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Abstract 

DNA methylation commonly occurs at cytosine-phosphate-guanine sites (CpGs) that can serve as 

biomarkers for many diseases. We analyzed whole genome sequencing data to identify DNA methylation 

quantitative trait loci (mQTLs) in 4,126 Framingham Heart Study participants. Our mQTL mapping 

identified 94,362,817 cis-mQTLvariant-CpG pairs (for 210,156 unique autosomal CpGs) at P<1e-7 and 

33,572,145 trans-mQTL variant-CpG pairs (for 213,606 unique autosomal CpGs) at P<1e-14. Using cis-

mQTL variants for 1,258 CpGs associated with seven cardiovascular disease risk factors, we found 104 

unique CpGs that colocalized with at least one cardiovascular disease trait. For example, cg11554650 

(PPP1R18) colocalized with type 2 diabetes, driven by a single nucleotide polymorphism (rs2516396). 

We performed Mendelian randomization (MR) analysis and demonstrated 58 putatively causal relations 

of CVD risk factor-associated CpGs to one or more risk factors (e.g., cg05337441 [APOB] with LDL; 

MR P=1.2e-99, and 17 causal associations with coronary artery disease (e.g. cg08129017 [SREBF1] with 

coronary artery disease; MR P=5e-13). We also showed that three CpGs, e.g., cg14893161 (PM20D1), 

are putatively causally associated with COVID-19 severity. To assist in future analyses of the role of 

DNA methylation in disease pathogenesis, we have posted a comprehensive summary data set in the 

National Heart, Lung, and Blood Institute’s BioData Catalyst. 
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Introduction 

DNA methylation, the most frequently studied epigenetic modification, involves the transfer of a methyl 

group to the fifth carbon position of the cytosine DNA nucleotide to form 5-methylcytosine.1 DNA 

methylation is influenced both by genetic and environmental factors and may mediate gene-environment 

interactions; therefore, it may be used to determine the risk of many complex diseases through its critical 

role in gene expression regulation.2,3 Associations between DNA methylation and a wide range of 

phenotypes have been identified by epigenome-wide association studies (EWAS).4-6 DNA methylation 

therefore can serve both as biomarkers for disease and contribute to its pathogenesis.  

 

Identification of genetic loci associated with the methylation of cytosine-phosphate-guanine sites (CpGs) 

– i.e., DNA methylation quantitative trait loci (mQTLs) – can facilitate the interpretation of the biological 

underpinnings regarding the DNA methylation and disease relations and causal inference regarding the 

roles of DNA methylation in disease. Genome-wide association studies (GWAS) have successfully 

identified many disease-associated genetic variants.7 Molecular mechanisms linking these variants to 

disease, however, are not fully understood. Exploring colocalization of disease-associated genetic variants 

from GWAS with mQTL variants may further reveal molecular mechanisms underlying the associations 

between genetic variants and diseases.8 We hypothesize that by studying the overlap of mQTL variants 

with known disease-associated genetic variants from GWAS, we can further explore the joint 

contributions of genetic and environmental influences to diseases. Furthermore, by colocalizing mQTLs 

with genetic variants associated with gene expression (expression quantitative trait loci, eQTLs), we can 

better interpret the biological functions of disease-associated CpGs.8 Utilizing effect sizes derived from 

GWAS for mQTL variants with different diseases, we can conduct causal inference testing to explore the 

putative causal roles of CpGs on a wide range of diseases.9-14  

 

In our earlier work, we performed GWAS of ~415,000 CpGs in whole blood derived DNA in 

Framingham Heart Study (FHS) participants with validation in the Atherosclerosis Risk in Communities 
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(ARIC) study and the Grady Trauma Project (GTP).15 Genotyping was performed using commercial 

arrays with imputation across the genome. The present study greatly expands on our prior work by 

incorporating whole genome sequencing (WGS) data in FHS participants obtained as part of the National 

Heart, Lung, and Blood Institute’s (NHLBI) Trans-Omics for Precision Medicine (TOPMed) Program 

(https://www.nhlbiwgs.org/). Use of WGS greatly reduces imputation uncertainty and vastly increases 

coverage of variation across the human genome. In this study, we utilized state-of-the-art WGS in 

conjunction with DNA methylation measured by commercial arrays to quantify SNP-CpG associations in 

over 4,000 FHS participants. Our primary goal was to create a robust mQTL resource to better understand 

the genetic architecture of DNA methylation and facilitate the discovery of molecular mechanisms 

underlying a variety of diseases. We also provide examples of how mQTLs can be used in colocalization 

and Mendelian randomization (MR) analyses to infer the causal roles of DNA methylation in relation to 

disease phenotypes, with a focus on cardiovascular disease (CVD) risk factors and severity of coronavirus 

disease 2019 (COVID-19).  

