Estimation of the morbidity and mortality of congenital Chagas disease: a systematic review and meta-analysis

Sarah Matthews¹, Ayzsa F. Tannis¹, Karl Philipp Puchner²; Maria Elena Bottazzi^{3,4}; Maria Luisa Cafferata^{5,6}; Daniel Comandé⁵; Pierre Buekens¹

¹ Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA

² German Leprosy and TB Relief Association, Würzburg, Germany

³ National School of Tropical Medicine, Baylor College of Medicine, Baylor, Texas, USA

⁴ Department of Pediatrics and Molecular Virology and Microbiology and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Baylor, Texas, USA

⁵ Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina

⁶ Unidad de Investigación Clínica y Epidemiológica Montevideo (UNICEM), Montevideo, Uruguay

*Corresponding author

E-mail: atannis@tulane.edu (AFT)

[¶]These authors contributed equally to this work.

1 Abstract

Chagas disease is caused by the parasite *Trypanosoma cruzi* which can be transmitted from
mother to baby during pregnancy. There is no consensus on the proportion of infected infants that
become symptomatic for congenital Chagas disease (cCD). The objective of this systematic review is
to determine the burden of cCD.

6 Articles from journal inception to 2020 reporting morbidity and mortality associated with 7 cCD were retrieved from academic search databases. Observational studies, randomized-control trials, 8 and studies of babies diagnosed with cCD were included. Studies were excluded if they were case 9 reports or series, without original data, case-control without cCD incidence estimates, and/or did not 10 report number of participants. Two reviewers screened articles for inclusion. To determine pooled 11 proportion of symptomatic infants with cCD, individual symptoms, and case-fatality, random effects 12 meta-analysis was performed.

We identified 4,531 records and reviewed 4,301, including 47 articles in the narrative summary and analysis. 28.3% (95% confidence interval (CI) = 19.0%, 38.5%); of cCD infants were symptomatic and 2.2% of infants died (95% CI = 1.3%, 3.5%). The proportion of infected infants with hepatosplenomegaly was 12.5%, preterm birth 6.0%, low birth weight 5.8%, anemia 4.9%, and jaundice 4.7%. Although most studies did not include a comparison group of non-infected infants, the proportion of infants with cCD symptomatic at birth are comparable to those with congenital toxoplasmosis (10.0%-30.0%) and congenital cytomegalovirus (10.0%-15.0%).

We conclude that cCD burden appears significant, but more studies comparing infected
 mother-infant dyads to non-infected ones are needed to determine an association of this burden to
 cCD infection.

23 Author summary

Chagas disease is caused by the parasite *Trypanosoma cruzi*, which can be passed from
mother to infant. It is estimated that one million women of reproductive age are infected with *T. cruzi*.

26	Prior to our work, the proportion of infants infected with <i>T. cruzi</i> congenitally presenting with clinical
27	symptoms was unknown. After systematically searching for and identifying studies that collected
28	information on infants with congenital Chagas disease, we summarized and analyzed 47 studies. Our
29	pooled analysis of these studies estimated that 28.3% of infants with congenital Chagas disease were
30	symptomatic and 2.2% died. Prior work has shown that transmission of <i>T. cruzi</i> from mother to child
31	occurs in 5% of cases. Other studies have shown that this transmission is preventable through
32	treatment of women prior to conception, and infants can be cured if shown to be infected at birth. Our
33	estimated proportion of 28.3% of infants diagnosed with cCD at birth presenting with clinical
34	symptoms are comparable to infants diagnosed with congenital toxoplasmosis presenting with clinical
35	symptoms (10.0%-30.0%) and congenital cytomegalovirus (10.0%-15.0%). More studies comparing
36	infected mother-infant dyads to non-infected mother-infant dyads are needed to determine an
37	association of this burden to cCD infection.

38 Introduction

39 Background

40	Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is estimated to infect
41	6.5 million globally, including 1.7 million women of reproductive age [1, 2]. As of 2019, an
42	estimated 172,000 additional people were infected, and 52,000 of these were women of
43	reproductive age [1]. T. cruzi is primarily transmitted when the triatomine insect vector transfers the
44	parasite after biting and defecating on its host through its infected feces entering via bite wound or
45	mucosal membrane [2]. However, it can also be transmitted through blood transfusion, organ
46	transplant, via oral consumption of contaminated food with triatomine feces, and through vertical
47	transmission from mother to infant during pregnancy [3, 4].
48	Vertical transmission of T. cruzi, or congenital Chagas disease (cCD) occurs in an
49	estimated 4.7% of infants born to infected mothers, increasing to 5.0% in endemic countries [3]. T.

