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Summary 

Background   In response to the challenge to rapidly identify treatment options for COVID-19, 

several studies reported that statins, as a drug class, reduce mortality in these patients. Here 

we explored the possibility that different statins might differ in their ability to exert protective 

effects based on computational predictions.  

Methods  A Bayesian network tool was used to predict drugs that shift the host transcriptomic 

response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 

RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from 

cultured human cells and organoids infected with SARS-CoV-2, with a total of 2,436 drugs 

investigated. Top drug predictions included statins, which were tested in Vero E6 cells infected 

with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. A 

database containing over 4,000 COVID-19 patients on statins was also analyzed to determine 

mortality risk in patients prescribed specific statins versus untreated matched controls.  

Findings  Simvastatin was among the most highly predicted compounds (14/14 datasets) and 

five other statins were predicted to be active in > 50% of analyses. In vitro testing of SARS-

CoV-2 infected cells revealed simvastatin to be a potent inhibitor whereas most other statins 

were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production 
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in endothelial cells. Analysis of the clinical database revealed that reduced mortality risk was 

only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and 

atorvastatin. 

Interpretation  Different statins may differ in their ability to sustain the lives of COVID-19 

patients despite having a shared target and lipid-modifying mechanism of action. These findings 

highlight the value of target-agnostic drug prediction coupled with patient databases to identify 

and validate non-obvious mechanisms and drug repurposing opportunities. 

Funding  DARPA, Wyss Institute, Hess Research Fund, UCSF Program for Breakthrough 

Biomedical Research, and NIH 

 

Introduction  

The emergence of the COVID-19 pandemic presented an urgent need for new and effective 

therapeutics, and repurposing of approved drugs with known safety profiles offered a path to 

identify viable treatment options. Recent retrospective studies by members of our group and 

others have shown that COVID-19 patients taking drugs from one of the most prescribed drug 

classes in the world – statins – exhibit a reduced mortality rate, but these studies pooled all 

statin compounds (e.g., lovastatin, simvastatin, atorvastatin, etc.) together in their analyses.1–3  

All statins are prescribed to lower lipid and cholesterol levels, and share a common mechanism 

involving inhibition of HMG-CoA reductase (HMGCR); however, statins are also known to have 

anti-inflammatory and immunomodulatory properties, through mechanisms that involve several 

pathways,2–7 potentially by upregulating heme oxygenase-1 (HO-1).4 In addition, while three 

retrospective studies that pooled all statins demonstrated a significant reduction in mortality risk, 

no improvement in outcomes could be detected in another study.7 This raises the possibility that 

different statins might differ in their ability to reduce morbidity and mortality in COVID-19 

patients, which could influence the results of studies based on which drugs were included. 

Moreover, if this were true, it would be important information to distribute widely because it 
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could influence clinical decision-making with regard to statin selection during the current 

COVID-19 crisis. 

Throughout the pandemic, multiple scientific teams predicted that existing drugs could be 

repurposed as potential COVID-19 therapeutics computationally through the application of high 

throughput in silico screens based on artificial intelligence, network diffusion, or network 

proximity algorithms using the human interactome, SARS-CoV-2 targets, drug targets, docking 

structures, or biomedical literature as algorithmic inputs.8–10 These screens proposed hundreds 

of potential therapeutic options and led to further testing in SARS-CoV-2 infected culture 

systems and animal models.8 However, while in vitro and pre-clinical testing have offered 

promising predictions, clinical validation and translation of predicted compounds are much more 

challenging and few, if any, of these drugs proposed to be repurposed for COVID-19 have 

demonstrated clinical efficacy. Thus, there is a need for combining improved drug prediction 

capabilities, despite complex and often inadequately understood biology, with real world 

evidence, such as electronic health records (EHRs),1,11 to better inform which predicted 

compounds should advance toward clinical evaluation. 

With drug repurposing in mind, we used a Network Model for Causality-Aware Discovery 

(NeMoCAD) computational tool based on Bayesian statistical network modeling12 to analyze 

transcriptomics signatures in tissue samples obtained from COVID-19 positive patients or 

SARS-CoV-2 infected human cell or organoid cultures to identify FDA-approved drugs that shift 

the host transcriptomic response to SARS-CoV-2 towards a healthy state. This was 

accomplished without an a priori defined drug target or mechanism of action. This analysis 

revealed that a subset of commonly administered statins were among the drugs most frequently 

predicted to revert the genome-wide gene expression profile of COVID-19 samples to that of a 

healthy state.  While experimental in vitro studies confirmed that the drug most frequently 

predicted to reverse the COVID-19 state ⎯ simvastatin ⎯ potently inhibited infection of Vero6 
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cells by SARS-CoV2 in vitro, other statins were less effective, suggesting that different statins 

might vary in their ability to protect COVID-19 patients. Furthermore, despite limited chemical 

diversity, statins induce a range of side effects13 suggesting the potential for distinct biological 

activities outside their known shared HMGCR mechanism, which potentially could be harnessed 

for drug repurposing. To explore this possibility in a clinical setting, a retrospective analysis was 

carried out using a database containing EHRs of over 490,000 COVID-19 patients, more than 

4,000 of which are actively taking statins. This analysis demonstrated that use of only a subset 

of statins, including simvastatin and atorvastatin, correlated with decreased morbidity and 

increased survival in COVID-19 patients, confirming hidden divergent activities within a 

seemingly homogeneous drug class. 