 

Results 

Participant characteristics. As shown in Table 1, our pooled analysis included  4,126 participants (2,320 

with DNA methylation data from the 450K array and 1,806 with data from the EPIC array). In the FHS 

Offspring cohort, blood samples used for the 450K array measurements were collected ~6 years earlier 

than those for the EPIC array measurements, while blood samples for both arrays in the Third Generation 

cohort were obtained at the same visit. Therefore, the mean age for participants with EPIC array data was 

older than that for the 450K array. There were no substantial differences in sex, BMI, or other CVD risk 

factors.  

 

mQTL mapping. In pooled analysis, we identified 94,362,817 cis-mQTL variant-CpG pairs for 210,156 

unique autosomal CpGs and  at P<1e-7 and 33,572,145 trans-mQTL-CpG pairs for 213,606 unique 

autosomal CpGs at P<1e-14. The numbers of cis- and trans-mQTL variant-CpG pairs for each 
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chromosome are presented in Supplemental Table 1. The cis-mQTL variants accounted for 0.7% to 79.9% 

(median 1.6%) of heritability of DNA methylation, and trans-mQTLs accounted for 1.4% to 78.7% 

(median 2.1%) of heritability. There were 1,080,716 cis-mQTL variants, associated with 31,422 unique 

CpGs (2,345,086 or 2.5% of the 94,362,817 cis-mQTL variant-CpG pairs), that accounted for ≥20% of 

heritability of DNA methylation at the corresponding CpGs (Figure 2). We also observed that 185,167 

trans-mQTL variants accounted for ≥20% of heritability of DNA methylation for 2,711 unique CpGs 

(314,660 or 0.9% of the 33,572,145 trans-mQTL variant-CpG pairs; Figure 2). The array-specific results 

are presented in Supplemental Table 2. 

 

We examined whether mQTL variant-CpG pairs identified by other studies16,17 were significant in our 

dataset. For the top independent cis-mQTL variant-CpG pairs (168,675 pairs for 104,619 CpGs; P<1e-7) 

identified by the pooled analysis in the five Dutch biobanks,16 66.1% of the pairs (111,557 pairs for 

79,099 CpGs) overlapped with our cis-mQTL variant-CpG pairs (P<1e-7 with consistent effect direction). 

For the top independent trans-pairs (5,865 pairs for 2,066 CpGs with P<1e-14) in the Dutch biobanks, 

38.4% of the pairs (2,250 pairs for 866 CpGs) overlapped with our trans-mQTL variant-CpG pairs (P<1e-

14 with consistent effect direction). Hawe et al. identified 10,346,172 cis- and 819,387 trans-mQTL 

variant-CpG pairs at P<1e-14 in a cross-ancestry analysis.17 Compared to their study, at P<1e-14, we 

identified 41,224,533 more cis-mQTL variant-CpG pairs and 32,752,758 more trans-mQTL variant-CpG 

pairs. Among the 10,346,172 cis- and 819,387 trans-mQTL variant-CpG pairs reported by Hawe et al.,17 

78.3% (n=8,105,456) of cis-mQTL variant-CpG pairs and 66% (n=540,851) of trans-mQTL variant-CpG 

pairs were significant and had consistent effect direction in our mQTL database, respectively.  

 

GO analysis for cis- and trans-mQTLs. Using the top 1,000 unique cis-mQTL variants from the pooled 

analysis, we identified 19 significant GO pathways (16 for Biological Process and 3 for Cellular 

Component) at FDR<0.05 (Supplemental Table 3); the top Biological Process term was dendrite 

development (GO:0016358; P=8.8e-7; FDR=0.01) and the top Cellular Component term was cell 
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periphery (GO:0071944; P=3.4e-6; FDR=0.01). The top 1,000 unique trans-mQTL variants from the 

pooled analysis were linked to nine significant GO pathways (six for Biological Process and three for 

Cellular Component) at FDR<0.05 (Supplemental Table 4); the top Biological Process term was cellular 

component organization or biogenesis (GO:0071840; P=7.8e-7; FDR=0.009) and the top Cellular 

Component term was cytoplasm (GO: 0005737; P=3.4e-6; FDR=0.009). 

 

Enrichment analysis of mQTL GWAS signals. We examined 9,395,367 cis-mQTL variants and 

5,820,451 trans-mQTL variants located in all autosomal chromosomes identified by the pooled analysis. 

The enrichment analysis showed that, at FDR<0.05, the cis-mQTL variants were enriched with GWAS 

SNPs associated with 783 traits, representing 27.1% of the traits included in the GWAS Catalog.7 For 

example, we found enrichment of SNPs associated with BMI (enrichment P=0 for BMI; Supplemental 

Table 5), systolic BP (enrichment P=0), triglyceride level (enrichment P=3.5e-231), type 2 diabetes 

(enrichment P=2.4e-194), and coronary artery disease (enrichment P=4.8e-118). Compared to the cis-

mQTL variants, the number of enriched GWAS traits for the trans-mQTL variants was lower with 

enrichment for nine GWAS traits (Supplemental Table 6).  

