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Abstract (150 words): 
 
We conduct a large-scale meta-analysis of heart failure genome-wide association studies 
(GWAS) consisting of over 90,000 heart failure cases and more than 1 million control 
individuals of European ancestry to uncover novel genetic determinants for heart failure. 
Using the GWAS results and blood protein quantitative loci, we perform Mendelian 
randomization and colocalization analyses on human proteins to provide putative causal 
evidence for the role of druggable proteins in the genesis of heart failure. We identify 39 
genome-wide significant heart failure risk variants, of which 18 are previously unreported. 
Using a combination of Mendelian randomization proteomics and genetic cis-only 
colocalization analyses, we identify 10 additional putatively causal genes for heart failure. 
Findings from GWAS and Mendelian randomization-proteomics identify seven (CAMK2D, 
PRKD1, PRKD3, MAPK3, TNFSF12, APOC3 and NAE1) proteins as potential targets for 
interventions to be used in primary prevention of heart failure. 
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INTRODUCTION  
 
Heart failure (HF) is one of the most important threats to the sustainability of health 
systems for the United States1. Despite major improvements in the understanding of risk 
factors for incident HF2, this knowledge has not yet been fully translated into effective 
interventions for primary prevention of HF, except for blood pressure (BP) lowering 
medications3 and statins4. Due to the inherent attributes of human genetics that minimize 
the risk of residual confounding and reverse causation5, large-scale genomic analyses 
provides an opportunity to uncover putative causal mechanisms for complex phenotypes 
such as HF6. Recent genome-wide association studies (GWAS) of HF by the Heart 
Failure Molecular Epidemiology for Therapeutic Targets (HERMES) and the Million 
Veteran Program (MVP)7 have identified 26 genomic loci associated with HF8. This 
emerging knowledge has served to identify novel biological mechanisms associated with 
incident HF and may inform the development of novel interventions for the primary 
prevention of HF.  
 
Novel technological developments can simultaneously measure thousands of human 
proteins in a single blood sample. The SOMAscan V4 assay includes 5207 aptamers 
capable of measuring 4988 unique human proteins, of which 514 are the target of drugs 
licensed or in clinical phase, 1153 are the target of compounds in pre-clinical phase, and 
1377 are proteins predicted to be druggable 9,10. This offers a unique opportunity for 
translating the genomic findings of HF into novel interventions for the primary prevention 
of HF. Given that human proteins account for the majority of targets for approved drugs 
to date and that expression or activity is central to the development of human disease11, 
leveraging GWAS data of HF and protein quantitative trait loci (pQTL) offers an 
opportunity to provide mechanistic insight into the causal pathways involved in the 
emergence of HF as well as to inform novel therapeutic targets.  
 
Here, we conduct a meta-analysis of GWAS on HF from the MVP and the HERMES 
consortium and leverage our GWAS of HF with pQTLs from the Fenland study to conduct 
Mendelian randomization (MR) and genetic colocalization analyses on human proteins 
covered by SOMAscan V412. We then perform extensive downstream analyses covering 
HF risk factors, cardiac MRI traits, -omics, and downstream transcriptomics analyses to 
investigate the biological credibility of our genetic findings. 
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RESULTS  
 
Genome-wide meta-analysis identifies 18 novel loci for HF 
We meta-analyzed GWAS on HF from the HERMES consortium and MVP 
(Supplementary Data 1) and identified variants at GW-significance (p < 5 x 10-8) (Figure 
1). The quantile-quantile (Q-Q) plot of the meta-analysis is shown in Supplementary 
Figure 1. We performed follow-up analysis of the newly discovered HF variants to identify 
the likely causal gene for each signal and to investigate associations with 15 HF risk 
factors and 9 left ventricular (LV) cardiac MRI traits. 
 
We performed meta-analyses of genome-wide association results for HF from two 
studies: MVP (ncases=43,344; ncontrols=258,943) and HERMES (ncases=47,309; 
ncontrols=930,014). After quality control, we obtained association results for 10,227,138 
genetic variants with HF. We observed 39 variants with genome-wide significant signals 
with HF, of which 18 variants were > 500KB from a previously reported indexed variant 
(Figure 2 and Supplementary Data 2). We performed fine-mapping using GWAS 
summary statistics (Supplementary Figure 2). We determined the gene closest to the 
indexed SNP, as well as the gene with the highest score from Polygenic Priority Score 
(PoPs)13 within a 500KB region of the indexed SNP (Table 1). PoPs takes genome-wide 
features into account while the nearest gene is based on local information, providing 
complementary information for annotation of indexed variants (see Methods).  For all the 
genes suggested by the nearest gene and PoPS, we retrieved the results from gene-
burden tests using putative Loss-of-Function (pLoF) variants from the Genebass-UK 
Biobank resource (see Methods)14. RFX4 and UBC, both suggested by PoPs, showed 
the most significant gene-based p-values with HF (p-values of 9.12 x 10-4 and 4.6 x 10-3 
, respectively). From herein, we used genes suggested by PoPs as default to describe 
the distinct variants. 
 
Except for rs6945340/HIP1 and rs79682748/SGIP1, all other distinct variants for HF had 
an association (defined as 0.01/number of secondary traits, p < 1 x 10-4) with at least one 
HF risk factor (Figure 3A). Five variants had the largest number of associations with HF 
risk factors: rs9352691/PHIP (blood pressure, body mass index (BMI), high-density 
lipoprotein cholesterol (HDL-C), alcohol consumption, and atrial fibrillation (AF)), 
rs12992672/TMEM18 (BMI, HDL-C, type-2 diabetes mellitus (T2DM), AF and smoking), 
rs4755720/ HSD17B12 (BMI, HDL-C, T2DM and CAD), rs233806/BANK1 (blood 
pressure, HDL-C and BMI) and rs959388/PRKD1 (BMI, smoking, and blood pressure), 
details in Supplementary Data 3. We observed that the directionality of the associations 
with HF risk factors was concordant with the findings on HF risk in 32 out of the 42 (76%) 
associations. HDL-C and diastolic BP accounted for nine of the 10 discordant 
associations (Supplementary Figure 3). We did not find associations with troponin, NT-
proBNP, and IL-6 (Supplementary Data 3). 
 
Only three variants (rs3820888/SPATS2L, rs4755720/HSD17B12 and 
rs72688573/FAF1) showed at least one association (p < 1 x 10-4) with LV cardiac-MRI 
traits (Supplementary Figure 4 and Supplementary Data 3). The rs3820888/SPATS2L 
variant was associated with six LV cardiac-MRI traits and AF; all these associations were 
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directionally concordant with the HF findings. The rs4755720/HSD17B12 variant was 
associated with LV end-diastolic volume indexed to body surface area and four HF risk 
factors, and rs72688573/FAF1 was associated with LV mass to end-diastolic volume ratio 
and two HF risk factors, see details in Supplementary Data 3. In the African-American 
sub-population from the MVP GWAS (Supplementary Data 4), we found none of our 39 
genome-wide significant distinct variants with HF in the European datasets achieved 
genome-wide significance (Supplementary Data 5).” 
 
MR Proteomics and colocalization identifies 10 genes for HF  
Using the GWAS data on SOMAscan V4 proteomics, we selected conditionally 
independent cis-variants, defined as any variant within a  Mb region of the protein-
encoding gene, that associated with plasma levels of SOMAscan proteins (p < 5 x 10-8). 
We propose that these variants are instrumental variables for measured SOMAscan 
proteins and conducted two-sample MR analyses using our European-descent GWAS 
meta-analysis of HF from the MVP and HERMES consortium. We conducted several 
analyses to minimize confounding and biases. For the MR results that passed our 
significance threshold (FDR < 5%), we performed genetic colocalization analysis to 
ensure the MR results were unlikely to be confounded by linkage disequilibrium (LD). For 
the MR results with evidence of colocalization, we conducted MR and colocalization 
analyses against HF risk factors and cardiac MRI traits and cis-eQTL searches. Then, we 
conducted a novel multi-step analytical approach to reduce the risk of horizontal 
pleiotropy. 
 
We used 2,900 cis-pQTLs across 1,557 genes from the Fenland study as proposed 
instrumental variables for conducting two-sample MR of proteomics with HF. We found 
16 genes passed our MR threshold (FDR < 5%), of which 10 genes also showed 
suggestive evidence of colocalization between HF and pQTL signals (posterior probably 
of Hypothesis 4 (PP.H4): one common causal variant > 0.5) for at least one of the 
instruments, and of which 3 genes show strong evidence of colocalization (PP.H4 > 0.8), 
see details in Table 2 and Supplementary Data 6. Except for ENPEP, no other gene 
that colocalized was within 500KB of a known HF GWAS loci. For genes with more than 
one instrument, we did not observe any evidence of heterogeneity based on Cochran’s 
Q statistic according to the IVW model or by MR-Egger intercept test, Table 2. This lack 
of heterogeneity suggests that average directional horizontal pleiotropy may not explain 
these findings. 
 