Methods 

Compound predictions 

The drug prediction software, NeMoCAD (Network Modeling for Causal Discovery), was used to 

predict compounds that would mimic the shift from a COVID-19-positive state to a control 

state.12 NeMoCAD is a drug repurposing algorithm that performs correlation analysis of 

transcriptional gene signatures and a Bayesian statistical analysis of a network comprised of 

drug-gene and drug-drug interactions to identify compounds capable of changing a 

transcriptional signature indicative of disease to a healthy state.12 Using 14 publicly available 

transcriptomic datasets derived from human patients, tissue samples, organoids, and cells 

(Table 1),14–20 NeMoCAD identified transcriptome-wide differential expression profiles between 

the control and COVID-19 states for each dataset and defined a target normalization signature 

to mimic, which would shift the transcriptome from a COVID-19 disease to control state 

(Supplemental Methods). To understand underlying differences in LINCS drug-gene 

probability signatures that could influence drug predictions, drugs were compared by principal 

component analysis using the packages ggfortify and ggplot2 (R version 4.0.5).  
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Viral infection of Vero6 cells with SARS-CoV-2 virus 

All work with native SARS-CoV-2 virus was performed in a BSL3 laboratory and approved by 

our Institutional Biosafety Committee. All drug screens to assess SARS-CoV-2 inhibition and 

cytotoxicity were performed with Vero E6 (Vero6) cells (ATCC# CRL 1586) using published 

methods (Supplemental Methods).21 A curve fitting procedure was used to determine IC50 and 

CC50 values (Supplemental Methods). 

Viral infection & host response of HUVECs with OC43 virus 

To measure the impact of selected drugs on HCoV-OC43 infection, 96-well plates seeded with 

human umbilical vein endothelial cells (HUVECs) were infected with HCoV-OC43 and treated 

with drugs (Supplemental Methods). Viral load, Hoechst fluorescence, and IP-10 

measurements were measured and normalized to vehicle control samples for each assay. Each 

group was compared to vehicle controls using the Brown-Forsythe and Welch ANOVA tests and 

corrected for multiple comparisons using a Dunnett T3 test. 

Human patient database analyses  

The study was approved by the University of California, San Francisco, institutional review 

board. Data from the Cerner Real World Data COVID-19 deidentified EHR database containing 

records of 490,373 patients with a diagnosis of COVID-19 or COVID-19 exposure across 87 

health care centers were analyzed. The following statins were included: atorvastatin, fluvastatin, 

lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin. Primary outcome was death 

after the onset of COVID-19. Inclusion criteria, considered comorbidities, and statistical analysis 

are detailed in the Supplemental Methods. 

Visualizations 

Plotting was performed in Prism 9 (GraphPad Software LLC) or in R versions 3.0.2 and 4.0.5. 

Schematic in Figure 1 was made in Biorender. 
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Role of the funding source 

Funding sources were not involved in study design, in the collection, analysis, and 

interpretation of data, or in the writing of the report.  

 

Results 

The NeMoCAD gene network analysis tool12 was used to identify FDA-approved drugs 

predicted to normalize the COVID-19 gene expression profile based on transcriptomic 

signatures of human cells or organoids infected with SARS-CoV-2 as well as cells or tissues 

obtained from COVID-19 patients or healthy control subjects. NeMoCAD identified gene 

changes across the transcriptome, compared them with gene expression changes induced by 

approved drugs in existing databases (e.g., LINCS, KEGG, TRRUST, CTD), and then prioritized 

compounds based on their ability to shift the disease transcriptomic signature state back to a 

healthy state (Figure 1A). COVID-19 normalizing drugs were predicted based on 14 differential 

RNA-seq expression datasets (COVID-19 vs. healthy) from 12 independent transcriptomics 

studies (Table 1). Across all datasets, NeMoCAD prioritized a different number of drugs for 

each dataset (Table 1), with 172 drugs representing the intersection of all these results and 

therefore shared drugs relevant to all samples (Table 2). On average, each of the 2,436 drugs 

we investigated was predicted 3.2 times across the 14 differential expression datasets, with 

1,477 drugs not predicted to normalize any disease signature. Across all compounds predicted 

to normalize at least one disease signature, each drug was predicted an average of 8.1 times 

across datasets.  

Surprisingly, we found multiple statins that inhibit HMGCR to be predicted more frequently than 

expected by the average, with simvastatin predicted 14/14 times, pravastatin 13/14 times, and 

lovastatin 12/14 times (Figure 1B). Of the 9 statins included in the NIH LINCS program 
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database, 8 were in the top 25% of drugs predicted for at least one dataset investigated (Figure 

1C). Across all datasets, simvastatin and fluvastatin were most frequently among the top 25% of 

predicted compounds.   

We further assessed our predictions to understand how different types of input data might 

impact the types of compounds predicted. Stratification of the input datasets by sample source 

(COVID patient, autopsy sample, or cell culture/organoid) and tissue origin (lung/bronchi or 

other) revealed that simvastatin is frequently predicted across all dataset types (Figure 1D). In 

addition, atorvastatin is often predicted when cell culture and organoid samples are used as 

data inputs, whereas fluvastatin is commonly predicted in human autopsy samples, and 

lovastatin and pravastatin are predicted at an intermediate frequency using patient input data. 

Specific investigation of tissue origin revealed that simvastatin and fluvastatin are most 

frequently predicted when input datasets are derived from lung or bronchi tissue (Figure 1D). 