 

Colocalization analysis. We tested 1,258 CVD risk factor-associated CpGs for colocalization with five 

CVD-related traits. We found that 104 unique CpGs colocalized with at least one CVD-related traits at 

PPFC threshold ≥0.7 (overall 155 colocalized pairs; Supplemental Table 7). In Table 2, we present the 

top two CpGs that colocalized with each CVD-related trait. For example, cg11554650 (PPP1R18), a 

BMI-associated CpG on chromosome 6, colocalized with type 2 diabetes at SNP rs2516396 (PPFC=0.98), 

which explained 100% of the observed PPFC; cg05337441 (APOB), an LDL-associated CpG at 

chromosome 2, colocalized with coronary artery disease at rs668948 (PPFC=0.8), which explained 41% 

of the observed PPFC; and cg03676485 (LFNG), a HDL-associated CpG at chromosome 7, colocalized 

with systolic and diastolic BP at rs4632959 (PPFC=0.99), which explained ~100% of the observed PPFC.  
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Mendelian randomization analysis. Using the cis-mQTL variants for the 1,258 CVD risk factor-

associated CpGs (P<1e-6) reported in the EWAS catalog, we conducted MR analysis to test for putatively 

causal relations of CVD risk factor-associated CpGs with the corresponding CVD risk factors (e.g., HDL-

associated-CpGs with HDL and fasting glucose associated-CpGs with type 2 diabetes). After Bonferroni 

correction for the number of tests in analysis for each trait (e.g., 0.05/566 or 8.8e-5 in analysis for BMI), 

we identified 58 significant MR associations (Supplemental Table 8). The top three CpG-trait pairs were 

cg05337441 (APOB) and LDL (MR effect size: -2.94±0.14, P=1.2e-99), cg26663590 (closest gene is 

NFATC2IP in UCSC genome browser) and BMI (MR effect size: -1.39±0.13, P=6.3e-26), and 

cg14099685 (CUGBP1) and systolic BP (MR effect size: 138.64±14.85, P=9.9e-21). We also 

demonstrated that 17 CVD risk factor-CpGs were associated with coronary artery disease (Table 3; 

corresponding P<3.9e-5), e.g., cg08129017 (SREBF1; reported as associated with BMI and triglyceride 

in the EWAS catalog; MR effect size: 1.81±0.25, P=5e-13) and cg02050917 (SKI; BMI-associated CpG; 

MR effect size: 2.65±0.39, P=1.4e-11).  

 

A recent study conducted in 407 patients with COVID-19 showed that DNA methylation levels at 23 

CpGs (located in 20 genes) were associated with COVID-19 severity.18 We found that ten of the 23 

COVID-19 severity-associated CpGs had at least one cis-mQTL variant in our database. We used 

independent cis-mQTL variants (linkage disequilibrium R2<0.1), which overlapped with the SNPs tested 

by the two COVID-19 severity GWAS,19,20 to conduct MR analyses. As shown in Table 4, we observed 

that three CpGs, cg14893161 (PM20D1; P=6e-5 and 0.002 for the two COVID GWAS, respectively), 

cg17178900 (PM20D1; P=7e-4 and 0.008), and cg14859874 (UBAP2L; P=0.002 and 2e-4), were causally 

associated with COVID-19 severity after Bonferroni correction in analyses using both COVID GWAS 

databases.  

 

Discussion 
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To create a cutting-edge genome wide resource of cis- and trans-mQTLs, we analyzed whole genome 

sequences in conjunction with array-based DNA methylation data from 4,126 FHS participants. Our 

pooled analysis identified 94,362,817 cis-mQTL variant-CpG pairs (9,395,367 cis-mQTL variants; 

210,156 unique autosomal CpGs; P<1e-7) and 33,572,145 trans-mQTL variant-CpG pairs (6,039,960 

trans-mQTL variants; 213,606 unique autosomal CpGs; P<1e-14). We found enrichment of mQTL 

variants for disease-associated SNPs from GWAS. Using cis-mQTL variants, colocalization analyses 

support connections between CpGs with CVD traits. MR analyses further demonstrated that cis-mQTLs 

can be used to test causal relations of CpGs to multiple phenotypes such as CVD traits and COVID-19 

severity. A comprehensive summary data set will be posted to the National Heart, Lung, and Blood 

Institute’s BioData Catalyst site and will be freely accessible to the scientific community. Taken together, 

our study created a robust mQTL repository to better understand the epigenetic mechanisms underlying a 

wide range of diseases.  

