictive eligibility criteria. Adequate covariate adjustment can therefore go hand
in hand with broader eligibility criteria that would allow easier enrollment as well as better
generalizability of trial results. This would be in line with recent calls for less restrictive
eligibility criteria[11,12].

To be able to determine the sample size reduction brought by covariate adjustment, we
investigated whether several R® measures could approximate the observed sample size

reduction. We found that the Cox-Snell Ris was the best approximation of our quantity of

interest. The sample size with adjustment is then Nad]_ = No(l — Ris) and this generalizes

the Fleiss formula to a time-to-event outcome. When denoting n the number of patients, and
l0 and l1 the log-likelihoods of a base model and a model adjusting for additional covariates,

we have Ris =1- exp[— % (l1 — lo)][31]. Other R> measures we consider were developed

such as they do not depend on cumulative incidence explaining why they cannot
approximate the reduction of covariate adjustment provided by covariate adjustment[17,18].

Having an approximation for sample size determination is of practical importance as it can
help to design clinical trials. It can also be useful in the case of a blinded sample size
reestimation when there is uncertainty on the prognostic performance of adjustment
covariates and where the required number of events should be reevaluated at an interim
stage. Blinded sample size reestimation procedures have been proposed for a continuous
outcome and could be generalized for time-to-event outcomes[41].

As noted in the draft FDA guidance, covariate adjustment changes the target of estimation, a
phenomenon called non-collapsibility[8]. When adjusting for a prognostic covariate and when
there is a true treatment effect, it is expected that the conditional estimand (e.g. hazard ratio)
is drifted away from 1 compared to the marginal estimand but statistical uncertainty is
increased. Because the amount of drift is superior to the inflation of uncertainty, statistical
power resulting from covariate adjustment is increased as found in our simulations[42]. If a
marginal estimand is preferred, one can consider adjusted marginal estimators that target
the estimand of the unadjusted analysis while leveraging the gain in precision offered by
covariate adjustment[42,43].

Our simulations study the effect of covariate adjustment on a relative measure of treatment
effect, which is the hazard ratio. Absolute measures of efficacy such as restricted mean
survival time or absolute risk reduction are also of interest. Estimation of those measures
can also be improved by using the prognostic signal of covariates[44—46]. The extent to
which our findings, for instance the dependence on cumulative incidence, generalize to this
setting should be studied in further work.

Overall, we have shown that covariate adjustment reduces the sample size that is needed to
reach a targeted statistical power. Reduction is particularly pronounced for indications where
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cumulative incidence is large. Furthermore, adequate covariate adjustment allows to
maintain statistical power while relaxing eligibility criteria. New sources of prognostic
covariates such as deep-learning models based on images can lead to more efficient trials.
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Supplementary material

Supplementary Tables

Quantity Notation Values
Cumulative incidence A {0.1,0.2,0.3,0.4, 0.5,
0.6,0.7, 0.8, 0.9}
C-index C {0.55, 0.65, 0.75, 0.85}
Weibull shape w {0.5, 1, 1.5}
Drop-out rate d {0.01, 0.1}
Treatment hazard ratio hr {0.4, 0.7}

Table S1: Description of simulation parameters used for parametric simulations of the
time-to-event model.


https://doi.org/10.1101/2022.04.15.22273871
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.04.15.22273871,; this version posted April 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Supplementary Figures

A | w=05 || w=1 || w=15
80 ]
e
[ [ ] o
60 ° ° °
— H o : ° : ° o
o
840 . ° . ® . < e g
Q ° ° . =
@ 20 ® ° & ° °
o $ ° ® 3 ® ! L
Q. ® [ ]
g 0 » > ‘
s —
80
£ ® 4 L 4
& ° % 3
g 60 °
=] 'Y ° ®
o ® ® Q
[0] ° ‘ ‘ n
x 40 @ ([ ] e 4 : » ©
p =
20 od [ nd [ L ¢ ® L]
5 . L4 o . o
‘ ° ‘ ° ‘ °
01 P L Y ° Je °
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
C-index
B | w=05 || w=1 || w=15
80 ]
® 9
] H °
[ ] [ ] [ )
60 > e s
— Q
& 40 * L s at S ® |
[0) (] PY L] ° (] e |2
N o ® °
@ 20 o ° ¢ . ° ) ® o oo
) ®
= 5 : ‘0 * ’.o °
E o < S o °
% :
p o i e
o ° <
= 60 'y ) o
3] °
3 9 ° o . o o
B 40 ° ® ® o |
14 .. ° .. ° LS o
S
o ;
20 < .. ° ’ ° PY .‘ ° [ ]
° ° K °
0l @ r e 1o : J 9 L Y
0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
C-index
incidence
(%): 25 50 75

Figure S1: Evolution of R?,, as a function of C-index, cumulative incidence, treatment
effect, Weibull shape w and drop-out rate d. A: hr = 0.7, B: hr = 0.4.
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Figure S2: Power curves resulting from adjustment with clinical variables only (tumor staging
and ECOG score) or with the additional deep learning HCCnet covariate. Covariates are
sampled from the HCC patients of the TCGA dataset.
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Figure S3: Relationships between proposed R? measures and the reduction of sample size
provided by covariate adjustment R?, over the grid of parameters described in table S1.
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