Simvastatin, atorvastatin, and lovastatin are also frequently predicted using samples from other 

non-lung tissues, including nasopharyngeal swabs, blood, liver, pancreas, and cardiac cells. 

Based on drug predictions, statins were tested as part of a larger drug screening program in 

SARS-CoV-2-infected Vero6 cells. Within the statin drug class, simvastatin most potently 

inhibited infection with a half maximal inhibitory concentration (IC50) of 0.8 μM and almost a 10-

fold higher 50% cytotoxic concentration (CC50 = 6.5 μM) (Figure 1E and Figure 2A). The other 

statins were either unable to significantly inhibit SARS-CoV-2 infection in Vero6 cells or they 

were found to be toxic at doses required to see inhibitory effects (Figure 1E and Supplemental 

Figure S1). It is important to note that discordance observed between predictions made by 

NeMoCAD and SARS-CoV-2 inhibition in Vero6 cells is expected since NeMoCAD predicts 

drugs that will affect host response to infection, not necessarily directly act on the virus to inhibit 

infection (e.g., reduce entry or replication). However, we also know that viral replication induces 

a host response and the transcriptional outcome of infection will always depend on interactions 
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occurring within the virus-host system.22,23 Therefore, we cannot completely decouple the 

effects of predicted drugs on viral inhibition versus more conventional host measurements, such 

as cytokine levels. Furthermore, we found that simvastatin also inhibited infection of HUVECs 

by a related coronavirus (OC43) (Figure 2C) and potently reduced cytokine (IP-10) production 

without cytotoxic effects (Supplemental Figure S2). Similar results were observed with IL-6 

and GM-CSF although the virus induced levels of these cytokines were variable. Thus, this 

particular statin appears to exhibit direct antiviral activity in addition to the HMGCR activity it 

shares with the other stains.  

This finding that statins might differ in their ability to suppress responses to SARS-CoV-2 

infection and that these effects could be independent of their common lipid lowering activity 

induced us to explore whether different statins also exhibit disparate activities in COVID-19 

patients. We used the Cerner Real World Data COVID-19 deidentified EHR database to assess 

the effects of various statins on the survival of COVID-19 patients who were prescribed these 

medications. This large database represents a diverse population of patients diagnosed with 

COVID-19 from January to September 2020 with a duration of follow-up of as long as 8 months 

in 87 health centers across the US. Among 70,308 eligible patients, we identified 4,330 patients 

with who were prescribed atorvastatin, lovastatin, pravastatin, rosuvastatin, or simvastatin 

(Supplemental Figure S3). There were no patients who were prescribed fluvastatin in this 

database. The remaining 65,978 patients had no history of statin exposure (control patients). 

Cohort characteristics are shown in Table 3 and Table 4.  As disease severity could vary 

between the medication exposed and unexposed groups, we accounted for the type of 

encounter (Urgent care, ER, Admission for Observation, or Inpatient) at the time of COVID 

diagnosis and found that after matching, there was adequate balance in the encounter type 

between the compared medication exposed and unexposed groups, with the absolute value of 

standardized mean difference (SMD) of less than 0.1 for encounter type (Supplemental 
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Figures S4 and S5). Overall, the propensity score distributions and SMDs of all matched 

covariates between treated and control groups before and after matching showed adequate 

balance between groups after matching, with absolute SMD values of less than 0.1 for all 

covariates, including demographics, heart diseases and other COVID-19 comorbidities, as well 

as conditions for which statins are prescribed (Supplemental Figures S4 and S5).    

Importantly, among individual statins, we found that only treatment with atorvastatin, 

rosuvastatin, or simvastatin was associated with a statistically significant decrease in the 

relative risk of death in statin-treated patients compared to matched controls (Table 5). The 

mortality rate among atorvastatin-treated patients was 16.1% (431 of 2676) versus 20.4% (545 

of 2676) among matched untreated control patients, with a reduction of 14% in the RR (0.86 

[95% CI, 0.83-0.93]; adjusted p-value�=�6.24E-05)(Table 5 and Supplementary Table S1). 

The mortality rate among rosuvastatin-treated patients was 13.1% (53 of 404) and 21.0% (850 

of 4040) among matched untreated control patients, with a reduction of 41% in the RR (0.59 

[95% CI, 0.45-0.78]; adjusted p-value �=�9.61E-05)(Table 5 and Supplementary Table S4).  

The mortality rate among simvastatin-treated patients was 19.5% (153 of 784) and 23.3% (914 

of 3920) among matched untreated control patients, with a reduction of 17% in the RR (0.83 

[95% CI, 0.70-0,97]; adjusted p-value �=�0.02)(Table 5 and Supplementary Table S5).  

 

Discussion 

Taken together, these data show that in silico prediction based on transcriptomics datasets from 

human patients, tissues, and cells combined with clinical database analyses is a useful 

approach for identifying and validating non-obvious effects of FDA-approved drugs, thereby 

enabling rapid repurposing of these compounds. With multiple lines of evidence coming 

together, we found that clinical observations cannot always be explained by experimental 
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biological studies, and vice versa. However, the goal here is to look at multiple lines of evidence 

and we believe that this is one of the strengths of this work.  