 

Consistent with our previous mQTL study15 and others,21,22 a majority of SNP-CpG pairs are cis. For 

example, the number of cis-mQTL-CpG pairs was 2.8 times of that of trans-mQTL-CpG pairs in our 

pooled analysis (1.5 times using P<1e-14). To the best of our knowledge, our study is the largest mQTL 

mapping project using WGS, including ~20 million SNPs and INDELs and ~850 thousand CpGs. Our 

database expands the existing literature by adding ~40 million novel cis- and ~30 million trans-mQTL-

CpG pairs based on WGS rather than imputed genotypes from array-based genotyping. In addition, our 

database included cis- and trans-mQTLs for 180,692 unique CpGs present on the EPIC array that are not 

on the 450K array. Compared to the older 450K array, the EPIC array increases CpG coverage of specific 

genomic regions such as enhancers and non-coding regions.23 Therefore, our data therefore will facilitate 

future studies that examine the potential biological function and clinical impact of DNA methylation at 

these genomic regions.  
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To showcase the application of our mQTL database, we demonstrated the enrichment of mQTL variants 

for disease-associated SNPs from GWAS using the GWAS Catalog.7 For example, analysis utilizing cis-

mQTL variants showed enrichment for SNPs associated with CVD and multiple CVD risk factors 

including BMI, systolic BP, triglyceride, type 2 diabetes, and coronary artery disease. Our colocalization 

analysis using cis-mQTL variants for CpGs and GWAS summary statistics of these variants for CAD  

identified colocalization of an LDL-associated CpG, cg05337441 (APOB), with coronary artery disease. 

A intergenic SNP rs668948, mapped to APOB and TDRD15, explained 41% of the observed 

colocalization. The product encoded by APOB is the main apolipoprotein of LDL that serves as the ligand 

for the LDL receptor. The atherogenic potential of apolipoprotein B-100 has been demonstrated by many 

studies including MR analysis.24-27 Our data are consistent with the notion that DNA methylation 

contributes to the atherogenicity of LDL and suggest that future studies are needed to examine the exact 

molecular underpinnings of these observations. Also, in line with these observations, our MR analysis 

showed that many CVD risk factor-associated CpGs are putatively causal for CVD and CVD risk factors 

(Supplemental Table 8). These findings provide epigenetic insights into associations reported in GWAS. 

For example, we observed that cg12816198 (IRF5) was associated with systolic BP (MR P=6.3e-8). SNP 

rs4728142, an intergenic variant mapped to genes IRF5 and KCP, has been reported to be associated with 

hypertension in previous GWAS.28 This SNP (rs4728142) is a strong cis-mQTL variant for cg12816198 

(IRF5; P=7e-215) and the leading instrumental variable in the MR analysis for systolic BP (single SNP 

MR analysis P=2.7e-9), suggesting a causal pathway whereby rs4728142 modifies DNA methylation 

levels at cg12816198 with downstream effects on systolic BP. Interestingly, both colocalization analysis 

and MR analysis showed a connection between cg27087650 (BCL3) and coronary artery disease through 

cis-mQTL variant rs62117206 (intronic to BCL3; P=3.6e-15; linkage disequilibrium R2 =1 with 

rs4803750, another cis-mQTL variant of cg27087650; P=1.8e-14). CpG cg27087650 is located in the 

gene body of BCL3, which encodes a protein functioning as a transcriptional co-activator through its 

association with NF-kappa B homodimers. Expression of BCL3 has been linked to CVD and cancer.29-31 
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These examples provide proof of principle that integrating cis-mQTLs with CpGs and traits can reveal 

biological pathways by linking DNA methylation to a variety of diseases.   

 

Our mQTL database can also be used to screen candidate DNA methylation sites for further consideration 

in experimental and interventional studies. This is exemplified by our MR analysis that revealed a 

putatively causal effect of COVID-19 associated CpGs on disease severity. Our COVID analysis focused 

on ten CpGs that were identified in a case-control study of COVD-19 severity.18 Because of the 

retrospective design of the study,18 it could not infer causal relations between DNA methylation at these 

CpGs and the severity of COVID-19. Our analysis highlighted three COVID-related CpGs annotated to 

genes PM20D1 and UBAP2L that were putatively causal for COVID-19 severity; more research is needed 

to understand if and how these CpGs might influence outcome in patients with the COVID-19.  