- 50 *cruzi* infected infants may present with severe morbidity at birth and be at a higher risk of mortality.
- 51 If left untreated, infants can develop chronic Chagas disease later in life [4].
- 52

53 Signs and symptoms of congenital Chagas disease

54 Signs and symptoms in cCD infected infants range from mild to severe. Signs attributable

- to cCD include low Apgar score (<7 at 1 minute and/or at 5 minutes) [5], premature rupture of
- 56 membranes [6], preterm birth, and low birth weight [7], intra-uterine growth restriction [8], small

57 for gestational age [9], and neonatal intensive care unit (ICU) admission [10]. Mortality attributed

58 to cCD is associated with severe morbidity symptoms, including meningoencephalitis and

59 myocarditis [2]. Reported symptoms attributable to cCD are hepatomegaly, splenomegaly,

- 60 respiratory distress syndrome, certain neurologic signs, anasarca, petechiae, abnormal
- 61 electrocardiographic findings, anemia, meningoencephalitis, myocarditis, congestive heart failure,
- 62 digestive and/or central nervous system lesions, parasites in various tissues [2], subependymal
- 63 hemorrhage [11], and cardiomegaly [6].
- 64

65 Clinical pathway

66 Infants exposed in-utero to T. cruzi are susceptible to congenital transmission [12]. 67 Screening programs to diagnose and treat pregnant women and infants infected with T. cruzi have 68 been implemented in endemic countries and countries with large migrant populations from endemic regions since the early 1990s [13, 14]. The gold standard for diagnosing acute and chronic infection 69 70 uses at least two conventional serological tests (e.g., indirect hemagglutination assay, indirect 71 immunofluorescence assay, ELISA) [12, 15]. Other tests, such as molecular tests and rapid 72 diagnostic tests can also confirm infection but are only recommended to complement or confirm 73 aforementioned assays [12, 15].

. . .

. . .

.

75	Confirmation of cCD in infants born to T. cruzi infected mothers occurs at birth or in the
76	first weeks afterward by viewing parasites in an umbilical cord blood sample or venous infant
77	blood, or after 8-10 months when maternal antibodies have waned using serological assays to
78	confirm infant T. cruzi IgG antibodies [4, 12]. Gold standard diagnosis of cCD requires at birth,
79	parasitological examination using microhematocrit or microstrout testing methods, and if negative
80	repeated examination one month later, and at 10 months two serological tests [12]. Molecular
81	methods of diagnosis can detect infection early on but are not part of the gold standard diagnosis
82	given lack of standardization, low and often fluctuating parasitemia in patients with chronic Chagas
83	disease and lack of quality control programs [16].
84	Evidence shows that if women are treated for Chagas disease before pregnancy, future
85	congenital transmission of T. cruzi is preventable [4]. Treatment during pregnancy is not
86	recommended given unknown effects of antiparasitic drugs on prenatal development. Treatment of
87	T. cruzi infected infants with benznidazole or nifurtimox is effective when administered within the
88	first year of life [17].

89 Rationale

90 In 2010, its estimated that between 158,000 to 214,000 infants were born to T. cruzi 91 infected mothers in endemic countries, of which 8,000 to 10,700 would be congenitally infected 92 [18]. Around 1/5 of annual new Chagas cases are attributed to congenital infection [16]. The Global 93 Burden of Disease project used data from vital registration databases, surveillance, surveys/census, 94 and other population-based sources to estimate the burden of Chagas disease among neonates and 95 infants, including number of deaths, disability-adjusted life years, years lived with disability, and 96 years of life lost [19]. However, it is likely that the data used to estimate the burden of Chagas 97 disease are incomplete given issues in diagnosing cCD, including low sensitivity of parasitological 98 screening at birth and loss to follow-up with serological screening 8-10 months postpartum [18]. 99 Given this, there is no accurate burden estimate for cCD and no consensus on how many infants are

symptomatic [2]. The objective of this systematic review is to determine the morbidity and

101 mortality of cCD.