Past retrospective studies suggested that patients prescribed drugs within the statin class have 

an overall lower risk of mortality from COVID-19,1,3,5 although this was not observed in one 

study.7  Predictions by NeMoCAD suggested that statins may differ in their ability to induce a 

shift from COVID-19 to healthy states, which could in part explain differences in results between 

these studies if the statin types differed.1–3,7 Specifically, NeMoCAD predicted that simvastatin, 

fluvastatin, and atorvastatin were the most likely statins to normalize the COVID-19 gene 

expression profile. Indeed, when we analyzed mortality in a large EHR database of patients with 

COVID-19, we confirmed that there are differences in the mortality risks of COVID-19 patients 

prescribed the different statins compared to their respective matched control cohort, with 

simvastatin, atorvastatin, and rosuvastatin associated with a significant reduction in the relative 

risk of death. We were unable to find a statistically significant difference in mortality risk among 

patients prescribed lovastatin or pravastatin represented in our EHR database compared to their 

respective matched control cohorts.  Unfortunately, there were no patients who took fluvastatin 

and only 13 who took pravastatin in our EHR database, so we cannot make any conclusions 

about the protective effects of these compounds. Exploring an EHR database with a greater 

number of patients prescribed these statins in the future should allow for greater insights into 

any differences in mortality risk associated with these particular drugs. 

Simvastatin and atorvastatin were predicted to be active by NeMoCAD, while rosuvastatin was 

not. Assessment of the LINCS data that defines the probability of each drug affecting specific 

genes combined with principal component analysis (PCA) also revealed closer clustering 

amongst simvastatin, lovastatin, and atorvastatin, which is consistent with their frequent co-

prediction, whereas rosuvastatin is more distant (Figure 3A). Global analysis of the mortality-

reducing statins also shows greater similarity in LINCS probability distribution between 
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simvastatin and atorvastatin, whereas a wider probability distribution is observed for 

rosuvastatin (Figure 3B), and a detailed comparison of the shared top gene targets (>90th 

percentile) between these three statins similarly revealed that the most genes are shared 

between simvastatin and atorvastatin (Figure 3C). Therefore, these two statins may act in a 

more similar manner than rosuvastatin, which could influence the COVID-19 response through 

alternative (e.g., post-transcriptomic mechanisms) that would not be detected using our 

transcriptomics-based computational approach.  

Collectively, our results suggest that statins exhibit divergent effects on the host response to 

SARS-CoV-2 infection despite a shared annotated target and common mechanism for treating 

dyslipidemia. In addition to their host-modulating effects, earlier work indicates that patients on 

statins seem to have improved outcomes following bacterial infection, an effect which is 

especially pronounced with respiratory tract infections, including pneumonia.24 However, meta-

analysis of these studies reveals mixed results, again potentially suggesting that statins do not 

act uniformly as infection modulators. These protective effects of statins against infection may 

be due to their well-documented anti-inflammatory and immunomodulatory properties.25,26 

Although originally developed to lower serum cholesterol, accumulating evidence suggests that 

statins have strong anti-inflammatory effects that contribute to their beneficial effects in patients 

experiencing vascular disease like atherosclerosis.25  Furthermore, statins may upregulate 

heme oxygenase-1 (HO-1),4 which is a central modulator of the immune system, effecting anti-

inflammation and anti-oxidation, which could prevent the severe “cytokine storm” inflammatory 

response that is central to morbidity and mortality in COVID-19 patients.27 By upregulating HO-

1, statins, including simvastatin, lovastatin, atorvastatin, or rosuvastatin, also can increase the 

production of carbon monoxide and bilirubin,6 both of which have immunomodulatory, 

antioxidative and anti-inflammatory characteristics. In addition, statins may reduce the likelihood 

of graft-versus-host disease by inhibiting antigen presentation and shifting pro-inflammatory 
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responses toward anti-inflammatory responses.26  We do not know precisely why certain statins 

appear to have superior disease-modifying activity than others. Unlike databases such as 

DrugBank that outline the known mechanisms of action, NeMoCAD surveys all possible 

interactions within the transcriptome and thus more work is needed to understand the clinical 

targets. However, longitudinal studies of the transcriptome in COVID-19 patients prescribed 

diverse statins could help clarify the mechanisms involved in these responses. 

Despite strong evidence of their host modulating properties, there are also preliminary 

indications that some statins have more direct antibacterial and antiviral capabilities. Our in vitro 

studies with simvastatin suggest that at least this statin type can exhibit direct antiviral activity 

against both SARS-CoV-2 and the common cold coronavirus OC43, independently of its known 

lipid-lowering action. Simvastatin has previously been shown to exhibit superior antibacterial 

effects compared to fluvastatin and pravastatin, including against S. pneumoniae and M. 

catarrhalis infections.24,28 In the case of bacterial infection, it has been suggested that the 

activity of simvastatin is linked to its hydrophobicity, which may perturb the bacterial cell 

membrane compared to the more hydrophilic fluvastatin and pravastatin.28 Critically, the pro-

drug form of simvastatin, tested in our in vitro assays, is rapidly metabolized in vivo and 

therefore only a fraction of the total dose is maintained in pro-drug form. Therefore, future work 

should investigate simvastatin combined with an inhibitor of cytochrome P450, a hemeprotein 

that plays a key role in the metabolism of drugs. By limiting drug metabolism, it would be 

possible to better assess if the simvastatin pro-drug exhibits anti-viral effects in vivo. 