Except for ENPEP, TNXB, and SIRPA, all the other genes that passed thresholds for MR 
and colocalization with HF also showed an association (defined as MR p < 1 x 10-4 and 
colocalization: PP.H4 > 0.5) with at least one of the 15 HF risk factors (Figure 3B, 
Supplementary Data 7). We observed that the directionality of the MR associations with 
HF risk factors was concordant with the MR findings on HF in 10 out of the 14 (71%) 
associations. HDL-C, LDL-C and systolic BP accounted for discordant associations. Only 
the TNFSF12 gene showed an association with a LV cardiac MRI trait that passed 
statistical thresholds for MR and colocalization, see details on Supplementary Data 7 
and Supplementary Data 8. We investigated if the cis-pQTL instruments for the 10 MR 
genes were also cis-eQTLs (p < 5 x 10-8). Twelve of the 18 proposed instruments were 
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also cis-eQTLs in at least one tissue. None of the cis-pQTLs used as proposed 
instruments for TNXB, APOC3, and APOH genes showed a cis-eQTL association 
(Supplementary Data 9). 
 
In our assessment of horizontal pleiotropy (see Methods and Supplementary Figure 5), 
the 18 proposed instruments for the 10 MR genes were associated (p < 5 x 10-8) with 251 
proteins or gene-expression using SOMAscan V4, Fenland study and eQTLGen, 
respectively (Supplementary Data 10). For 217 of the 251 proteins/gene-expression, we 
identified at least one cis-pQTL or cis-eQTL at p< 5 x 10-8 associated with protein levels 
based on the SOMAscan V4 Fenland study, or gene expression based on eQTLGen. We 
then conducted two-sample MR of these secondary proteins/genes expression against 
HF and identified four genes (TP53, ZNF259, ACVR2A, and MYRF) that passed multiple 
testing thresholds (0.05/217, p < 2 x 10-4, Supplementary Data 10). These four 
secondary genes correspond to the following genes identified by MR proteomics as hits 
for HF: TNXB (ACVR2A and MYRF), APOH (TP53) and APOC3 (ZNF259). TP53 and 
ACVR2A were in a different biological pathway than APOH and TNXB, respectively, 
suggesting potential horizontal pleiotropy. ZNF259 and MYRF did not retrieve any 
biological pathways; hence, it is unknown if these are due to horizontal pleiotropy. We 
then determined protein-protein interaction (PPI) networks for APOH and TNXB proteins 
using Enrichr and GPS-Prot databases. The Enrichr’s PPI Hub Protein pathways reported 
interactions between APOH and CDC42, AKT1, TP53, and GRB2 (adjusted p-values < 
0.04), while the GPS-Prot showed that the APOH protein is directly connected to TP53 
with a confidence > 0.6 (Supplementary Figure 6). No significant interaction was 
identified for the TNXB and ACVR2A proteins.  
 
Genetic correlation estimates 
Estimates of the genetic correlation  between HF and 15 HF risk factors are reported in 
Supplementary Data 11. Results that pass multiple testing at 5% FDR are denoted, 
including a positive  between HF and BMI of 0.56 (0.03) and with AF of 0.11 (0.02), as 
well as a negative  between HF and HDL-C of -0.36 (0.03) (Supplementary Data 11). 
 
Polygenic risk score validation 
To test the PRS for HF in an out-of-sample cohort, we used data from 75,119 participants 
of European-descent from the BioVU, of which 5,845 participants had HF. Individuals with 
a 1-standard deviation increase in the PRS had a 1.28 higher odds of HF (95% confidence 
interval (CI), 1.24-1.31; p < 2 x 10-16). Participants in the top decile had a 1.82-fold (95% 
CI, 1.60-2.06; p < 0.0001) higher odds of HF compared to those in the bottom PRS decile. 
 
Pathway enrichment analysis recovers pathways relevant to HF 
We used previously published and our newly identified HF GWAS variants (n=40) 
together with the 18 proposed instruments for the 10 MR-proteomics genes associated 
with HF and conducted gene pathway enrichment analysis using GTEx V8. These 58 
variants associated with 1,605 GTEx V8 cis-eQTLs (p < 1 x 10-4), corresponding to a total 
of 165 unique genes (see Supplementary Data 12). After restricting the analysis to 
pathways described in Gene Ontology, KEGG, and Reactome, we observed 56 enriched 
pathways (FDR < 5%). Biological pathways include muscle adaptation (adjusted p-value 
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= 0.03), ventricular system development (p = 0.03), sarcomere organization (p = 0.04), 
regulation of vasculature development (p = 0.04), and aldosterone-regulated sodium 
reabsorption (p = 0.04), details on Supplementary Figure 7 and Supplementary Data 
13.  
 
For the 18 GWAS distinct variants on HF, we determined the differential gene expression 
associated with the novel HF variants (p < 1 x 10-4) in each GTEx V8 tested tissue (heart 
atrial, heart ventricle, artery aorta, adipose, liver, kidney, and whole-blood tissues, and 
transformed cultured fibroblasts). We then used the set of differentially expressed genes 
to conduct over-representation analysis on a per-tissue basis (Supplementary Figure 
8). A total of 605 enriched pathways had at least two differentially expressed genes, with 
heart-left ventricle being the tissue with the most significantly enriched pathways (n=393). 
The rs6945340/HIP1 variant showed the largest number of enriched pathways (n=391, 
all tissues) with heart left-ventricle being the primary tissue. Pathways to highlight for this 
variant include Krebs cycle, respiratory electron transport chain (both with p= 4.8 x 10-30) 
and oxidative phosphorylation (p = 3.2 10-5). Further details are available in 
Supplementary Data 14. For 8 of the MR-proteomics genes, we identified 77 reported 
associations with HF-related medical terms according to the EpiGraphDB database 
(Supplementary Data 15). 
 
Mouse knock-out models for novel genes identified by GWAS or MR-proteomics  
We queried for knock-out (KO) mouse models, using the Mouse Genomics (MGI) 
resource, for evidence that modification of the target produces a phenotype relevant to 
HF. In thirteen genes (8 GWAS and 5 MR-proteomics genes), we retrieved evidence of a 
KO associated with cardiovascular abnormalities. KO models on CAMK2D, PRKD1, 
MAPK3, NAE1, SLC39A8, PHIP, RFX4, SCARB1 and TNXB showed phenotypes such 
as myocardial abnormalities, dilated cardiomyopathy, abnormal response to cardiac 
infarction, and cardiac hypertrophy, suggesting an intrinsic role in heart function 
regulation (Supplementary Data 16).  
 
Druggability  
A total of seven novel genes from the GWAS (CAMK2D, PRKD1 and PRKD3) and MR-
proteomics (MAPK3, TNFSF12, APOC3 and NAE1) were identified to encode proteins 
that are predicted to be druggable (CAMK2D) or targets for 14 unique drugs that are either 
licensed or in the clinical phase (PRKD1, PRKD3, MAPK3, TNFSF12, APOC3 and 
NAE1). Except for drugs targeting Apolipoprotein C-III mRNA, Volanesorsen and AKCEA-
APO-CIII-LRx evaluated for familial chylomicronemia syndrome, all the other 12 drugs are 
either licensed or under clinical investigation for cancer (n=10 (MAPK3, PRKD1, PRKD3 
and NAE1)) or autoimmune disorders (n=2, (TNFSF12)). In four of the seven druggable 
genes, we were able to use our MR findings to infer the type of pharmacological action 
(agonist versus antagonist) needed to prevent HF and compared this against the 
pharmacological action of the existing drugs with a single target (which are most likely to 
reproduce genetic findings). Through this process, we observed a match in one gene 
(APOC3); and for the other druggable genes (MAPK3, NAE1, and TNFSF12), the existing 
drugs were an inhibitor/antagonist, while MR suggested an agonist, details on 
Supplementary Data 17.  
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In-silico trials 
We searched for genetic associations for the GWAS hits and conducted two-sample MR 
for the MR proteomics hits to evaluate safety and efficacy outcomes relevant for the 
primary prevention trials on HF. Seven of the 18 GWAS distinct variants and two of the 
10 MR-proteomics genes were additionally associated (p < 1 x 10-4) with efficacy 
outcomes (CAD, T2DM) in the same direction as HF (Supplementary Data 18). None of 
the 18 distinct GWAS variants or 10 MR-proteomics genes showed an association (p < 1 
x 10-4) with the following safety traits: cancers (lung, prostate, colorectal, breast), chronic 
kidney disease, Alzheimer’s disease, liver enzymes, or creatinine.   
 
Comparison with Global Biobank Meta-analysis Initiative (GBMI) on HF 
An unpublished study from the GBMI reporting a multi-ancestry HF GWAS (68,408 HF 
cases and 1,286,331 controls) identified 11 potentially novel loci for HF15. We compared 
these associations with our HERMES-MVP GWAS and determined that seven of the 11 
GBMI variants were associated (p < 5 x 10-8) in our HF meta-analysis. None of these 
variants were associated (p < 5 x 10-8) in the HF GWAS in MVP African-Americans 
dataset (Supplementary Data 19). Two GBMI loci correspond to the same variants 
(rs10455872/PLG and rs600038/ SURF1) previously reported by HERMES or MVP, and 
an additional five loci were in LD (r2 range: 0.39 to 1) with our findings (Supplementary 
Data 19). Finally, two GBMI GWAS variants (rs17035646 and rs61208973) showed 
suggestive evidence of association in our HF GWAS (p <0.003). In a replication study of 
the 18 novel loci, findings from the HF GWAS in the GBMI multi-ancestry excluding UK 
Biobank indicate 33.3% (6 of 18) of variants are significant (p-value < 0.05/18), 61.1% 
(11 of 18) are nominally significant (p-value < 0.05), and 100% have a beta estimate that 
is directionally concordant with our meta-analysis (Supplementary Data 20). 
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DISCUSSION 
Our genetic analysis on HF consisting of 90,653 cases identified 18 distinct HF variants 
through GWAS and an additional 10 putatively causal genes for HF through MR and 
colocalization using proteomic instruments. Our study expands the knowledge on the 
biological pathways associated with all HF risk loci discovered to date and identifies seven 
druggable genes as potential drug targets for primary prevention of HF.  
 