 

In parallel with our mQTL project, our research team is examining eQTLs and expression quantitative 

trait methylation sites (eQTM) using WGS, RNA sequencing, and DNA methylation resources obtained 

in FHS participants. The eQTL and eQTM resources are also freely available online via the BioData 

Catalyst site. These molecular resources enable users to explore how DNA methylation affects 

transcriptional activities and pathways leading to a wide range of disease phenotypes. These molecular 

resources can be used in concert to reduce bias due to reverse causality and unmeasured confounding, 

particularly environmental confounders.32,33 Nonetheless, this study has several limitations that warrant 

discussion. Our analysis was conducted in a group of middle-aged and older, primarily white adults; 

therefore, the findings in this study may not be generalizable to other populations. Nonetheless, we 

demonstrated that mQTLs identified in other studies,16,17 including those identified in a cross-ancestry 

analysis,17 were well replicated in our database. We captured whole blood-based DNA methylation 

profiles, which can serve as candidate biomarkers for diseases; however, they may not reflect tissue-

specific DNA methylation levels, which may be relevant to specific diseases. MR analysis was used to 

showcase the potential application of our mQTL database; however, MR analysis is based on assumptions 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.04.13.22273848doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.13.22273848
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

that may not be testable.34 Also, DNA methylation can be affected by both genetic and environmental 

factors. We did not attempt to test effect modification by environmental factors in this study. Future 

studies with larger sample sizes in diverse population are needed to replicate and expand our mQTL 

resource. 

 

In conclusion, we have identified millions of cis- and trans-mQTL variant CpG pairs using state-of-the-

art WGS data in conjunction with high-throughput DNA methylation data. We demonstrated the utility of 

this vast mQTL resource by conducting GWAS signal enrichment analyses, colocalization, and MR 

analyses. Our mQTL repository is freely available via the NCBI Molecular QTL Browser for the 

scientific community to study the role of DNA methylation in health and disease.  

 

Methods  

Study Population. The study sample included consenting participants from the FHS Offspring, Third 

Generation, and Omni cohorts. In 1971, the FHS recruited the offspring of participants in the Original 

FHS cohort as well as the spouses of offspring to form the FHS Offspring cohort.35 The children 

of the Offspring cohort participants were recruited to the Third Generation cohort beginning in 2002.36 

Omni cohorts were established in parallel with the Offspring and the Third Generation cohorts. In the 

current investigation, the study sample included 4,126 FHS participants with whole blood derived DNA 

methylation and WGS data; 2,129 participants in the Offspring cohort (exam 8, N=869; exam 9, 

N=1,260), 1,945 participants in the Third Generation cohort (exam 2), and 52 participants in the Omni 

cohort. The FHS protocols and procedures were approved by the Institutional Review Board for Human 

Research at Boston University Medical Center, and all participants provided written informed consent. 

All research was performed in accordance with relevant guidelines/regulations. 
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Study design. A flow chart of the study design is presented in Figure 1. The FHS had two sets of DNA 

methylation data, one set included 3,460 participants assayed with the Illumina BeadChip 450K (450K 

array; 2,009 Offspring exam 8 participants and 1,451 Third Generation exam 2 participants) and the 

second set included 1,806 participants assayed with the Illumina EPIC array (EPIC array; 1,260 Offspring 

exam 9 participants, 494 Third Generation exam 2 participants, and 52 Omni cohort participants). To 

maximize the sample size, as our primary analysis we conducted a pooled analysis of the two data sets. Of 

note, 1,140 Offspring participants were included in both sets, i.e., these participants had 450K array-based 

methylation data from exam 8 and EPIC array-based methylation data from exam 9. In the pooled 

analysis, we selected the EPIC array-based data for these 1,140 participants to avoid any duplication. We 

also conducted array-specific analysis to explore if mQTLs were replicable and to examine mQTLs that 

are unique to the EPIC array. We then examined the top cis- and trans-mQTLs by conducting Gene 

Ontology (GO) pathway analysis and enrichment analysis. We tested cis-mQTLs for colocalization and 

causal association using two-sample MR analysis with CVD traits and COVID-19 severity.   

 

DNA methylation profiling. Preparation of whole blood samples for DNA methylation profiling 

was conducted as detailed previously.15 Briefly, DNA was obtained from whole blood buffy coat samples 

and prepared using bisulfite conversion before whole-genome amplification, fragmentation, 

array hybridization, and single-base pair extension. DNA methylation was then measured in 4,170 FHS 

participants using the Illumina Infinium Human Methylation-450 Beadchip (450K array) in three batches 

(Batch 1, N=499; Batch 2, N=2,149; and Batch 3, N=1,522). Of these, 3,460 participants also had WGS 

data. Additionally, the Illumina MethylationEPIC 850K BeadChip (EPIC array) was used in 1,806 FHS 

participants with WGS. All participants were with missing methylation levels of no more than 5% of 

CpGs (detection P<0.01) and none of them were outliers in a multi-dimensional scaling plot. The CpGs 

have been prefiltered so that all CpGs had < 5% missing values (detection P<0.01). We calculated DNA 

methylation beta values (range 0 to 1) as the ratio of mean methylated and sum of methylated and 

unmethylated probe signal intensities. We used the DASEN method37,38 to normalize the methylation beta 
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values.  