102 Methods

- 103 A systematic review and meta-analysis were performed according to the guidelines of the
- 104 Meta-Analysis of Observational Studies in Epidemiology (MOOSE) and the Preferred Reporting
- 105 Items for Systematic reviews and Meta-Analysis (PRISMA) [20, 21]. The protocol was registered
- 106 on PROSPERO [22].

107 Criteria for considering studies

- 108 Types of studies. Studies that reported morbidity or mortality associated with cCD infection were
- 109 considered, including observational studies and randomized-control trials. Studies excluded were case
- 110 reports and series, studies not including original data were excluded, case-control studies without
- 111 neonatal incidence estimates of cCD, and studies not reporting the number of infected neonates.
- 112 Types of participants. Studies about diagnosed neonates and infants with cCD were included.
- 113 Types of outcomes. Articles including original data of morbidity or mortality among infants with
- 114 cCD were included. Mortality was defined as the recorded death of a *T. cruzi* infected fetus or
- 115 infant. Morbidity was defined as any adverse outcome presenting in a *T. cruzi* infected infant, with
- all symptoms extracted available in the S1 File. Mortality causes included stillbirth, miscarriage,
- abortion, intrauterine death, and fetal death.
- 118

119 Search strategy

120 A medical librarian developed and applied a comprehensive and sensitive search strategy (available

- 121 in S2 File) using terms related to cCD in PubMed, EMBASE, CINAHL, LILACS, and Academic
- 122 Search databases. No language restrictions were applied, and grey literature was not searched.

124 Data collection and analysis

125	Selection of studies. Authors AT and SM independently screened study titles and abstracts and then
126	the remaining full text articles for eligibility. All disagreements were resolved by discussion and, if
127	necessary, a third author (KP) was consulted as an arbitrator. Covidence systematic review software
128	was used to facilitate the screening process [23]. For duplicate studies, the one with the largest sample
129	size was included. The decision-making algorithm consideration is available in S3 File.
130	Data extraction and management. Authors AT and SM independently extracted data using a
131	form designed and piloted with studies a priori. Extracted data included study, maternal, and infant
132	characteristics, diagnostic information for mothers and infants, and morbidity and mortality of
133	congenital cases. A summary of extracted data can be found in S4 File and the data extraction form in
134	S1 Dataset.
135	Data extraction discrepancies were resolved by discussion and, if necessary, a third author
136	(KP) was consulted. The inter-observer reviewer agreement for full text screening was assessed
137	using the Kappa statistic.
138	Assessment of risk of bias. A risk of bias assessment tool was developed through adaptation of
139	the NIH Study Quality Assessment Tools and the STROBE (Strengthening the Reporting of
140	Observational studies in Epidemiology) checklist of essential items for observational studies [24, 25].
141	Authors AT and SM piloted the tool on five studies, subsequently adapted the tool and then
142	independently assessed included studies' risk of bias of the included studies (S5 File). Six domains
143	were considered: 1) participant selection methods, 2) exposure and outcome variable measurement, 3)
144	confounding control methods, 4) reporting of results, 5) statistical methods, and 6) declaration of
145	conflict and ethical statements. Two algorithms were developed to summarize within-domain and
146	summary risk of bias (S5 File).
147	Statistical analysis and data synthesis. Included study frequencies of congenital transmission,

symptoms, mortality causes (including those not originally listed in S1 File), infant mortality and/or

149 case-fatality rates, and proportion of asymptomatic and symptomatic cCD was narratively

summarized.

151 A meta-analysis of proportions was performed to estimate the pooled proportion of 152 symptomatic fetuses and infants with cCD. The Freeman-Tukey double arcsine method was used to 153 account for overdispersion of proportions and stabilize the variance [26, 27]. Stuart-Ord inverse 154 variance weight were applied to transformed proportions, avoiding underestimation of true variance 155 using its conservative weight [28]. The pooled proportion and its 95% confidence interval (CI) were 156 estimated using the DerSimonian-Laird random effects model to take into consideration the high 157 likelihood of between-study heterogeneity. Results were quantified and represented in a forest plot 158 [28, 29]. The proportion of symptomatic cCD cases was defined as the number of infants with cCD 159 displaying symptom(s) and/or death divided by the total number of infants with cCD. We also 160 performed a meta-analysis of proportions for the pooled proportion of death due to cCD. If a study 161 reported cCD symptoms and/or mortality frequency but did not provide a frequency for every 162 outcome outlined in S1 File and/or death, missing values were assumed to be non-events and a 163 value of 0 was imputed [30]. All analyses were performed using SAS Version 9.4, Stats-Direct, and 164 StataIC 12 software.