Many of the potential COVID-19 therapeutics identified using past computational drug 

repurposing strategies failed when tested either using in vitro culture models, animals, or in the 

clinic. In fact, very preliminary in vivo studies by our team showed no effect of simvastatin on 

infection nor host response in SARS-CoV-2-infected hamsters and mice, despite attaining 

plasma levels that were greater than the IC50 for inhibition of infection and host response in 
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vitro. These contrasting results highlight the challenges involved in conducting translational 

investigation from in silico predictions to in vitro, pre-clinical, and clinical studies. Leveraging 

large patient databases to validate drugs predicted by computational approaches makes it 

possible to estimate how potential repurposed drugs may perform in infected patients and 

clinical sub-populations who regularly take these medications for other diseases or disorders. 

Importantly, in these databases we cannot completely rule out a possibility of unaccounted 

confounders correlated both with the drug and mortality, nor can we be confident that the 

medical histories of all patients are represented accurately as some information may be 

incomplete. Moreover, the retrospective nature of EHR analysis only allows us to identify an 

association between statin treatment and COVID-19 mortality, but not causal effects. Therefore, 

we envision that the process of generating in silico predictions and validating in databases will 

be a means to further narrow drug candidates and identify a more curated collection of 

therapeutics for testing in randomized control trials. Considering the continuing challenges with 

vaccine distribution and uptake, as well as the vulnerability of older populations to COVID-19, 

understanding non-obvious effects of approved drugs on patient mortality from infectious 

disease will be useful for combating this pandemic as well as ones that are likely to emerge in 

the future. 

 Finally, our findings suggest that repurposing efforts for COVID-19 patients may require 

consideration of drug-specific effects rather than taking reported drug targets and mechanisms 

at face value. Indeed, we believe that our approach, which counterpoints computational 

network-level analysis of biological interactions with in vitro exploratory screening and 

retrospective clinical evidence analysis, may form the basis of an altogether more powerful 

repurposing strategy in a pandemic scenario.  
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Figure Legends 

Figure 1. Simvastatin is identified by gene network-based predictions as the most likely 

drug in its category to reverse COVID-19 transcriptional profiles and potently inhibits 

SARS-CoV-2 in vitro. (a) The NeMoCAD gene network analysis tool is a drug repurposing 

algorithm that uses Bayesian statistical network analysis combined with data from publicly 

available datasets (e.g., LINCS, KEGG, CTD, TRRUST) for reference transcriptional signatures 

and to define regulatory network architecture. The algorithm identifies transcriptome-wide 

differential expression profiles between two biological states (e.g., healthy vs. diseased) in 

experimental or published transcriptomic datasets and defines the target normalization 

signature, i.e., the subset of genes that would need to reverse their expression to revert one 

state to the other.  The output of NeMoCAD includes correlation and causation predictions for 

numerous chemical compounds and approved drugs in the LINCS database based on their 

ability to reverse the differential expression profile of interest. (b) Statins are predicted to shift 

the COVID-19 state to a healthy state, with simvastatin predicted for all datasets analyzed (14). 

Rosuvastatin was the only statin not predicted (n.p.) for any COVID-19 transcriptomics 

signatures. (c) 8 of 9 statins in the LINCS database were in the top 25% of drugs predicted for 

at least one dataset investigated. (d) Frequency of prediction for each statin when input 

datasets are stratified by sample source and tissue origin. Prediction frequency is normalized by 

the number of input datasets from each sample source and tissue origin. (e) Inhibitory and 

cytotoxicity parameters from SARS-CoV-2 infection of Vero6 wild-type or GFP-expressing cells 

for a subset of statins contained in the LINCS database. Mean parameters for each statin are 

derived from two independent experiments.  

 

Figure 2. Effects of simvastatin on coronavirus infections in vitro. (a) Dose-response 

curves demonstrating the ability for simvastatin to inhibit GFP-SARS-CoV-2 infection (MOI=0.1) 

in a dose-dependent manner in Vero6 cells. (b) Simvastatin also inhibits the human 
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coronavirus, OC43, in HUVEC cells when added at 1 μM or 5 μM concentrations (***p<0.001, 

**p<0.01). Error bars represent average +/- s.d.; repeated in n=2 independent biological 

experiments displayed in light (experiment 1) and dark (experiment 2) shaded data points. 

 

Figure 3. Effects of prescribed statins on COVID-19 patients and comparison of LINCS 

drug-gene interaction probability data for each statin. (a) PCA plots of drug-gene interaction 

data for each statin reveals clustering of simvastatin, atorvastatin, and lovastatin when 

assessed across all genes in this dataset. (b) Distribution of LINCS drug-gene probabilities for 

statins that reduce mortality in patients. (c) Simvastatin, atorvastatin, and rosuvastatin share top 

gene targets (>90th percentile), with the most shared between atorvastatin and simvastatin.  
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Table 1. RNA-sequencing datasets used as inputs for network-based drug predictions. 
 