We conducted several strategies to provide biological credibility to our 18 distinct GWAS 
variants. First, 16 of the 18 variants showed genetic associations with HF risk factors that 
were directionally concordant with the HF findings, and several LV cardiac MRI traits. 
Second, over-representation analysis using differentially expressed genes by each 
GWAS variant identified the heart LV myocardium as the most significantly enriched 
tissue and recovered several pathways of HF relevance. Third, systematic querying on 
KO mouse models identified CAMK2D, PRKD1, PHIP, RFX4, SLC39A8 and SCARB1, 
genes found by our GWAS, with phenotypes relevant to HF. Novel variants to highlight 
include rs3820888/SPATS2L and rs4755720/HSD17B12 that showed associations with 
HF risk factors and LV cardiac MRI traits. The rs3820888/SPATS2L variant showed 
evidence of colocalization with six cardiac MRI traits, including LVEF, LV mass to end-
diastolic volume ratio, and AF, all of which were directionally concordant with the HF 
findings. Previous GWAS have also indicated that the same variant was also associated 
with QT interval16. The rs4755720/HSD17B12 variant colocalized with LV end-diastolic 
volume indexed to BSA and HF risk factors that were directionally concordant with the 
HF findings, all showing a protective effect. Previous GWAS indicated that this variant, as 
well as others in strong LD, associated with a reduction in adiposity measures and an 
increase in lung function metrics, suggesting that cardiometabolic fitness may explain the 
association with HF17–19. 
 
We conducted MR-proteomic analyses to uncover the putative causal role of human 
proteins in HF. Ten genes passed our genetic colocalization test, of which nine were also 
not in LD with a previously reported HF variant, minimizing the probability of confounding 
by LD. Seven of the 10 genes showed associations with at least one HF risk factor, and 
in the majority (71%) of these associations, the point estimate was directionally 
concordant with the MR findings on HF.  

 
Four (MAPK3, PRKD1, CAMK2D and PRKD3) of the seven druggable genes identified 
by our analyses encode proteins with serine/threonine kinase activity. These four genes 
associated with HF risk factors in a manner that is concordant with the findings on HF. 
CAMK2D also showed a suggestive association (p = 9 x 10-4) with LV mass. In support 
of our findings, a mouse model with deletion of MAPK3/MAPK1 genes developed cardiac 
hypertrophy and ventricular dilation followed by reduced ventricular performance20. 
CAMK2D, PRKD1, PRKD3 are calcium/calmodulin dependent protein kinases known to 
be associated with cardiac pathophysiology. Protein Kinase-D, encoded by PRKD1 gene, 
appears to be a regulator of myocardial structure and function. Mice with a deletion of 
PRKD1 in cardiomyocytes were reported to be resistant to stress induced hypertrophy in 
response to pressure overload, angiotensin-II and adrenergic activation21. 
Calcium/Calmodulin-Dependent Protein Kinase II (CamKII) is composed of four chains, 
one of which, delta (δ), is encoded by the CAMK2D gene. CamKII-δ is largely expressed 
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in cardiac tissue (confirmed by our pathway enrichment analysis), where it regulates 
proteins involved in calcium handling, excitation-contraction coupling, activation of 
hypertrophy, cell death and inflammation22. Several case-control studies have shown an 
upregulation of cardiac CamKII-δ expression and activity in patients with HF, dilated 
cardiomyopathy and diabetic cardiomyopathy. In support of this, several experimental 
studies in animal models of dilated cardiomyopathy and HF have shown that chemical 
inhibition of CamKII led to protection from cardiac dysfunction, adverse cardiac 
remodeling, and cardiac arrhythmias22. More recently, administration of a novel ATP-
competitive CaMKII-δ oral inhibitor (RA306) in a dilated cardiomyopathy mouse model 
led to an improvement of ejection fraction23. This oral inhibitor offers the opportunity to 
test the causal role of CamKII-δ through clinical trials for the prevention of HF. 
Interestingly, CAMK2D gene was also associated with AF, confirming an association 
demonstrated by in-vitro and animal models of AF22.  
 
Additional druggable genes identified were APOC3, TNFSF12, and NAE1. The APOC3 
gene, which achieved the highest level of evidence in our analyses (FDR 5% and 
PP.H4>0.8), is known for its associations with lipids, and CAD, which were confirmed in 
our analysis. Apolipoprotein C-III mRNA is targeted by two different antisense 
oligonucleotides (ASO), Volanesorsen and AKCEA-APO-CIII-LRx, evaluated for familial 
chylomicronemia syndrome. Phase 3 trials on Volanesorsen have shown an increase in 
LDL-C levels and thrombocytopenia, which make it an unlikely candidate for prevention 
of HF.24 AKCEA-APO-CIII-LRx is an ASO liver specific that appears to have a better safety 
profile, and may be more suitable for long-term use25. TNFSF12 gene encodes for the 
TNF superfamily member 12 protein; increased levels of this protein were associated with 
a risk reduction in HF according to our MR and colocalization findings. Similar, 
directionally concordant, findings were reported by recent MR proteomics (using various 
proteomics platforms) against ischemic stroke26. These results are consistent with the 
finding that TNFSF12 is MR associated and colocalized with AF, a risk factor for both 
ischemic stroke and HF. In addition, we observed a clear reduction in LV mass to end-
diastolic volume ratio and a suggestive (p =  2 x 10-3) increase in LVEF, both directionally 
concordant with a risk reduction in HF. Transgenic mice and adenoviral-mediated gene 
expression models have also pointed to a role of TNFSF12 in the development of dilated 
cardiomyopathy and severe cardiac disfunction27. NAE1 gene encodes NEDD8 activating 
enzyme E1 subunit 1 protein, and our MR and colocalization findings showed this gene 
was associated with lower values of blood pressure, which coincides with the reduced 
risk on HF.  
 
Strengths of the current analysis are multiple. First, the large number of HF cases 
included in our analysis led us to identify new variants and putatively causal genes for HF 
through GWAS and MR proteomics. Second, we used three complementary strategies— 
nearest gene (local method), PoPs (global method) and pLoF— to assign the most likely 
gene responsible for the GWAS signal with HF. Through this process, we observed 
agreements in 11 of 18 GWAS variants, which provided some degree of confidence in 
the gene-prioritization. However, we acknowledge that PoPs method will miss variants 
that do not act through various mechanisms captured by PoPs13, highlighting the 
challenge in assigning the gene responsible for GWAS loci28–30. Third, we provide 
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biological credibility for most of our genetic findings through extensive and 
complementary analysis covering HF risk factors, LV cardiac MRI, and -omics. Fourth, in 
seven MR hits for HF, we showed that our proposed instruments, in addition to 
associations with HF risk factors or LV cardiac MRI traits, were also associated with gene 
expression, and protein levels all acting in cis. Fifth, KO models of thirteen genes 
identified through GWAS and MR developed highly relevant phenotypes to HF and in 
some cases (CAMK2D), specific pharmacological inhibition showed reversibility of the 
HF-phenotypes. Six, the lack of associations between the distinct GWAS loci and MR 
genes with safety outcomes used in the primary prevention trials of HF provides some 
reassurance on target safety profiles.  
 
The degree of credibility on the causality of proteins identified by MR depends on whether 
the MR assumptions are valid. First, our colocalization analysis on HF, risk factors for HF 
and LV cardiac MRI traits makes confounding by LD unlikely. The selection of cis-variants 
as proposed instruments minimizes the chances of horizontal pleiotropy. To further 
minimize chances of horizontal pleiotropy, we developed a novel analysis that attempted 
to empirically test the relevant conditions needed for horizontal pleiotropy to invalidate 
MR. First, we looked for secondary proteins or gene-expression associated with our MR 
protein hits, and then evaluated if those secondary proteins/gene-expression were 
associated with HF and fall in a biological or PPI pathway outside our protein hits. After 
doing this, only TNXB showed some evidence of horizontal pleiotropy. Interestingly, cis-
pQTLs used as instruments for TNXB were not associated with cis-eQTLs, HF risk factors 
or LV cardiac MRI traits. Although we used multiple lines of evidence to determine 
putative causal genes, the pathway enrichment analysis identifies pathways linked to 
cardiac biology, but may not point to specific insights for HF, and we did not functionally 
validate any of our results, which remains as the highest level of evidence to support 
causal roles for the hits, especially those that pass the suggestive MR and coloc 
thresholds of FDR 5% and PP.H4>0.5. 
 