Assessment of heterogeneity. The I² statistic was calculated to measure the proportion of total variability attributable to heterogeneity between studies [31]. Three subgroup analyses defined a priori were performed by: cCD diagnostic method, geographic region, and individual symptom displayed in fetus/infant. Studies were excluded for the subgroup analysis of symptom frequency if no clear definition of each symptom displayed in individual infants was reported. A subgroup of co-infection with other non-Chagas related infections was planned; however, data was insufficient. Detailed results are described in S6 File.

Sensitivity analyses. Two sensitivity analyses were conducted to assess the potential effect review decisions held on robustness of results. These analyses were to exclude studies with high risk of bias and exclude studies where Chagas disease gold standard diagnosis of the mother was not employed (15). An ad-hoc sensitivity analysis was performed using the Miller back-transformation [32] for the

176 primary meta-analyses of proportion of cCD morbidity and mortality. Detailed results are described in

177 S6 File.

- 178 **Assessment of publication bias**. The effect of publication bias was evaluated for all analyses
- using Egger's statistical test to determine asymmetry of the funnel plot [33].

180 **Results**

A total of 4,531 records were identified through database search, 4,301 were screened based on title and abstract, and 293 full text articles assessed for eligibility, and 47 articles were included for narrative summary and meta-analysis.

184 Narrative summary

185 Study publication year ranged from 1962 to 2019, with 18 studies published before 2000, 10 186 between 2000 to 2010, and 18 between 2011 and 2019. Study duration ranged from under one year to 187 15 years, with six studies under one year, 31 studies one to four years, and eight studies five to 15 188 years, with two studies missing data on this factor. 12 studies were conducted in Europe and 35 in the 189 Latin American and Caribbean region (Mexico, Central and South America). Most studies (n=38) 190 were conducted in urban/semi-urban hospital(s), with one conducted in a rural hospital, four in both 191 rural and urban hospitals, one conducted in primary care institutions, and three with missing 192 information. In regard to study design, three were case-control, 13 cross-sectional, 28 prospective 193 cohorts, two retrospective cohorts, and one a mixed cohort. Study population size varied from eight to 194 4,355 infants. 15 studies had less than 100 infants, 14 had between 100 and 999 infants, and 10 had 195 over 1,000 infants, with five studies missing data. 28 studies used gold standard diagnosis for 196 mothers, 16 used an alternative, and three studies did not provide information. 13 studies diagnosed 197 infants with cCD using the gold standard, 32 used an alternative, and two did not provide information. 198 Table 1 summarizes all study characteristics.

The number of cCD infected infants in studies ranged from one to 267, with a median of five.
There were 25 studies with five or less cCD infected infants, six with six to 10 infected infants, 11

210	remaining three rep	oned one infant deat	1. Time of death			T L
209	meningitis. One stud	dy reported four death	ns, four studies ea	ach reported	two infant dear	ths, and the
208	damage, gastroenteri	itis and dehydration, p	neumonia, and se	econdary sep	ticaemia and pn	eumococcal
207	being stillbirth, Dow	vn's syndrome, congei	nital cardiopathy,	respiratory c	listress, severe 1	neurological
206	studies reported infa	ant mortality for cCD,	three citing Chag	gas as cause	of death, with o	other causes
205	symptomatic. Sympt	coms of cCD by study,	including their re	ported freque	ency, are in S1 7	Fable. Eight
204	25.0%, 12 reported	26.0% to 50.0%, fou	r reported 51.0%	to 99.0%, a	and seven repor	ted 100.0%
203	to 100.0%, with a m	edian of 26.0%. 16 stu	idies reported a pe	ercentage of	0.0%, five repor	rted 1.0% to
202	infants. The percenta	age of symptomatic inf	ected infants amo	ng all infecte	ed infants ranged	l from 0.0%
201	with 11 to 50 infector	ed infants, four with 5	0 to 100 infected	infants, and	one with over 1	100 infected