Dataset 
Source 

Public 
Identifier/Link 

Sample Source Tissue/Cell Type 
Conditions assessed 

for predictions 
COVID-19 

samples 
Control 
samples 

Drugs 
predicted 

Greninger17 GSE152075 
Nasal swab samples 

from COVID patients 
Nasopharyngeal COVID > healthy 430 54 377 

Mertz18 GSE151764 
Autopsy samples from 

COVID patients 
Lung COVID > healthy 16 6 623 

Mertz18 GSE151764 
Autopsy samples from 

COVID patients 
Lung 

COVID (patients w/ 
normal BMI) > healthy 

2 6 647 

Mertz18 GSE151764 
Autopsy samples from 

COVID patients 
Lung 

COVID (patients w/ 
high BMI) > healthy 

14 6 571 

OSF https://osf.io/7nrd3/ COVID patients Blood PBMC COVID > healthy 3 3 330 

OSF https://osf.io/7nrd3/ COVID patients 
Bronchoalveolar 

lavage fluid 
COVID > healthy 32 54 436 

Redmond16 GSE151803 Organoids Liver 
SARS-CoV-2 infected > 

mock treated 
6 6 810 

Redmond16 GSE151803 Organoids Pancreas 
SARS-CoV-2 infected > 

mock treated 
3 3 393 

Svendsen19 GSE150392 
Human induced 

pluripotent stem cell-
derived cells 

Cardiomyocytes 
SARS-CoV-2 infected > 

mock treated 
3 3 716 

Takayama14 GSE150819 Organoids 
Bronchial epithelial 

cells 
SARS-CoV-2 infected > 

mock treated 
3 3 719 

tenOever20 GSE147507 
Cultured cells infected 

with SARS-CoV-2 
A549 

SARS-CoV-2 infected > 
mock treated 

3 3 480 

tenOever20 GSE147507 
Autopsy samples 
COVID patients 

Lung COVID > healthy 2 2 576 

tenOever20 GSE147507 & 
GSE200074 

Autopsy samples 
COVID patients 

Lung COVID > healthy 2 2 711 

Ting15 GSE150316 
Autopsy samples from 

COVID patients 
Lung COVID > healthy 52 5 384 
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Table 2. Drugs predicted 14 times out of the 14 state changes investigated. 
 
3,3'-diindolylmethane ciglitazone fenofibrate mifepristone sirolimus 
4-hydroxy-2-nonenal cisplatin fenretinide morin sorafenib 
acetaldehyde clodronic-acid fluorouracil naringenin sulfasalazine 
acetylcysteine clofibrate fluoxetine niclosamide sulindac 
aflatoxin-b1 clozapine flutamide nicotine tacrolimus 
AICA-ribonucleotide colchicine folic-acid nimesulide tamibarotene 
alitretinoin colforsin fulvestrant norepinephrine tamoxifen 
alpha-tocopherol corticosterone fumonisin-b1 ochratoxin-a testosterone 
amiodarone coumestrol furan olanzapine tetrachloroethylene 
apigenin curcumin gefitinib omeprazole tetracycline 
artesunate cycloheximide gemcitabine orphenadrine thalidomide 
ascorbic-acid cyclophosphamide genistein oxidopamine thapsigargin 
aspirin cytarabine glafenine paclitaxel theophylline 
azacitidine dactinomycin glucosamine panobinostat topotecan 
azathioprine dasatinib haloperidol pentachlorophenol tretinoin 
belinostat daunorubicin hydralazine phenethyl-isothiocyanate tributyltin 
benazepril decitabine ibuprofen phenytoin trichloroethylene 
benzo(a)pyrene deguelin ifosfamide pifithrin trichostatin-a 
bezafibrate dexamethasone indole-3-carbinol pilocarpine triclosan 
bisphenol-a dichloroacetic-acid ionomycin pirinixic-acid troglitazone 
bortezomib diclofenac irinotecan piroxicam tunicamycin 
bucladesine dieldrin isotretinoin progesterone tyrphostin-AG-1478 
bufalin diethylstilbestrol leflunomide propylthiouracil urethane 
buspirone dimethylnitrosamine levofloxacin pterostilbene valdecoxib 
buthionine-sulfoximine dinoprost lithium-chloride pyrazolanthrone valproic-acid 
cadmium-chloride disulfiram losartan quercetin vancomycin 
caffeine doxorubicin luteolin ranitidine verapamil 
calcitriol ellagic-acid melatonin reserpine vincristine 
camptothecin emodin mercaptopurine resveratrol vorinostat 
capsaicin entinostat metformin rimonabant wortmannin 
carbamazepine estradiol methapyrilene ritonavir zearalenone 
carbon-tetrachloride estriol methimazole rosiglitazone zidovudine 
catechin ethinyl-estradiol methotrexate rotenone 

 
celecoxib etoposide methoxychlor sertraline 

 
chlorpromazine famotidine mevalonic-acid simvastatin 
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Table 3. Cohort characteristics before propensity score matching (PSM), reflecting differing percentages of 
characteristics (demographics) with standardized mean differences (SMD) for those prescribed a specific 
statin compared to the control cohort not treated with a statin. 
 

Characteristic No 
Statins 

Atorvastatin SMD Lovastatin SMD Pitavastatin SMD Pravastatin SMD Rosuvastatin SMD Simvastatin SMD 

N 65978 2676 
 

70 
 

13 
 

383 
 

404 
 

784 
 

Age (mean 
(SD)) 

47.3 
(18.5) 

67.6 (13.4) -1.26 70.9 (11.5) -1.54 69.3 (14.6) -1.32 70.3 (11.9) -1.48 67.4 (12.4) -1.28 70.4 (13.1) -1.44 

Age (%) 
             

18-39 
25902 
(39.3) 

64 (2.4) 1.02 0 (0.0) 1.14 1 (7.7) -0.80 5 (1.3) 1.07 7 (1.7) 1.05 15 (1.9) 1.04 

40-49 
11601 
(17.6) 

180 (6.7) -0.34 4 (5.7) -0.38 0 (0.0) 0.65 15 (3.9) -0.45 31 (7.7) -0.30 47 (6.0) -0.37 

50-59 
11289 
(17.1) 