Although most of our variants and genes showed associations with HF risk factors that 
were biologically concordant with HF risk, some discordant associations were observed. 
HDL-C and diastolic BP accounted for most of these discordant associations. It has been 
reported that higher levels of diastolic BP may be protective on HF31,32, instead of 
deleterious as we assumed, while the HDL-C association with HF seems to be non-
linear32, which was not accounted for in our MR analysis that included HDL-C as a co-
variable. We validated seven of the 11 variants reported in an unpublished multi-ancestry 
HF GWAS by GBMI15. Another limitation is that our analysis was restricted to individuals 
of European ancestry. While this does reduce the potential bias caused by population 
stratification, our results may not apply to populations of other ancestral groups. Future 
HF GWAS meta-analysis including larger releases of MVP, All of US and GBMI will not 
only provide chances for replication of variants identified in Europeans, but also to include 
non-white populations to further increase the discovery of genetic determinants of HF. 
 
Although the absence of HF sub-types in this analysis most certainly decreased our ability 
to detect signals specific to HF sub-types, it does not invalidate the ones identified. 
Evidence from primary prevention trials using HF as an outcome (as our genetic study) 
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that uncovered the benefits of BP lowering therapies and statins indicates the plausibility 
for translation of our genetic findings. Future genomic analysis should extend to different 
HF subtypes, with focus on HF with preserved ejection fraction, a major unmet need in 
medicine. Although our design attempted to emulate a primary prevention trial on HF, 
further studies with access to individual participant data that reliably recreate eligibility 
criteria and outcome ascertainment that cover efficacy (including HF sub-types) and 
safety outcomes are needed.  
 
In conclusion, we discovered a total of 18 distinct novel HF-associated variants and 10 
putatively causal genes for HF through GWAS and MR-proteomics with evidence of 
biological plausibility. The new mechanisms and pathways together with the seven 
druggable genes discovered provide a tractable path for the translation of our genomic 
findings for the primary prevention of HF.  
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METHODS 
 
Clinical and demographic characteristics 
The study population for the meta-analysis consisted of 1,279,610 participants, of which 
302,287 were from MVP (43,344 cases and 258,943 controls) and 977,323 were from 
HERMES Consortium (47,309 cases and 930,014 controls). The clinical and 
demographic features of the participants are summarized in Supplementary Data 1. 
Detailed breakdown of clinical and demographic characteristics according to each study 
included in the HERMES Consortium has been previously published8. The population 
characteristics of the BioVU PRS cohort can be found in Supplementary Data 21. 
 
Genotyping, Quality Control, and Imputation of Genetic Data 
For the data obtained from the Million Veteran Program (MVP), DNA was extracted from 
participants’ blood and genotyped using the MVP 1.0 Genotyping Array, which is enriched 
for both common and rare genetic variants of clinical significance. Imputation 
performance was assessed, and variants that had poor quality as determined by  were 
removed from further analyses. All studies included in the HERMES Consortium utilized 
high-density genotyping arrays. A detailed table summarizing the genotyping, quality 
control, imputation, and analysis across the 29 distinct datasets included in the HERMES 
Consortium has been previously described8. For quality control, the per variant call rate 
and the per sample call rate across all studies was at least greater than 908. The MAF 
threshold ranged from >0% to 1% across studies8. Further details can be found in the 
Supplementary Information. 
 
Phenotyping of heart failure  
Across all 26 cohorts of the HERMES Consortium, cases with HF were identified by a 
clinical diagnosis of HF of any etiology, as determined by physician diagnosis or 
adjudication, ICD codes, and imaging, and controls were participants without a clinical 
diagnosis of HF. In the MVP, HF patients were identified as those with an International 
Classification of Diseases (ICD)-9 code of 428.x or ICD-10 code of I50.x and an 
echocardiogram performed within 6 months of diagnosis (median time period from 
diagnosis to echocardiography was 3 days, interquartile range 0-32 days). Further details 
can be found in the Supplementary Information. 
 
Genome-wide association study for HF 
We performed a fixed effects inverse-variance weighted meta-analysis HF from the 
published MVP (n=302,258) and HERMES (n=964,057)8 GWAS using METAL33 (version 
release 2020-05-05) in a total of 1,266,315 individuals. We removed variants with a MAF 
< 0.5%, resulting in 10,227,138 associations.  
 
We used FUMA34 to annotate our results using the default settings. In accordance with 
the default FUMA parameters, we defined distinct variants to have an R2 < 0.6 and 
determined the associations that were > 500KB from a previously reported indexed 
variant in MVP and HERMES. We used the closest gene to the indexed variant and the 
top gene per locus identified by PoPs to prioritize genes for our GWA-significant (p < 5 x 
10-8) loci. 
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The PoPS method13 is a new gene prioritization method that identifies the causal genes 
by integrating GWAS summary statistics with gene expression, biological pathway, and 
predicted protein-protein interaction data. We applied the PoPS score because it has 
shown to nominate causal genes at non-coding GWAS loci with greater predictive 
confidence compared to other similarity-based or locus-based methods13. By leveraging 
a framework unbiased by previous trait-specific knowledge, the PoPs tool can prioritize 
causal genes and therefore highlight relevant biological pathways with greater 
confidence. First, as part of the PoPS analysis, we used MAGMA to compute gene 
association statistics (z-scores) and gene-gene correlations from GWAS summary 
statistics and LD information from the 1000 Genomes. Next, PoPS performs marginal 
feature selection by using MAGMA to perform enrichment analysis for each gene feature 
separately. The model is fit by generalized least squares (GLS), and MAGMA results are 
used to perform marginal feature selection, retaining only features that pass a nominal 
significance threshold (p < 0.05). Then, PoPS computes a joint enrichment of all selected 
features simultaneously in a leave one chromosome out (LOCO) framework. The gene 
features employed by PoPS are listed here: 
https://github.com/FinucaneLab/gene_features. The PoPs method uses data from gene 
expression datasets, protein-protein interaction networks, and pathway databases; 
however, variants that act through mechanisms not captured by PoPs model would not 
be identified. Finally, PoPS computes polygenic priority scores for each gene by fitting a 
joint model for the enrichment of all selected features. The PoP score for a gene is 
independent of the GWAS data on the chromosome where the gene is located. The PoPS 
analysis returned scores for a total of 18,383 genes per set of GWAS datasets. We then 
annotated our GWAS loci with the Ensembl genes in a 500kb window and selected the 
highest PoP score gene in the locus as the prioritized gene. For all the genes suggested 
by the nearest gene and PoPS, we conducted gene burden tests derived using a gene-
based (mean) approach in a mixed model framework using the Genebass-UK Biobank 
resource (see Supplementary Information). 
 
Genome-wide association study in African-Americans MVP subpopulation 
We conducted a GWAS of HF in the African-American MVP subpopulation and performed 
lookups for our novel HF variants as well as the previously described HF variants. The 
African-American subpopulation in the MVP is composed of 11,399 cases with heart 
failure and 69,726 controls, of which 94.9% cases and 85.4% controls were male with a 
mean age of 63.82 (9.92) and 56.39 (12.20) for the cases and controls, respectively 
(Table S4). 
 
Associations of HF GWAS variants with HF risk factors and LV cardiac MRI traits 
For genetic variants that passed the GWAS threshold for HF (p < 5 x 10-8), we determined 
genetic associations for 15 HF risk factors and 9 LV cardiac MRI traits derived from 
available GWAS. Data on HF risk factors was obtained from European-descent GWAS 
studies: BMI35, smoking36, alcohol intake frequency37, AF38, diastolic and systolic BP 39, 
T2DM40, CAD41, LDL-C42, HDL-C42, estimated glomerular filtration rate (eGFR)29, and 
chronic obstructive airways disease (COPD)36, and troponin I cardiac muscle, N-terminal 
pro-BNP (NT-proBNP), and interleukin-6 (IL-6).  
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For LV cardiac MRI traits, we determined genetic associations from two separate 
publications. Seven LV cardiac MRI measurements in 36,041 participants of the UK 
Biobank from Pirruccello et al43 and LV mass and LV mass to end-diastolic volume ratio 
from cardiac MRI in 42,157 UK-Biobank participants from Aung et al (unpublished) using 
automated CMR analysis techniques and LV GWAS techniques44,45. 
 
We used p < 1 x 10-4 (0.01/number of secondary to HF traits tested in the manuscript) to 
account for multiple testing. For associations that passed our p-value threshold, we 
evaluated whether the directionality of HF risk factors associations was concordant with 
findings on HF; for example, for a variant that showed an increased risk of HF, we expect 
a positive association with a deleterious risk factor.  
 
Mendelian randomization on 1557 proteins and HF   
Selection of proposed pQTL instruments 
We obtained pQTLs from a genome-proteome-wide association study in the Fenland 
study of 10,708 participants of European-descent12 (retrieved from www.omiscience.org). 
The genome-proteome-wide association study was conducted using 10.2 million genetic 
variants and plasma abundances of 4,775 distinct protein targets (proteins targeted by a 
least one aptamer) measured using the SOMAscan V4 assay12. Significant genetic 
variant pQTLs were defined as passing a Bonferroni p-value threshold of p < 1.004 × 10–

11. Approximate conditional analysis was performed to detect secondary signals for each 
genomic region identified by distance-based clumping of association statistics12. To 
diminish the likelihood of horizontal pleiotropy, we restricted proposed instrumental 
variables to (lead and secondary signals) cis-pQTLs using a p-value threshold of p < 5 x 
10-8 in marginal statistics, where cis is defined as any variant within a  Mb region of the 
protein-encoding gene. A total of 2,900 cis-pQTLs across 1557 genes (mean=1.9, min=1, 
max=14) covering an equal number of proteins from the Fenland study were used as 
proposed instrument variables for conducting two-sample MR of proteomics against HF. 
 