212213 Table 1: Study Characteristics

Study characteristics			Mat	teristics	Infant characteristics							
Study	Country-city	Study period	Study setting	Study design	#	# infected	Method diagnosis	#	# Infected	Method diagnosis	# Asymp (%)	# Symp (%)
Apt 2013 [34]	Chile- Salamanca Chile-Illapel Chile-Los Vilos Chile-Canela	2005-2009	Rural hospitals	Prospective cohort	4831	147	Gold	147	6	Other	3 (50.0)	3 (50.0)
Arcavi 1993 [35]	Argentina - CABA	01/1990 - 02/1991	Urban/semiurban hospital	Prospective cohort	729	62	Gold	62	2	Other	2 (100.0)	0 (0.0)
Bahamonde 2002 [36]	Chile - Antofagasta	11/1996 - 10/1997	Urban/semiurban hospital	Prospective cohort	Not specified	Not specified	Gold	1987	5	Other	5 (100.0)	0 (0.0)
Barona - Vilar 2012 [37]	Spain - Valencia	2009 – 2010	Urban/semiurban hospitals	Cross sectional	1975	226	Gold	Not specified	8	Gold	7 (87.5)	1 (12.5)
Barousse 1978 [38]	Argentina - CABA	07/1976 - 07/1977	Not specified	Prospective cohort	4220	186	Other	186	1	Other	0 (0.0)	1 (100.0)
Basile 2019 [39]	Spain - Catalonia	2010 – 2015	Mixed urban/rural hospitals	Prospective cohort	33469	818	Gold	812	28	Gold	24 (85.7)	4 (14.3)
Bern 2009 [40]	Bolivia - Santa Cruz	11/2006 - 06/2007	Urban/semiurban hospital	Prospective cohort	530	154	Gold	138	10 *7 with data	Gold	4 (57.1)	3 (42.9)
Bisio 2011 [41]	Argentina - CABA	2002 – 2007	Urban/semiurban hospital	Prospective cohort	104	104	Gold	83	3	Gold	3 (100.0)	0 (0.0)
Bittencourt 1985 [42]	Brazil - Salvador	01/1981 - 08/1982	Urban/semiurban hospitals	Prospective cohort	2651	226	Gold	186	3	Not specified	1 (33.3)	2 (66.7)
Buekens 2018 [43]	Argentina - San Miguel de Tucuman Mexico - Merida Honduras - Santa Barbara Honduras - Intibuca	2011 - 2013	Urban/semiurban hospitals	Prospective cohort	28145	347	Gold	503	11	Gold	7 (63.6)	4 (36.4)

Cardoso 2012 [44]	Mexico - Santiago Pinotepa Nacional Mexico - Potchutla Mexico - Guadalajara Mexico - Mexico City	09/2006 - 06/2008	Urban/semiu rban hospitals	Prospective cohort	1448	106	Other	106	15	Other	14 (93.3)	1 (6.7)
Castillo 1984 [45]	Chile - Antofagasta Chile - Calama	08/1983 - 06/1984	Urban/semiurban hospitals	Cross sectional	1952	35	Other	1961	31	Other	29 (93.6)	2 (6.5)
Contreras 1999 [46]	Argentina - General Guemes	08/1996 - 12/1996	Not specified	Cross sectional	276	34	Gold	34	3	Other	3 (100.0)	0 (0.0)
Cucunuba 2012 [47]	Colombia - Arauca Colombia - Boyaca Colombia - Casanare Colombia - Meta Colombia - Santander	01/2010 - 12/2011	Other	Cross sectional	4417	119	Gold	47	5	Other	5 (100.0)	0 (0.0)
De Rissio 2010 [48]	Argentina - CABA Argentina – Buenos Aires Metropolitan Area	10/1994 - 12/2004	Urban/semiurban hospita	Prospective cohort	6204	265	Gold	4355	267	Gold	267 (100.0)	0 (0.0)
Flores - Chavez 2011 [49]	Spain - Madrid	01/2008 - 12/2010	Urban/semiurban hospitals	Retrospective cohort	3839	152	Other	152	4	Other	3 (75.0)	1 (25.0)
Francisco - Gonzales 2018 [50]	Spain - Madrid	01/2012 - 09/2016	Urban/semiurban hospitals	Retrospective cohort	122	122	Gold	125	3	Other	2 (66.7)	1 (33.3)
Freilij 1995 [51]	Argentina - CABA	1 <mark>987 –</mark> 1993	Urban/semiurban hospital	Mixed cohort	Not specified	1116	Not specified	1118ª	71	Other	46 (64.8)	25 (35.2)