 

Whole Genome Sequencing. WGS of FHS participants was performed by the Broad Institute as part of 

the NHLBI’s TOPMed program.39 Genomic DNA from whole blood samples from 2,194 FHS Offspring 

cohort and 1,582 Third Generation cohort participants was sequenced at >×30 depth of coverage.39 

Genetic variations were identified in a joint calling of all samples by the TOPMed Informatics Resource 

Center at University of Michigan. Centralized read mapping, genotype calling, and quality control were 

also performed at the TOPMed Informatics Research Center. This analysis used genetic variants 

generated from TOPMed Freeze 10a. We analyzed 20,696,115 SNPs and insertion/deletion 

polymorphisms (INDELs) with minor allele count (MAC) ≥10. WGS data acquisition is described on the 

Database of Genotype and Phenotype (dbGaP) website (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000974.v4.p3).   

 

mQTL mapping. The mQTL mapping was conducted separately for DNA methylation data generated 

using the 450K array and the EPIC array. In the analysis for the 450K array data, we calculated residuals 

for methylation beta values obtained within each of the three methylation batches after adjusting for 

relevant technical covariates. Whereas, in the analysis for the EPIC array data, we derived residuals using 

all available samples, also adjusting for technical covariates. The residuals from separate datasets were 

then combined. We then used linear regression models to perform the association analyses between the 

SNPs and the CpGs, adjusting for sex, age, differential leukocyte counts (estimated using the Houseman 

method40), along with the top 15 residual methylation principal components (PCs) and five genetic PCs. 

We chose to adjust for 15 methylation PCs and five genetic PCs because this strategy resulted in the 

highest replication rate between the 450K array data and the EPIC array data. Because of relatedness 

among FHS study participants, linear mixed models were used in mQTL mapping to account for family 

structure. The primary pooled analysis examined 452,567 CpGs that are common to both arrays. The 

450K array-specific analysis analyzed the same 452,567 CpGs and the EPIC array-specific analysis 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.04.13.22273848doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.13.22273848
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

examined 413,524 additional CpGs (i.e., CpGs not included in the pooled analysis). For cis-mQTLs 

(defined as within 1 million base pairs from the CpG site), we considered two-sided P<1e-7 to be 

statistically significant, whereas for trans-mQTLs (defined as located ≥1 million base pairs away from the 

CpG site or on a different chromosome), we considered two-sided P<1e-14 to be statistically significant. 

The P value thresholds were selected for cis-mQTLs based on the Bonferroni correction for the number of 

CpGs tested (i.e., n=452,567) and for trans-mQTLs based on internal discovery-validation experiment 

that gave the highest trans replication rate.  

 

mQTL Replication. To explore consistency between our mQTLs with published databases, we 

examined mQTLs identified in two large studies, one conducted by Bonder et al in 3,841 individuals from 

five Dutch biobanks16 and the other conducted by Hawe et al in 3,799 European individuals and 3,195 

individuals from South Asia.17 Both studies analyzed SNPs based on commercial arrays with imputation. 

Because the number of SNPs analyzed in the two studies (~5 and ~9 million, respectively) was smaller 

than that tested in the present study (~20 million), we examined whether mQTLs identified in the two 

studies were also significant in our database.  

 

Gene Ontology analysis. We tested the over-representation of GO terms based on genes annotated to the 

top 1,000 cis-mQTL variants (for 1,000 CpGs) with Entrez IDs identified by the pooled analysis. The 

default setting in the goana function from the R limma (Linear Models for Microarray and RNA-seq Data) 

package was used to conduct the GO analysis.41 GO terms (Biological Process, Cellular Component, and 

Molecular Function) with false positive rate (FDR) <0.05 were reported. We repeated the same analysis 

for the top 1,000 trans-mQTL variants. 

 

GWAS Enrichment analysis. We analyzed all SNPs with association P<5e-8 included in the NHGRI-EBI 

GWAS Catalog (https://www.ebi.ac.uk/gwas/).7 We identified 243,587 entries for 2,960 GWAS traits. In 

this analysis, we examined all mQTL variants with unique RSIDs in cis or trans at P<1e-7 or P<1e-14, 
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respectively. Fisher’s exact test was used to perform the enrichment analysis for each trait, and traits with 

FDR<0.05 were reported.  