Mendelian Randomization and colocalization 
We performed two-sample MR using the TwoSampleMR package in R 
(https://mrcieu.github.io/TwoSampleMR/) 46. The Wald Ratio was used for instruments 
with one variant and the inverse-variance weighted MR method was used for instruments 
with two or more variants. We tested the heterogeneity across variant-level MR estimates, 
using the Cochrane Q method (mr_heterogeneity option in TwoSampleMR package) and 
plotted the effects of the variants on the proteins against the effects of the variants on HF 
to validate our instruments when more than one variant was included. We defined 
significant MR results using a False Discovery Rate (FDR) of 0.05 calculated by the 
Benjamini-Hochberg method (corresponding p-value = 5 x 10-4). We used the MR-Egger 
intercept test to detect potential directional pleiotropy, and report the Egger intercept and 
corresponding standard error and p-value for genes with three or more variants, where 
the MR-Egger intercept can be interpreted as an estimate of the average horizontal 
pleiotropic effect of the genetic variants 47.  
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MR assumes the SNP influences the outcome only through the exposure. To help guard 
against the existence of distinct but correlated causal variants for the exposure and 
outcome, for results that passed our MR threshold (FDR<0.05), we performed 
colocalization using the COLOC package48 in R.  Colocalization assesses the probability 
of a shared causal variant (PP.H4) or distinct causal variants (PP.H3) between the HF 
GWAS and cis-pQTL instruments for the protein of interest. We performed conditional 
analysis on the pQTL data to identify conditionally distinct pQTL signals and performed 
colocalization using marginal (unadjusted) pQTL results as well as results conditional on 
each of the instruments used in the MR. Statistically significant MR hits with a posterior 
probability of a shared causal variant (PP.H4) > 0.5 for at least one instrumental variant 
were then investigated further. Colocalization was performed using with default priors 
(prior probability of initial trait association is 1 × 10−4, prior probability of shared causal 
variant across two traits is 1 × 10−5). We also investigated if the cis-pQTL instruments for 
genes that passed both MR and colocalization thresholds were also cis-eQTLs (p < 5 x 
10-8). Tissues used were whole blood from eQTLGen and heart atrial, heart ventricle, 
artery aorta, adipose, liver, kidney tissues, and transformed cultured fibroblasts from 
GTEx V8. 
 
MR and colocalization for HF risk factors and cardiac MRI traits 
For proteins that passed both MR and colocalization thresholds, we conducted two-
sample MR analyses of these proteins, using cis-pQTLs from the Fenland study as 
proposed instrumental variables, against 15 HF risk factors and 9 cardiac MRI traits 
described in the previous section (see Supplementary Material for details on traits and 
datasets). For the MR results that passed a p-value threshold of p < 1 x 10-4, we 
conducted colocalization analyses as previously described. We defined significant 
findings as those that passed thresholds for MR (p < 1 x 10-4) and colocalization (PP.H4 
> 0.5).  
 
Assessment of horizontal pleiotropy  
For statistical findings that passed the MR and colocalization thresholds, we evaluated 
the possibility that horizontal pleiotropy may invalidate our findings. The pipeline of 
analysis is depicted in Supplementary Figure 5. Step-1: We determined if our cis-pQTLs 
were associated (p < 5 x 10-8) with other proteins levels included in SOMAscan V4 or with 
gene expression using data from eQTLGen. Step-2: We queried if the genes (including 
genes that encode SOMAscan proteins) identified in Step-1 were within 1MB of the risk 
loci for HF identified by GWAS conducted to date. Step-3: We conducted two-sample MR 
to identify if the secondary genes/proteins (identified in Step-1) were associated with HF, 
using a Bonferroni-corrected p-value (0.05/number of unique genes/proteins identified in 
Step-1). We leveraged as proposed instruments the lead cis-pQTL (p < 5 x 10-8) from the 
Fenland study, and if it was not available, we used the lead cis-eQTL (p < 5 x 10-8) 
identified from eQTLGen. Step-4: We then mapped all secondary genes/proteins 
identified in Step-3 to Reactome/KEGG pathways; and compared if these pathways are 
on the same (vertical pleiotropy) or different (horizontal pleiotropy) pathway as that 
associated with the primary genes identified through MR proteomics for HF. To further 
investigate the physiological functionalities of our findings retrieved in Step-4, we queried 
two databases: the Enrichr49–51 , an interactive gene knowledge discovery database, and 
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the GPS-Prot server52, a platform with aggregated information about protein-protein 
interactions.  
 
LD score regression 
We used LD Score regression53 (LDSC) to estimate genetic correlations  between heart 
failure and 15 cardiovascular traits. We estimated  using European LD scores obtained 
from the 1000 Genomes Project Phase 3 data for the HapMap2 SNPs. We used 
MungeSumstats to perform standardization of association statistics54. 
 
Polygenic risk score analysis 
A polygenic score for heart failure was calculated using the HF meta-analysis using the 
PRS-CS package55, which utilizes a Bayesian regression framework to calculate posterior 
SNP effect sizes under a continuous shrinkage prior. We used the LD reference panel 
constructed using the 1000 Genomes Project Phase 3 data. We conducted these 
analyses in Python, using the packages scipy and h5py. The PRS was evaluated in the 
Vanderbilt University Medical Center (VUMC) BioVU, a biobank that links the de-identified 
electronic medical record (EMR) system containing phenotypic data to discarded blood 
samples from routine clinical testing for the extraction of genetic data56. A full description 
of the BioVU resource has been previously published56. Participants with heart failure 
were identified by a modified version of the eMERGE definition for heart failure, which 
includes International Classification of Diseases, Tenth Revision (ICD-10) codes, where 
age was defined as age at heart failure for cases and age at last medical visit for controls. 
To determine the ability of PRS to stratify heart failure cases from controls, we used a 
logistic regression model, adjusting for age, sex, and three principal components of 
ancestry in the BioVU. We assessed enrichment in the more extreme tail of the PRS 
distribution by evaluating the odds ratio for individuals in the top PRS decile compared to 
individuals in the bottom PRS decile. In the top decile of PRS, there were 723 participants 
with HF and 6788 controls, and in the bottom decile, there were 416 participants with HF 
and 7096 controls.  
 
Pathway enrichment analysis 
We conducted enrichment analysis to identify biological pathways associated with HF risk 
loci (established and novel) that passed the GWAS p-value thresholds. For each locus, 
we selected the top variant and then identified cis-eQTLs (within a 1Mb region) from GTEx 
V8 in any tissue associated with the top variants and extracted all genes with a p < 1 x10-

4. We merged all retrieved genes to a gene set that was then used for inquiry for the 
enriched pathways. This set of genes was set forth to an over-representation analysis 
using the pathways described in Gene Ontology, KEGG and Reactome. Selected 
pathways were those significantly enriched at an FDR < 0.05. 
 
Additionally, we explored the downstream transcriptional consequences associated with 
the distinct variants identified by our GWAS on HF and those not previously reported. We 
used the distinct variants and conducted a differential gene-expression analysis (using a 
dominant model) for all transcripts available in GTEx V8 for heart atrial, heart ventricle, 
artery aorta, adipose, liver, kidney, transformed cultured fibroblasts and whole-blood 
tissues. After fitting models for our variants, we retrieved all genes differentially expressed 
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at a p < 1 x 10-4 and conducted an enrichment pathway analysis (through an 
overrepresentation analysis, as described above). Enrichment analyses were performed 
using the R packages clusterProfiler and enrichplot57.  
 
EpiGraphDB queries 
To investigate the current knowledge about the biomedical functions of the hit genes in 
association with HF, we used the EpiGraphDB database58. We queried the biomedical 
and epidemiological relationships curated in the database to identify associations 
between the genes we identified and cardiovascular related outcomes and risk factors 
(see Supplementary Methods). 
 
Querying the MGI database: 
We queried the Mouse Genome Informatics (MGI, http://www.informatics.jax.org/) 
resource for all candidate genes from our novel GWAS hits list or those suggested as 
causal from our MR/colocalization approach. MGI uses a standardized nomenclature, and 
controlled vocabularies such as the Mouse Developmental Anatomy Ontology, the 
Mammalian Phenotype Ontology and the Gene Ontologies. As MGI extracts and 
organizes data from primary literature, we have parsed all system abnormalities 
associated with models on all of the queried genes59. For models that displayed 
cardiovascular abnormalities, we have hand-curated the abnormalities and organized 
them into 3 distinct groups associated with (1) congenital heart malformations, (2) 
myocardial abnormalities, and (3) vascular abnormalities.  
 
Druggability annotations 
Proteins encoded by genes identified in the GWAS and MR analyses for HF were 
annotated with drug tractability information based on information provided by 
OpenTargets10,60,61 (release 2021-03-08). OpenTargets tractability system stratified drug 
targets into nine mutually exclusive groups (termed "buckets") based on the drug type 
and the stage of the drug discovery pipeline. For easier interpretation, we regrouped the 
original buckets into four mutually exclusive groups, as follows: Licensed drugs: bucket-
1 for antibodies, small molecules and other modalities. Drugs in clinical development: 
buckets 2 and 3 for antibodies, small molecules, and other modalities. Compounds in 
preclinical phase: buckets 4 and 5 for small molecules. Predicted druggable: buckets 6 to 
8 for small molecules plus buckets 4 and 5 for antibodies. The remaining proteins were 
considered non-druggable. For genes that were the target of licensed drugs, we checked 
whether the disease indication was also a risk factor for HF, as this may introduce a bias 
analogous to confounding by indication in MR.  
 