Furmado 2014 Spain - (52) 007/2003 Urban/semiurban hospital Prospective cohort Not specified Not specified <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>													
Gimmenz Spain - 2010 [53] Optional Optional Urban/semiurban Prospective cohort 574 35 Gold 35 3 Other 2 [66.7] 1 [1 (00.0) [glesias J955 Chie - Santago 01/1985 Urban/semiurban hospital Prospective cohort 1000 11 Other 1000 9 Not specified 9 0(10.0) 0(10.0.0) <td< td=""><td>Fumado 2014 [52]</td><td>Spain - Barcelona</td><td>03/2003 - 09/2008</td><td>Urban/semiurban hospital</td><td>Prospective cohort</td><td>Not specified</td><td>Not specified</td><td>Not specified</td><td>72^b</td><td>5</td><td>Other</td><td>5 (100.0)</td><td>0 (0.0)</td></td<>	Fumado 2014 [52]	Spain - Barcelona	03/2003 - 09/2008	Urban/semiurban hospital	Prospective cohort	Not specified	Not specified	Not specified	72 ^b	5	Other	5 (100.0)	0 (0.0)
[gistal 31985] Chile - 01/1385 - Urban/semurban hospital Cross sectional 1000 11 Other 1000 9 Not 9 0 ((100.0) 0 ((100.0) Mallimaci Solutia Argentina - 12/2002 0/2/2001 Urban/semurban hospital Prospective cohort 61 61 Gold 68 3 Gold 3 (100.0) 0 ((100.0) 1 Matilinaci Linez de Freidad 2009 Switzeriand - Geneva 2008 Urban/semurban hospital Prospective cohort 305 6 Other 8 2 Other 1(50.0) 1 (50.0)	Gimenez 2010 [53]	Spain - Valencia	06/2007 - 10/2009	Urban/semiurban hospital	Prospective cohort	574	35	Gold	35	3	Other	2 (66.7)	1 (33.3)
Image: 2010 [S5] Agentina - Ushuaia 02/2001 - Uthan/semiurban hospital Prospective cohort 61 61 Gold 68 3 Gold 3 0 (Martinez de Geneva (S000) Switzerianda 2008 Urban/semiurban hospitals Prospective cohort 305 6 Other 8 2 Other 1 (50.0) 1 (Mayer 2010 Argentina - CABA 2000 - 2005 Urban/semiurban hospital Case-control Not specified Specified Gold 1058 18 Other 9 (50.0) 9 (Mendoza 2014 [S8] Spain - 2005 Or/2010 - 12/2013 Urban/semiurban hospital Prospective cohort 171 81 Other 81 5 Gold 5 0 (100.0) 0 (Mendoza 2016 Chile - Copiapo 10/1982 - 06/1983 Urban/semiurban hospital Cross sectional hospital 869 31 Other 81 5 Gold 27 11 100.0) 1(100.0) 0 (100.0) 1(100.0) 0 (100.0) 1(100.0) <td< td=""><td>lglesias 1985 [54]</td><td>Chile - Santiago</td><td>01/1985 - 06/1985</td><td>Urban/semiurban hospital</td><td>Cross sectional</td><td>1000</td><td>11</td><td>Other</td><td>1000</td><td>9</td><td>Not specified</td><td>9 (100.0)</td><td>0 (0.0)</td></td<>	lglesias 1985 [54]	Chile - Santiago	01/1985 - 06/1985	Urban/semiurban hospital	Cross sectional	1000	11	Other	1000	9	Not specified	9 (100.0)	0 (0.0)
Instring de Tejada 2009 Witzerland - Geneva 2008 Urban/semiurban hospitals Prospettive cohort 305 6 Other 8 2 Other 1 (50.0) 1 (50.0)	Mallimaci 2010 [55]	Argentina - Ushuaia	02/2001 - 12/2002	Urban/semiurban hospital	Prospective cohort	61	61	Gold	68	3	Gold	3 (100.0)	0 (0.0)