490 (18.3) -0.03 8 (11.4) 0.16 2 (15.4) 0.05 48 (12.5) 0.13 63 (15.6) 0.04 90 (11.5) 0.16 

60-69 
7987 
(12.1) 

700 (26.2) -0.36 19 (27.1) -0.39 4 (30.8) -0.47 97 (25.3) -0.34 110 (27.2) -0.39 189 (24.1) -0.32 

70-79 
4948 
(7.5) 

658 (24.6) 0.48 21 (30.0) 0.60 0 (0.0) 0.40 129 (33.7) 0.68 129 (31.9) 0.65 222 (28.3) 0.56 

80+ 
4251 
(6.4) 

584 (21.8) 0.45 18 (25.7) 0.54 6 (46.2) 1.01 89 (23.2) 0.49 64 (15.8) 0.30 221 (28.2) 0.60 

Sex (%) 
             

Female 
34842 
(52.8) 

1284 (48.0) 0.10 36 (51.4) 0.03 7 (53.8) -0.02 175 (45.7) 0.14 191 (47.3) 0.11 359 (45.8) 0.14 

Male 
31136 
(47.2) 

1392 (52.0) -0.10 34 (48.6) -0.03 6 (46.2) 0.02 208 (54.3) -0.14 213 (52.7) -0.11 425 (54.2) -0.14 

Race (%) 
             

American 
Indian or 

Alaska Native 

1425 
(2.2) 

47 (1.8) 0.03 0 (0.0) 0.21 0 (0.0) 0.21 5 (1.3) 0.07 5 (1.2) 0.07 11 (1.4) 0.06 

Asian or 
Pacific Islander 

1461 
(2.2) 

77 (2.9) -0.04 5 (7.1) -0.24 0 (0.0) 0.21 11 (2.9) -0.04 9 (2.2) 0.00 34 (4.3) -0.12 

Black or 
African 

American 

12631 
(19.1) 

432 (16.1) 0.08 13 (18.6) 0.02 2 (15.4) 0.10 102 (26.6) -0.18 56 (13.9) 0.14 131 (16.7) 0.06 

Mixed Racial 
Group 

270 
(0.4) 

9 (0.3) 0.01 2 (2.9) -0.19 0 (0.0) 0.09 1 (0.3) 0.03 0 (0.0) 0.09 1 (0.1) 0.05 

Other Racial 
Group 

9378 
(14.2) 

271 (10.1) 0.13 7 (10.0) 0.13 0 (0.0) 0.58 27 (7.0) -0.23 26 (6.4) -0.26 74 (9.4) -0.15 

White 
40813 
(61.9) 

1840 (68.8) -0.15 43 (61.4) 0.01 11 (84.6) -0.53 237 (61.9) <0.001 308 (76.2) -0.32 533 (68.0) -0.13 

Ethnicity (%) 
             

Hispanic or 
Latino 

30158 
(45.7) 

1086 (40.6) 0.10 18 (25.7) 0.43 5 (38.5) 0.15 105 (27.4) 0.39 174 (43.1) 0.05 297 (37.9) 0.16 

Not Hispanic 
or Latino 

35820 
(54.3) 

1590 (59.4) -0.10 52 (74.3) -0.43 8 (61.5) -0.15 278 (72.6) -0.39 230 (56.9) -0.05 487 (62.1) -0.16 

Encounter 
Type (%)              

Admitted for 
Observation 

2272 
(3.4) 

176 (6.6) -0.14 4 (5.7) -0.11 0 (0.0) 0.27 24 (6.3) -0.13 28 (6.9) -0.16 37 (4.7) -0.07 

Emergency 
24603 
(37.3) 

368 (13.8) 1.03 12 (17.1) 0.92 2 (15.4) 0.98 53 (13.8) 1.03 67 (16.6) 0.94 90 (11.5) -1.07 

Inpatient 
38087 
(57.7) 

2127 (79.5) -0.95 54 (77.1) -0.88 11 (84.6) -1.11 305 (79.6) -0.95 304 (75.2) -0.83 655 (83.5) 1.11 

Urgent care 
encounter 

1016 
(1.5) 

5 (0.2) 0.15 0 (0.0) 0.18 0 (0.0) 0.18 1 (0.3) 0.14 5 (1.2) 0.03 2 (0.3) 0.14 
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Table 4. Cohort characteristics before propensity score matching (PSM), reflecting differing percentages of 
characteristics (conditions, and outcome of death) with standardized mean differences (SMD) for those 
prescribed a specific statin compared to the control cohort not treated with a statin. 

Characteristic No 
Statins 

Atorvastatin SMD Lovastatin SMD Pitavastatin SMD Pravastatin SMD Rosuvastatin SMD Simvastatin SMD 

N 65978 2676 
 

70 
 

13 
 

383 
 

404 
 

784 
 

Condition (%) 
             

Obese 
23567 
(35.7) 

1151 (43.0) -0.15 24 (34.3) 0.03 2 (15.4) 0.48 157 (41.0) -0.11 170 (42.1) -0.13 298 (38.0) -0.05 

Cancer 
2664 
(4.0) 

188 (7.0) -0.13 3 (4.3) -0.01 1 (7.7) -0.16 30 (7.8) -0.16 25 (6.2) -0.10 49 (6.2) -0.10 

Cerebrovascular 
Disease 

2311 
(3.5) 

378 (14.1) 0.38 8 (11.4) 0.31 2 (15.4) 0.42 51 (13.3) 0.36 60 (14.9) 0.40 91 (11.6) 0.31 