 

Colocalization analysis. We conducted colocalization analysis using the R HyPrColoc package, a highly 

efficient deterministic Bayesian algorithm based on GWAS summary statistics.42 We reported the 

posterior probability of full colocalization (PPFC). Default prior configuration parameters (prior.1=1e-4 

and prior.c=0.02) and threshold of 0.7 for PPFC were used. We extracted cis-mQTL variants (P<1e-7) 

derived from the present pooled analysis for 1,258 CpGs associated with CVD risk factors in the EWAS 

catalog (P<1e-6) including BMI, waist circumference, fasting glucose, systolic blood pressure (systolic 

BP), diastolic blood pressure (diastolic BP), high-density lipoprotein cholesterol (HDL), low-density 

lipoprotein cholesterol (LDL), and triglyceride.6 We examined the colocalization of these CVD risk 

factor-associated CpGs with CVD-related traits including BMI, BP, lipid concentrations, type 2 diabetes, 

and coronary artery disease. Summary statistics for associations between cis-mQTL variants and GWAS 

SNPS for CVD-related traits were obtained from published GWAS databases.27,43-47 

 

Mendelian randomization analysis. To showcase the potential use of the mQTL resource in causal 

inference analyses, we conducted MR analyses to infer causal associations of the CpGs with the 

abovementioned CVD-related traits and COVID-19 severity. In the MR analysis for CVD-related traits, 

we used the same cis-mQTL variants for the 1,258 CVD risk factors. COVID-19-associated CpGs were 

obtained from a recently published EWAS of COVID-19 severity.18 We performed MR analyses using a 

two-sample MR approach.48 We used independent cis-mQTL variants with pair-wise linkage 

disequilibrium (LD) r2 <0.1 as instrumental variables (IVs). Using the TwoSampleMR R package,49 we 

performed the primary analysis using the inverse variance weighted (IVW) method and sensitivity 

analysis using the MR-Egger method. We tested for potential horizontal pleiotropy by examining the MR-

Egger intercept P value. The effect sizes and standard errors for IV-CpG associations were obtained from 

the pooled mQTL analysis. The effect sizes and standard errors for associations between IVs and CVD-
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related traits were obtained from the published large GWAS described above.27,43,44,46,47 We obtained 

effect sizes and standard errors from two GWAS for COVID-19 severity conducted by the COVID-19 

Host Genetics Initiative20 and the Genetics of Mortality in Critical Care (GenOMICC) study.19 The 

COVID-19 Host Genetics Initiative included 8,779 cases (death or hospitalization requiring respiratory 

support due to COVID-19) and 1,001,875 population controls and the GenOMICC study included 7,491 

cases (confirmed COVID-19 requiring continuous cardiorespiratory monitoring in intensive care units) 

and 48,400 population controls. 
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Figure 1. Study design 
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Figure 2. Heritability of DNA methylation explained by the cis- and trans-mQTLs identified in the 
pooled analysis. The total number of cis-mQTLs is 94,362,817 and the total number of trans-mQTLs is 
32,434,987. 
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Table 1. Characteristics of the study population 
 Third Generation cohort Offspring cohort Omni cohort 

N 1,945 2,129 52 
Women, %  52.7 54.7 46.2 
Age, years 46 ± 8 67 ± 9 70 ± 9 

BMI: kg/m2 27.9 ± 5.7 28.2 ± 5.3 27.8 ± 4.9 
Systolic blood pressure, mm Hg 116 ± 14 129 ± 17 126 ± 16 
Diastolic blood pressure, mm Hg 74 ± 9 73 ± 10 68 ± 10 

Hypertension, % 33.9 53.2 42.3 
Fasting glucose, mg/dL 96.7 ± 20.8 106.3 ± 22.1 100.5 ± 12.6 

Diabetes, % 6.0 14.7 9.6 
Triglyceride, mg/dL 112 ± 79.3 119.8 ± 71.9 94.9 ± 43.9 

High density lipoprotein, mg/dL 59.3 ± 17.2 57.3 ± 18.1 65.5 ± 19.3 
Low density lipoprotein, mg/dL 104.5 ± 29.4 104.8 ± 31.1 87.9 ± 28.9 

Mean ± SD 
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Table 2. Top colocalization analysis results for CVD risk factor-associated CpGs 