GBMI Replication of Novel Loci 
We conducted a replication of the 18 novel loci in the Global Biobank Meta-analysis 
Initiative (GBMI) multi-ancestry GWAS on heart failure, which includes 859,141 controls 
and 60,605 cases from BioBank Japan, BioMe, BioVU, China Kadoorie Biobank, Estonian 
Biobank, FinnGen, Genes & Health, HUNT, Lifelines, Michigan Genomics Initiative, 
Partners Biobank, UCLA Precision Health Biobank, excluding UK Biobank62. Heart failure 
cases were ascertained by ICD code (phecode 428.2). We consider p < 0.05/18 as a level 
of significance for replication and p < 0.05 as a level of nominal significance. 
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Data Availability  
The MVP GWAS summary statistics used in this study is available through dbGAP under 
accession code phs001672.v10 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs001672.v10.p1]. The only restriction is that use of the data is 
limited to health/medical/biomedical purposes, and does not include the study of 
population origins or ancestry. Use of the data does include methods development 
research (e.g., development and testing of software or algorithms) and requesters agree 
to make the results of studies using the data available to the larger scientific community. 
The HERMES GWAS summary statistics used in this study are publicly available at the 
GWAS Catalog under accession code GCST009541 
[https://www.ebi.ac.uk/gwas/studies/GCST009541]. Fenland-SomaLogic protein GWAS 
data are available at https://omicscience.org/. GTEx project v.8 data are publicly available 
at https://gtexportal.org/home/. Mouse Genome Informatics (MGI) data is publicly 
available at http://www.informatics.jax.org/. The GWAS summary statistics for the risk 
factor analyses used in this study are deposited in the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/) and the accession codes are as follows: body mass index 
(GCST006900), alcohol consumption (GCST007325), atrial fibrillation (GCST006414), 
systolic blood pressure (GCST006624), diastolic blood pressure (GCST006630), type 2 
diabetes (GCST006867), and coronary artery disease (GCST005194) troponin 
(GCST005806), NT-pBNP (GCST005806) and IL-6 (GCST90012049). The GWAS 
summary statistics for smoking and chronic obstructive airways disease used in this study 
are available at https://gwas.mrcieu.ac.uk under GWAS ID ukb-b-5779 and ukb-b-13447, 
respectively, and the GWAS summary statistics for the traits examined in the in-silico 
trails are available at https://gwas.mrcieu.ac.uk using the GWAS IDs listed in the 
Supplementary Table. The GWAS summary statistics for the LDL-cholesterol and HDL-
cholesterol are publicly available in http://csg.sph.umich.edu/willer/public/glgc-
lipids2021/results/ancestry_specific/. The summary statistics for estimated glomerular 
filtration rate (eGFR) are deposited in ://www.uni-regensburg.de/medizin/epidemiologie-
praeventivmedizin/genetische-epidemiologie/gwas-summary-statistics/index.html. The 
cardiac MRI datasets provided by Pirruccello et al are deposited under Dataset Name 
"UK Biobank Cardiac MRI LV GWAS" on https://cvd.hugeamp.org/downloads.html. The 
Open Targets data are deposited in https://platform.opentargets.org/. The EpiGraphDB 
database used in this study is provided at: https://www.epigraphdb.org/. 
 
Code Availability  
We used publicly available software for the analyses, and all software used is listed and 
described in the Methods section of our manuscript. Statistical analyses were conducted 
in R version 3.6.3. Mendelian randomization analyses were conducted using the 
TwoSampleMR package in R version 0.5.3 (https://mrcieu.github.io/TwoSampleMR/), 
genetic colocalization analyses were conducted using the coloc package in R 
(https://cran.r-project.org/web/packages/coloc/index.html and  
https://chr1swallace.github.io/coloc, using default priors), pathway enrichment analyses 
were conducted using the clusterProfiler package in R 
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(https://pubmed.ncbi.nlm.nih.gov/22455463/) and the enrichplot R package, LD Score 
regression was conducting using LDSC (https://github.com/bulik/ldsc), and polygenic risk 
score was calculated using the PRS-cs package v1.0.0 
(https://github.com/getian107/PRScs). Meta-analysis of GWAS summary statistics were 
prepared using publicly available software, including METAL 
(https://genome.sph.umich.edu/wiki/METAL_Documentation), version release 2020-05-
05. Software used to annotate our results are described in the Methods section of the 
manuscript. 
 
REFERENCES  
 
 
1. Roth, G. A. et al. Global Burden of cardiovascular diseases and risk factors, 1990-2019: 

Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020). 

2. Roger, V. L. Epidemiology of heart failure: A contemporary perspective. Circ. Res. 128, 

1421–1434 (2021). 

3. Blood Pressure Lowering Treatment Trialists’ Collaboration. Pharmacological blood 

pressure lowering for primary and secondary prevention of cardiovascular disease across 

different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 

397, 1625–1636 (2021). 

4. Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery 

disease. N. Engl. J. Med. 352, 29–38 (2005). 

5. Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. 

Int. J. Epidemiol. 33, 30–42 (2004). 

6. Levin, M. G. et al. Genome-wide association and multi-trait analyses characterize the 

common genetic architecture of heart failure. Nat. Commun. 13, 6914 (2022). 

7. Joseph, J. et al. Genetic architecture of heart failure with preserved versus reduced ejection 

fraction. bioRxiv 2021.12.01.21266829 (2021) doi:10.1101/2021.12.01.21266829. 

8. Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide 

insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 22 

9. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. 

Med. 25, 1851–1857 (2019). 

10. Ochoa, D. et al. Open Targets Platform: supporting systematic drug-target identification and 

prioritisation. Nucleic Acids Res. 49, D1302–D1310 (2021). 

11. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 

16, 19–34 (2017). 

12. Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 

374, eabj1541 (2021). 

13. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes 

underlying complex traits and diseases. bioRxiv (2020) doi:10.1101/2020.09.08.20190561. 

14. Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of 

thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genomics 100168 (2022). 

15. Wu, K.-H. H. et al. Polygenic risk score from a multi-ancestry GWAS uncovers susceptibility 

of heart failure. bioRxiv 2021.12.06.21267389 (2021) doi:10.1101/2021.12.06.21267389. 

16. Verweij, N. et al. The genetic makeup of the electrocardiogram. Cell Syst. 11, 229-238.e5 

(2020). 

17. Karlsson, T. et al. Contribution of genetics to visceral adiposity and its relation to 

cardiovascular and metabolic disease. Nat. Med. 25, 1390–1395 (2019). 

18. Hoffmann, T. J. et al. A large multiethnic genome-wide association study of adult body 

mass index identifies novel loci. Genetics 210, 499–515 (2018). 

19. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution 

in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019). 

20. Kehat, I. et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between 

eccentric and concentric cardiac growth. Circ. Res. 108, 176–183 (2011). 

21. Fielitz, J. et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc. 

Natl. Acad. Sci. U. S. A. 105, 3059–3063 (2008). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 23 

22. Swaminathan, P. D., Purohit, A., Hund, T. J. & Anderson, M. E. Calmodulin-dependent 

protein kinase II: linking heart failure and arrhythmias. Circ. Res. 110, 1661–1677 (2012). 

23. Beauverger, P. et al. Reversion of cardiac dysfunction by a novel orally available 

calcium/calmodulin-dependent protein kinase II inhibitor, RA306, in a genetic model of 

dilated cardiomyopathy. Cardiovasc. Res. 116, 329–338 (2020). 

24. Witztum, J. L. et al. Volanesorsen and triglyceride levels in familial chylomicronemia 

syndrome. N. Engl. J. Med. 381, 531–542 (2019). 

25. Esan, O. & Wierzbicki, A. S. Volanesorsen in the treatment of familial chylomicronemia 

syndrome or hypertriglyceridaemia: Design, development and place in therapy. Drug Des. 

Devel. Ther. 14, 2623–2636 (2020). 

26. Chong, M. et al. Novel drug targets for ischemic stroke identified through Mendelian 

randomization analysis of the blood proteome. Circulation 140, 819–830 (2019). 

27. Jain, M. et al. A novel role for tumor necrosis factor-like weak inducer of apoptosis 

(TWEAK) in the development of cardiac dysfunction and failure. Circulation 119, 2058–

2068 (2009). 

28. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: From association to function. 

Am. J. Hum. Genet. 102, 717–730 (2018). 

29. Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in 

>1.2 million individuals. Nat. Commun. 12, 4350 (2021). 

30. Votava, J. A. & Parks, B. W. Cross-species data integration to prioritize causal genes in 

lipid metabolism. Curr. Opin. Lipidol. 32, 141–146 (2021). 

31. Uijl, A. et al. Risk factors for incident heart failure in age- and sex-specific strata: a 

population-based cohort using linked electronic health records. Eur. J. Heart Fail. 21, 1197–

1206 (2019). 

32. Emerging Risk Factors Collaboration et al. Major lipids, apolipoproteins, and risk of 

vascular disease. JAMA 302, 1993–2000 (2009). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 24 

33. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

34. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and 

annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017). 

35. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body 

mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 

(2018). 

36. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the 

human phenome. Elife 7, (2018). 