Chronic Kidney 
Disease (CKD) 

4650 
(7.0) 

654 (24.4) 0.49 10 (14.3) 0.24 4 (30.8) 0.64 121 (31.6) 0.65 86 (21.3) 0.42 178 (22.7) 0.45 

COPD 
3460 
(5.2) 

386 (14.4) 0.31 7 (10.0) 0.18 2 (15.4) 0.34 60 (15.7) 0.35 40 (9.9) -0.18 113 (14.4) 0.31 

Diabetes 
13677 
(20.7) 

1586 (59.3) -0.86 44 (62.9) -0.95 8 (61.5) -0.91 246 (64.2) -0.98 232 (57.4) -0.81 464 (59.2) -0.85 

Heart Diseases 
7141 
(10.8) 

1029 (38.5) -0.68 22 (31.4) -0.52 4 (30.8) -0.51 154 (40.2) -0.72 164 (40.6) -0.73 280 (35.7) -0.62 

Hypertension 
23146 
(35.1) 

2206 (82.4) -1.10 57 (81.4) -1.07 11 (84.6) -1.17 339 (88.5) -1.32 337 (83.4) -1.13 649 (82.8) -1.11 

High Cholesterol 
9302 
(14.1) 

1932 (72.2) -1.45 57 (81.4) -1.83 11 (84.6) -1.99 304 (79.4) -1.73 312 (77.2) -1.64 592 (75.5) -1.57 

Outcome (%) 
             

Mortality 
4235 
(6.4) 

431 (16.1) 0.31 15 (21.4) 0.44 4 (30.8) 0.66 71 (18.5) 0.37 53 (13.1) 0.23 153 (19.5) 0.40 

Healthcare Center 
Type (%)              

Academic 
5689 
(8.6) 

254 (9.5) -0.03 4 (5.7) 0.11 0 (0.0) 0.43 46 (12.0) 0.11 30 (7.4) 0.04 60 (7.7) 0.04 

Children 
263 
(0.4) 

0 (0.0) 0.09 0 (0.0) 0.09 0 (0.0) 0.09 0 (0.0) 0.09 0 (0.0) 0.09 0 (0.0) 0.09 

Community 
Healthcare 

161 
(0.2) 

6 (0.2) 0.00 0 (0.0) 0.07 0 (0.0) 0.07 0 (0.0) 0.07 0 (0.0) 0.07 1 (0.1) 0.03 

Community 
Hospital 

401 
(0.6) 

13 (0.5) 0.02 0 (0.0) 0.11 0 (0.0) 0.11 6 (1.6) -0.09 3 (0.7) -0.02 11 (1.4) -0.08 

Critical Access 
39 

(0.1) 
0 (0.0) 0.03 0 (0.0) 0.03 0 (0.0) 0.03 0 (0.0) 0.03 0 (0.0) 0.03 0 (0.0) 0.03 

IDN 
51485 
(78.0) 

2108 (78.8) -0.02 56 (80.0) -0.05 10 (76.9) 0.03 280 (73.1) 0.12 309 (76.5) 0.04 607 (77.4) 0.02 

Regional Hospital 
7940 
(12.0) 

295 (11.0) 0.03 10 (14.3) -0.07 3 (23.1) -0.29 51 (13.3) -0.04 62 (15.3) -0.10 105 (13.4) -0.04 

Region (%) 
             

Northeast 
14216 
(21.5) 

656 (24.5) -0.07 11 (15.7) 0.15 2 (15.4) 0.16 61 (15.9) 0.14 58 (14.4) 0.19 162 (20.7) 0.02 

Midwest 
5196 
(7.9) 

207 (7.7) 0.01 3 (4.3) 0.15 0 (0.0) 0.41 29 (7.6) 0.01 24 (5.9) 0.08 53 (6.8) 0.04 

South 
26143 
(39.6) 

1012 (37.8) 0.04 23 (32.9) 0.14 9 (69.2) -0.62 194 (50.7) -0.22 227 (56.2) -0.34 289 (36.9) 0.06 

West 
20423 
(31.0) 

801 (29.9) 0.02 33 (47.1) -0.34 2 (15.4) 0.38 99 (25.8) 0.11 95 (23.5) 0.17 280 (35.7) -0.10 
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Table 5. Mortality rates of patients treated with (A) atorvastatin, (B) lovastatin, (C) pravastatin, (D) 
rosuvastatin, and (E) simvastatin, and matched control groups, and relative risk of death with 95% 
confidence interval and Benjamini-Hochberg adjusted p-value from the iteration with the least significant 
result for each comparison   
 

 
treated patients controls 

  

Statin (moderate 
dose) 

Mortality rate, 
% 

No. died/No. 
treated 

Mortality rate, 
% 

No. died/No. 
treated 

Relative risk (95% 
CI) 

Adjusted P-
value* 

Atorvastatin 16.1 431/2676 20.4 545/2676 
0.86 

(0.80-0.93) 
6.24E-05 

Lovastatin 21.4 15/70 19.1 134/700 
1.14 

(0.66-1.96) 
0.76 

Pravastatin 18.5 71/383 23.1 883/3830 
0.78 

(0.61-1.00) 
0.05 

Rosuvastatin 13.1 53/404 21.0 850/4040 0.59 
(0.45-0.78) 

9.61E-05 

Simvastatin 19.5 153/784 23.3 914/3920 0.83 
(0.70-0.97) 

0.02 
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