Marger 2010 [S7] Argentina - CABA 2000 - 2005 Urban/semiurban hospital Case-control specified Not specified Not specified Sold 1058 18 Other 9 (50.0) 9 (1 9 (100) Mendoza 12/2013 Spain - Barcelona 12/2013 Urban/semiurban hospital Prospective cohort 1717 81 Other 81 5 Gold 5 (100.0) 0 ((100.0)	Martinez de Tejada 2009 [56]	Switzerland - Geneva	2008	Urban/semiurban hospitals	Prospective cohort	305	6	Other	8	2	Other	1 (50.0)	1 (50.0)
Mendoza 2014 [S8] Spain - Barcelona 07/2010 - 12/2013 Urban/semiurban hospital Prospective cohort 1717 81 Other 81 5 Gold 5 (100.0) 0 (100.0) 0 (100.0) Mendoza 1983 [59] Chile - Copiapo 06/1983 10/1982 - 06/1983 Urban/semiurban hospital Cross sectional cost 869 31 Other 875 30 Other 30 (100.0) 0 (100.0) 0 (100.0) Messenger 2017 [60] Boliva - Sami Sierra Boliva - Camiri 2014 Urban/semiurban hospital Prospective cohort 1851 476 Gold 487 38 Gold 3 (100.0) 0 (100.0) 1 (25 Munoz 2009 Spain - Barcelona 03/2007 Urban/semiurban hospital Prospective cohort 1350 46 Other 46 3 Gold 3 (100.0) 0 (100.0) 0	Mayer 2010 [57]	Argentina - CABA	2000 - 2005	Urban/semiurban hospita	Case-control	Not specified	Not specified	Gold	1058	18	Other	9 (50.0)	9 (50.0)
Mendoza 1983 [59] Chile - Copiapo 06/1983 Unban/semiurban hospital Cross sectional of top spain 869 31 Other 875 30 Other 30 (100.0) 0 (100.0) Messenger 2017 [60] Bolivia - Santa Sierra Bolivia - Camiri 2010 – 2014 Urban/semiurban hospitals Prospective cohort 1851 476 Gold 487 38 Gold 27 (71.1) 11 (25 Munoz 2009 Spain - Barceiona 03/2005 - 09/2007 Urban/semiurban hospitals Prospective cohort 1350 46 Other 46 3 Gold 3 (100.0) 0 (100.0)	Mendoza 2014 [58]	Spain - Barcelona	07/2010 - 12/2013	Urban/semiurban hospita	Prospective cohort	1717	81	Other	81	5	Gold	5 (100.0)	0 (0.0)
Messenger 2017 [60]Bolivia - Santa Cruz de la Sierra Bolivia - Camiri2010 - 2014Urban/semiurban hospitalsProspective cohort1851476Gold48738Gold277 (71.1)11 (25)Munoz 2009 [61]Spain - Barcelona03/2005 - 09/2007Urban/semiurban hospitalsProspective cohort135046Other463Gold3 (100.0)0Munoz 2009 [61]Spain - Barcelona03/2005 - 09/2007Urban/semiurban hospitalsProspective cohort135046Other463Gold3 (100.0)0Munoz 1982 [62]Chile - Santiago05/1979 - 11/1979Urban/semiurban hospitalProspective cohort40211Other4022Other0(0.0)2 (100.0)Murcia 2017 [63]Spain - Murcia 05/201601/2007 - 05/2016Urban/semiurban hospitalCase-control cohort144144Gold16016Gold13 (81.3)3 ((100.0)Nisida 1999 [64]Brazil - Sao Paulo CityNot specifiedUrban/semiurban hospitalsCross sectional cohort5757Gold584Other9 (0.0) (100.0)4 (100.0)Oritz 2012 [65]Chile - Region IV Choapa2006 - 2010Not specified hospitalProspective cohort110110Gold1003Other3 (0.0) (100.0)1 (100.0)Otero 2012 [66] <td>Mendoza 1983 [59]</td> <td>Chile - Copiapo</td> <td>10/1982 - 06/1983</td> <td>Urban/semiurban hospita</td> <td>Cross sectional</td> <td>869</td> <td>31</td> <td>Other</td> <td>875</td> <td>30</td> <td>Other</td> <td>30 (100.0)</td> <td>0 (0.0)</td>	Mendoza 1983 [59]	Chile - Copiapo	10/1982 - 06/1983	Urban/semiurban hospita	Cross sectional	869	31	Other	875	30	Other	30 (100.0)	0 (0.0)