37. Karlsson Linnér, R. et al. Genome-wide association analyses of risk tolerance and risky 

behaviors in over 1 million individuals identify hundreds of loci and shared genetic 

influences. Nat. Genet. 51, 245–257 (2019). 

38. Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial 

fibrillation biology. Nat. Genet. 50, 1234–1239 (2018). 

39. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci 

associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018). 

40. Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative 

regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018). 

41. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded 

view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 

(2018). 

42. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of 

lipids. Nature 600, 675–679 (2021). 

43. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 

individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 

(2020). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 25 

44. Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with fully 

convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018). 

45. Aung, N. et al. Genome-wide analysis of left ventricular image-derived phenotypes 

identifies fourteen loci associated with cardiac morphogenesis and heart failure 

development. Circulation 140, 1318–1330 (2019). 

46. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between 

imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 

(2017). 

47. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using 

the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017). 

48. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 

association studies using summary statistics. PLoS Genet. 10, e1004383 (2014). 

49. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment 

analysis tool. BMC Bioinformatics 14, 128 (2013). 

50. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 

2016 update. Nucleic Acids Res. 44, W90-7 (2016). 

51. Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr Protoc 1, e90 (2021). 

52. Fahey, M. E. et al. GPS-Prot: a web-based visualization platform for integrating host-

pathogen interaction data. BMC Bioinformatics 12, 298 (2011). 

53. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity 

in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 

54. Murphy, A. E., Schilder, B. M. & Skene, N. G. MungeSumstats: A Bioconductor package for 

the standardisation and quality control of many GWAS summary statistics. Bioinformatics 

37, 4593–4596 (2021). 

55. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via 

Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 26 

56. Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable 

personalized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008). 

57. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. 

Innovation (N Y) 2, 100141 (2021). 

58. Liu, Y. et al. EpiGraphDB: a database and data mining platform for health data science. 

Bioinformatics 37, 1304–1311 (2021). 

59. Shaw, D. R. Searching the Mouse Genome Informatics (MGI) resources for information on 

mouse biology from genotype to phenotype. Curr. Protoc. Bioinformatics 56, 1.7.1-1.7.16 

(2016). 

60. Brown, K. K. et al. Approaches to target tractability assessment – a practical perspective. 

Medchemcomm 9, 606–613 (2018). 

61. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 

(2021). 

62. Zhou, W. et al. Global Biobank Meta-analysis Initiative: Powering genetic discovery across 

human disease. Cell Genom. 2, 100192 (2022). 

 
 
ACKNOWLEDGEMENTS 
 
We are grateful to all the MVP investigators; a list of MVP investigators can be found in 
Supplementary Information. This research is supported by funding from the Department 
of Veterans Affairs Office of Research and Development, Million Veteran Program Grant 
I01-CX001737 (PI: Phillips) and I01-BX004821 (PI: Wilson/Cho). This publication does 
not represent the views of the Department of Veterans Affairs or the United States 
Government.  We also acknowledge the VA Merit Grant  I01-CX001025 (PI: Wilson/Cho). 
 
The Fenland study was approved by the National Health Service (NHS) Health Research 
Authority Research Ethics Committee (NRES Committee – East of England Cambridge 
Central, ref. 04/Q0108/19), and all participants provided written informed consent. We are 
grateful to all Fenland volunteers and to the General Practitioners and practice staff for 
assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study 
Co-ordination team and the Epidemiology Field, Data and Laboratory teams. The Fenland 
Study (10.22025/2017.10.101.00001) is funded by the Medical Research Council 
(MC_UU_12015/1). We further acknowledge support for genomics from the Medical 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 27 

Research Council (MC_PC_13046). Proteomic measurements were supported and 
governed by a collaboration agreement between the University of Cambridge and 
SomaLogic. 
 
PBM and SEP acknowledge the support of the National Institute for Health and Care 
Research Barts Biomedical Research Centre (NIHR203330); a delivery partnership of 
Barts Health NHS Trust, Queen Mary University of London, St George’s University 
Hospitals NHS Foundation Trust and St George’s University of London. NA 
acknowledges support from the NIHR Integrated Academic Training programme which 
supports his Academic Clinical Lectureship post. CG has received funding from the 
European Union’s Horizon 2020 research and innovation programme under the Marie 
Skłodowska-Curie grant agreement No 754490 – MINDED project. 
 
L.S.P. is supported in part by VA awards CSP #2008, I01 CX001899, I01 CX001737, and 
I01 BX005831; NIH awards R01 DK127083, R21 AI156161, UL1 TR002378, and 
U18DP006711; and a Cystic Fibrosis Foundation award PHILLI12A0. The sponsors had 
no role in the design and conduct of the study; collection, management, analysis, and 
interpretation of the data; and preparation, review, or approval of the manuscript. L.S.P. 
is also supported in part by the Veterans Health Administration (VA). This work is not 
intended to reflect the official opinion of the VA or the U.S. government. 
 
J.P.C. moved to work with Novartis Institute for Biomedical Research during the 
submission of this project. 
 
Author Contributions Statement 
J.P.C. conceived the study design, oversaw all analyses and interpretation, and wrote 
the manuscript. J.P.C., J.J., Y.V.S., and C.L. conceived of the project. D.R., G.M.P, 
A.C.P., H.D., C.G., and B.R.F. performed the formal analyses and visualizations, and 
wrote the manuscript. E.W., N.A., M.P., Q.H. contributed data. E.H.F.E. and Q.S.W. 
contributed data. E.H.F.E. performed analysis. N.M.K contributed to project 
administration. J.W. edited the manuscript. L.G., D.C.P., A.P.B., C.L., K.A., Z.W., B.C., 
J.E.H., P.W.F.W., L.S.P., P.B.M, S.E.P, K.C., A.R.L., M.P.M., and J.M.G. participated in 
the contribution of data or analysis tools. All authors critically reviewed the manuscript.  
 
†These authors jointly supervised this work. 
 
Competing Interests Statement 
The authors declare no competing interests. 
 
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2022.04.14.22273877doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273877


 28 

Table 1. Loci reported for HF in meta-analysis of HERMES and MVP HF GWAS datasets. 
Genes that are druggable or predicted to be druggable are highlighted in bold. 
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rsID Chr Pos
Nearest 
Gene PoPs gene