CpG Chr. Position 
Annotated Gene 

of CpGs 
CVD risk factors associated 
with CpGs in EWAS catalog 

Colocalized 
traits 

Colocalized 
cis-mQTLs PPFC 

PPE     
% 

cg14509967 17 48601772 
LOC404266 

HOXB6 BMI BMI rs9299 1 100 
cg01856529 12 54259306 CBX5 HDL BMI rs4759073 0.9869 74.42 
cg27087650 19 44752538 BCL3 BMI CAD rs62117206 0.889 46.72 
cg05337441 2 21043695 APOB LDL CAD rs668948 0.7996 41.29 
cg03676485 7 2524181 LFNG HDL DBP rs4632959 0.9999 100 
cg14099685 11 47524515 CUGBP1 SBP DBP rs34312154 0.993 57.7 
cg21506299 6 136784086 MAP3K5 BMI HDL rs6924387 0.9978 99.74 
cg27087650 19 44752538 BCL3 BMI HDL rs1531517 0.9961 59.67 
cg27087650 19 44752538 BCL3 BMI LDL rs4803750 0.9989 100 
cg03725309 1 109214962 SARS BMI:SBP:TG LDL rs4970829 0.9962 100 
cg03676485 7 2524181 LFNG HDL SBP rs4632959 0.9999 99.99 
cg20278790 20 59008418 CTSZ WC SBP rs151343 0.9979 100 
cg11554650 6 30685413 PPP1R18 BMI T2D rs2516396 0.9835 100 
cg00973118 16 324569 AXIN1 BMI T2D rs8049265 0.9505 99.33 
cg27087650 19 44752538 BCL3 BMI TG rs4803750 0.9988 98.56 
cg14099685 11 47524515 CUGBP1 SBP TG rs34312154 0.9927 54.52 

The top two colocalization results are presented for each outcome trait of interest (BMI, SBP, DBP, HDL, LDL, TG, T2D, & CAD).  
BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL: high density lipoprotein cholesterol; LDL: low 
density lipoprotein cholesterol; TG: triglyceride; T2D: type 2 diabetes; CAD: coronary artery disease; PPFC: posterior probability of 
colocalization; PPE: proportion of PPFC explained by the listed SNP 
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Table 3. Mendelian randomization analysis for CVD risk factor-associated CpGs (exposure) in relation to 
coronary artery disease (outcome) 

CpG Chr. Position Gene N of IVs Beta SE P 

cg08129017 17 17825345 SREBF1 20 1.81 0.25 5.0e-13 
cg00184953 6 31178444 PSORS1C3 7 -4.86 0.70 4.7e-12 
cg02050917 1 2242131 SKI 13 2.65 0.39 1.4e-11 
cg05337441 2 21043695 APOB 17 1.26 0.19 3.5e-11 
cg21587837 6 31558116 NFKBIL1 33 -2.50 0.41 1.3e-9 
cg03725309 1 109214962 SARS 1 12.59 2.25 2.2e-8 
cg04545296 12 48351459 ZNF641 29 -0.89 0.16 2.6e-8 
cg26562921 16 84726822 USP10 18 1.59 0.29 6.5e-8 
cg20544516 17 17813868 MIR33B;SREBF1 1 7.50 1.43 1.5e-7 
cg21242002 4 3263352 C4orf44 4 -4.93 0.96 2.7e-7 
cg08244301 19 17499941 SLC27A1 4 3.71 0.75 7.1e-7 
cg21053741 6 31558083 NFKBIL1 7 -3.39 0.70 1.2e-6 
cg27087650 19 44752538 BCL3 1 7.36 1.63 6.1e-6 
cg10101600 2 43251603 THADA 2 6.65 1.53 1.4e-5 
cg19224164 4 2964656 GRK4;NOP14 13 -1.67 0.40 2.3e-5 
cg18933331 1 109643795  2 -5.92 1.42 3.0e-5 
cg12467090 1 204490010 PIK3C2B 3 -4.65 1.12 3.3e-5 

IV: instrument variables 
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Table 4. Mendelian randomization analysis examining putatively causal relations of COVID-19 severity-associated CpGs to 
COVID-19 severity 

    
COVID-19 Host Genetics Initiative 

GWAS (release 6) 
GenOMICC study 

CpG CHR. BP Gene N of IVs Beta SE P N of IVs Beta SE P 
cg07796016 1 152779584 LCE1C 19 0.08 0.26 0.76 22 -0.35 0.28 0.20 
cg14859874 1 154238265 UBAP2L 36 0.64 0.21 0.002 37 0.65 0.18 0.0002 
cg17515347 1 159047163 AIM2 13 1.13 0.46 0.02 13 0.34 0.44 0.44 
cg17178900 1 205818956 PM20D1 31 -0.54 0.16 0.0007 31 -0.46 0.17 0.008 
cg14893161 1 205819251 PM20D1 34 -0.69 0.17 6.1e-05 38 -0.54 0.17 0.002 
cg08309069 6 31240651 HLA-C 46 -0.40 0.19 0.04 45 0.31 0.28 0.28 
cg05030953 6 31241000 HLA-C 50 -0.24 0.15 0.10 43 0.47 0.18 0.01 
cg02872426 6 110736772 DDO 28 0.77 0.27 0.004 27 0.39 0.28 0.16 
cg12682382 8 74787918 UBE2W 28 0.18 0.17 0.29 27 0.03 0.19 0.88 
cg13571460 9 124989337 LHX6 17 0.10 0.35 0.78 18 -0.21 0.33 0.53 
IV: instrument variables 
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