CADD 
Phred 
Score NEA EA MAF Beta SE P-value

Novel variants

rs4755720 11 43628749 HSD17B12 HSD17B12 7.526 C T 0.400 -0.037 0.006 8.14E-11

rs7766436 6 22598259 HDGFL1 HDGFL1 1.902 C T 0.286 0.037 0.006 5.18E-10

rs3820888 2 201180023 SPATS2L SPATS2L 6.261 C T 0.378 -0.034 0.006 1.20E-09

rs12992672 2 632592 TMEM18 TMEM18 1.061 G A 0.172 0.045 0.007 1.70E-09

rs10846742 12 125308682 SCARB1 UBC 0.277 G A 0.173 -0.046 0.008 1.73E-09

rs17620390 4 114384328 CAMK2D CAMK2D 1.907 C A 0.284 -0.037 0.006 1.90E-09

rs72688573 1 50746997 FAF1 FAF1 6.834 C T 0.022 -0.122 0.021 4.31E-09

rs10938398 4 45186139 GNPDA2 N/A 1.094 G A 0.421 0.033 0.006 4.50E-09

rs6945340 7 75100124 POM121C HIP1 3.58 C T 0.208 -0.040 0.007 5.89E-09

rs7564469 2 145258445 ZEB2 GTDC1 19.56 C T 0.165 -0.043 0.007 6.66E-09

rs7977247 12 107259470 RIC8B RFX4 1.868 C T 0.434 0.032 0.006 1.07E-08

rs1016287 2 59305625 FANCL N/A 19.22 C T 0.280 0.037 0.006 1.11E-08

rs959388 14 30169987 PRKD1 PRKD1 0.596 G T 0.417 -0.031 0.006 1.30E-08

rs233806 4 103212846 SLC39A8 BANK1 9.713 C T 0.207 -0.037 0.007 1.57E-08

rs17038861 2 37233265 HEATR5B PRKD3 0.403 G T 0.195 0.039 0.007 2.35E-08

rs9352691 6 79785607 PHIP PHIP 6.373 C T 0.365 0.032 0.006 2.65E-08

rs10520390 19 46327831 SYMPK DMWD 2.849 G C 0.059 0.074 0.013 2.87E-08

rs79682748 1 66989719 SGIP1 SGIP1 4.719 G A 0.018 -0.155 0.028 3.00E-08

Previously reported variants

rs7859727 9 22102165 CDKN2B CDKN2A 1.448 C T 0.488 0.061 0.006 3.11E-29

rs2634071 4 111669220 PITX2 PITX2 1.622 C T 0.219 0.079 0.007 3.64E-29

rs11642015 16 53802494 FTO RPGRIP1L 4.826 C T 0.432 0.058 0.006 2.69E-25

rs10455872 6 161010118 LPA PLG 0.146 G A 0.074 -0.104 0.011 8.20E-23

rs3176326 6 36647289 CDKN1A CDKN1A 10.88 G A 0.173 -0.068 0.007 2.51E-22

rs602633 1 109821511 PSRC1 CELSR2 8.63 G T 0.207 -0.054 0.007 5.19E-16

rs1739833 1 16331108 C1orf64 ZBTB17 4.205 C T 0.331 -0.048 0.006 7.89E-15

rs17617337 10 121426884 BAG3 BAG3 0.079 C T 0.218 -0.050 0.007 8.88E-14

rs600038 9 136151806 ABO SURF1 7.596 C T 0.215 -0.049 0.007 9.44E-14

rs34163229 10 75406912 SYNPO2L SEC24C 24 G T 0.133 -0.056 0.008 7.40E-13

rs113437066 17 65836220 BPTF BPTF 2.588 ATTT A 0.197 0.061 0.010 1.81E-10

rs11746435 5 137006762 KLHL3 HNRNPA0 7.216 T A 0.229 0.042 0.007 2.04E-10

rs2832275 21 30602994 BACH1 LTN1 1.08 T A 0.139 -0.047 0.008 2.90E-10

rs7795282 7 74122857 GTF2I GTF2IRD1 0.262 G A 0.221 -0.042 0.007 7.69E-10

rs12933292 16 69566309 NFAT5 NFAT5 0.403 G C 0.425 0.034 0.006 8.96E-10

rs216199 17 2200871 SMG6 SMG6 3.442 C T 0.388 -0.037 0.006 1.11E-09

rs2013002 12 112200150 ALDH2 ATXN2 4.336 C T 0.415 0.033 0.006 5.68E-09

rs17163345 1 222806218 MIA3 MIA3 7.541 G A 0.270 -0.034 0.006 2.15E-08

rs3764351 17 37824339 PNMT MED1 5.182 G A 0.340 -0.033 0.006 2.27E-08
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Findings were identified using fixed effects inverse-variance weighted meta-analysis. Chromosomal position is based 
on GRCh37/hg19 reference. Gene names are italicized.  
Abbreviations: CADD, Combined Annotation Dependent Depletion; NEA, non-effect allele; EA, effect allele; MAF, 
minor allele frequency; SE, standard error. 
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Table 2. Protein-hits for heart failure identified through Mendelian randomization that passed an FDR threshold of 5%. Genes that passed a 
colocalization threshold of PP.H4>0.5 (suggestive threshold) are highlighted in bold, and PP.H4>0.8 (strong threshold) are marked with an asterisk. 

 
 
*Posterior probability of H4 (one common causal variant) from colocalization of pQTL and GWAS results. 
**Previously reported HF GWAS gene for instruments in GWAS loci (within 500KB up or down from each loci). 
†MR pHet were measured by Cochran’s Q test for heterogeneity across individual-variant MR estimates within a genetic instrument; instruments containing one variant were not 
tested for heterogeneity.  
Abbreviations: MR, Mendelian randomization; FDR, false discovery rate, PP.H4, posterior probability of H4. 
Gene names are italicized.  
Significant MR results, FDR < 5%. MR estimates were calculated using Wald ratio for instruments with one variant and inverse-variance weighting and fixed effects for instruments 
that contained more than one variant. Note that an OR>1 indicates an increase in protein corresponding with an increase in HF risk or vice versa, suggesting that the therapeutic 
solution may be an inhibitor; an OR<1 indicates either a decrease in protein levels corresponding with an increase in HF risk or an increase in protein levels corresponding with a 
decrease in HF risk, suggesting the therapeutic solution may be an agonist. 

Protein Gene 
Name

Number of 
SNPs

Odds 
Ratio 95% CI P-value pHet† FDR

MR-Egger Intercept 
(95% CI); P-value

Coloc 
PP.H4*

Druggability 
classification (Chemical 

Modality)

ITIH4* 2 1.13 (1.07, 1.17) 2.51E-07 0.66 3.90E-04 N/A 0.97 Non-druggable 

APOC3* 1 1.19 (1.11, 1.28) 1.74E-06 NA 1.35E-03 N/A 0.99
Advanced Clinical Phase 

(Oligonucleotide)

MAPK3 3 0.95 (0.93, 0.97) 6.70E-06 0.41 3.48E-03 0.02 (-0.01, 0.05); 0.43 0.52
Advanced Clinical Phase 

(Small molecule)

TNFSF12 2 0.96 (0.94, 0.98) 1.78E-05 0.05 6.94E-03 N/A 0.79
Clinical Phase 1 

(Antibody)

ABO 2 1.02 (1.01, 1.03) 2.89E-05 0.11 8.99E-03 N/A 0.01 Non-druggable 

APOH* 2 0.96 (0.94, 0.98) 5.24E-05 0.83 1.36E-02 N/A 0.89 Non-druggable 

B3GNT8 2 0.97 (0.96, 0.99) 9.35E-05 0.96 2.08E-02 N/A 0.48 Non-druggable 

NTN4 2 1.08 (1.04, 1.13) 1.10E-04 0.68 2.14E-02 N/A 0.04 Non-druggable 

DLL1 1 0.87 (0.8, 0.93) 1.53E-04 NA 2.65E-02 N/A 0.75 Non-druggable 

MST1 3 1.02 (1.01, 1.03) 1.99E-04 0.11 3.10E-02
-0.20 ( -0.38, -0.01); 

0.29 0.37 Non-druggable 

ENPEP 4 0.96 (0.94, 0.98) 3.12E-04 0.18 4.27E-02 0.01 (-0.02, 0.03); 0.62 0.74 Non-druggable 

NAE1 1 0.82 (0.74, 0.91) 3.55E-04 NA 4.27E-02 N/A 0.6
Advanced Clinical Phase 

(Small molecule)

TNXB 1 1.03 (1.02, 1.05) 3.56E-04 NA 4.27E-02 N/A 0.61 Non-druggable 

SIRPA 1 0.98 (0.97, 0.99) 3.94E-04 NA 4.39E-02 N/A 0.56 Non-druggable 

EBI3 1 0.75 (0.64, 0.89) 4.44E-04 NA 4.61E-02 N/A 0.01 Non-druggable 

IL27 1 0.75 (0.64, 0.89) 4.44E-04 NA 4.61E-02 N/A 0.4 Non-druggable 
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Figure 1. Schematic diagram of the datasets and analyses. 
Abbreviations: HF, heart failure; MVP, Million Veteran Program cohort; GWAS genome-wide 
association study; pQTL, protein quantitative trait loci; PheWAS, phenome-wide association 
study; MR, Mendelian randomization; FDR, false discovery rate; PP.H4, posterior probability of 
H4 
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Figure 2. Manhattan plots showing associations with HF from (a) GWAS meta-analysis on 
n= 1,266,315 individuals and (b) MR-wide proteomics. a. Manhattan plot showing the -log10(P-
value) of association for each SNP from the GWAS meta-analysis plotted on the y-axis against 
genomic position on the x-axis. The red dotted line corresponds to genome-wide significance 
threshold. The summary statistics of independent lead SNPs are noted in Supplementary Table 
1. b. Manhattan plot showing the -log10-transformed FDR-adjusted P-value of association for each 
gene plotted against genomic position on the x-axis. All tests were two-sided and adjusted for 
multiple comparisons. The blue line corresponds to an FDR threshold of 5% and points are color 
coded by drug tractability information based on data provided by OpenTargets; green for 
druggable genes. Abbreviations: FDR, false discovery rate. 
(a) 

 
 
(b) 
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Figure 3a. Genetic associations of 18 HF loci against risk factors for HF. The color of the 
bubble corresponds to the beta coefficient of the genetic association between the loci (x-axis) and 
trait (y-axis). Blue corresponds to a negative and red corresponds to a positive beta coefficient. 
The size of each bubble corresponds to the negative logarithm of the association p-value; larger 
size corresponds to lower p-values. Loci are grouped by druggable and non-druggable genes. All 
tests were two-sided without adjustment for multiple comparisons. Associations which passed the 
p-value threshold (p < 1 x 10-4) are denoted by a yellow diamond. Abbreviations: 𝛽, Beta coefficient; 
AC, alcohol consumption; AF,  atrial fibrillation; BMI, body mass index; CAD, coronary artery 
disease; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; eGFR, 
estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; IL-6, Interleukin-
6; LDL-C, low-density lipoprotein cholesterol; NT-proBNP, N-terminal pro-BNP; SBP, systolic 
blood pressure; SMK, smoking; T2D, type 2 diabetes; TRP, troponin I cardiac muscle. 
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Figure 3b. MR and colocalization estimates of MR-proteomic genes-hits against HF risk 
factors. This bubble plot shows MR estimates for which p < 1 x 10-4. The size of each bubble 
corresponds to the posterior probability for hypothesis 4 derived from colocalization. The color of 
the bubble corresponds to the beta coefficient derived from MR. Blue corresponds to a negative 
association and red corresponds to a positive association; note that a positive 𝛽 indicates either 
an increase in protein levels corresponding to an increase in HF risk or a decrease in protein 
levels corresponding to a decrease in HF risk, while a negative 𝛽 indicates either a decrease in 
protein levels corresponding to an increase in HF risk or an increase in protein levels 
corresponding to a decrease in HF risk. The intensity of the color corresponds to -log10(P-value) 
for the strength of association in the MR. All tests were two-sided without adjustment for multiple 
comparisons. Loci are grouped by druggable and non-druggable genes. TNXB, SIRPA and 
ENPEP genes are not included as these had no MR estimates on HF risk factors that pass the p 
< 1 x 10-4  threshold. Abbreviations: 𝛽, Beta coefficient; PP.H4, posterior probability of H4 
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