Munoz 2009 [61]Spain - Barcelona03/2005 - 09/2007Urban/semiurban hospitalsProspective cohort135046Other463Gold3 (100.0)0Munoz 1982 [62]Chile - Santiago05/1979 - 11/1979Urban/semiurban hospitalProspective cohort40211Other4022Other0 (0.0)2 (100.0)Murcia 2017 [63]Spain - Murcia O5/201601/2007 - 05/2016Urban/semiurban hospitalProspective cohort144144Gold16016Gold13 (81.3)3 ((100.0)3 ((100.0)3 ((100.0)3 ((100.0)3 ((100.0)3 ((100.0)3 ((100.0)0 (0.0)4 (100.0)Nisida 1999 [64]Brazil - Sao Paulo CityNot specifiedUrban/semiurban hospitalsCross sectional cohort5757Gold584Other0 (0.0)4 (100.0)Oritz 2012 [65]Chile - Region IV Choapa2006 - 2010Not specifiedProspective cohort110110Gold1003Other3 (0 (0.0))4 (100.0)Otero 2012 [66]Spain - Barcelona04/2008 - 05/2010Urban/semiurban hospitalProspective cohort63322Gold221Gold0 (0.0)1 (100.0)	Messenger 2017 [60]	Bolivia - Santa Cruz de la Sierra Bolivia - Camiri	2010 – 2014	Urban/semiurban hospitals	Prospective cohort	1851	476	Gold	487	38	Gold	27 (71.1)	11 (29.0)
Munoz 1982 [62]Chile - Santiago05/1979 - 11/1979Urban/semiurban hospitalProspective cohort40211Other4022Other0 (0.0)2 (10Murcia 2017 [63]Spain - Murcia01/2007 - 05/2016Urban/semiurban hospitalCase-control144144Gold16016Gold13 (81.3)3 ((81.3)Nisida 1999 [64]Brazil - Sao Paulo CityNot specifiedUrban/semiurban hospitalsCross sectional cohort5757Gold584Other0 (0.0)4 (10Oritz 2012 [65]Chile - Region IV Choapa2006 - 2010Not specifiedProspective cohort110110Gold1003Other3 (100.0)0 (0.0)1 (100.0)Otero 2012 [66]Spain - Barcelona04/2008 - 05/2010Urban/semiurban hospitalProspective cohort63322Gold221Gold0 (0.0)1 (10	Munoz 2009 [61]	Spain - Barcelona	03/2005 - 09/2007	Urban/semiurban hospitals	Prospective cohort	1350	46	Other	46	3	Gold	3 (100.0)	0 (0.0)
Murcia 2017 [63]Spain - Murcia 05/201601/2007 - 05/2016Urban/semiurban hospitalCase-control144144Gold16016Gold13 (81.3)3 ((81.3)Nisida 1999 [64]Brazil - Sao Paulo CityNot specifiedUrban/semiurban hospitalsCross sectional hospitals5757Gold584Other0 (0.0)4 (10Oritz 2012 [65]Chile - Region IV Choapa2006 - 2010Not specifiedProspective cohort110110Gold1003Other3 (100.0)0 (0.0)4 (10Otero 2012 [66]Spain - Barcelona04/2008 - 05/2010Urban/semiurban hospitalProspective cohort63322Gold221Gold0 (0.0)1 (10	Munoz 1982 [62]	Chile - Santiago	05/1979 - 11/1979	Urban/semiurban hospita	Prospective cohort	402	11	Other	402	2	Other	0 (0.0)	2 (100.0)
Nisida 1999 [64]Brazil - Sao Paulo CityNot specifiedUrban/semiurban hospitalsCross sectional5757Gold584Other0 (0.0)4 (10)Oritz 2012 [65]Chile - Region IV Choapa2006 - 2010Not specifiedProspective cohort110110Gold1003Other3 (100.0)0 (0.0)4 (10Otero 2012 [66]Spain - Barcelona04/2008 - 05/2010Urban/semiurban hospitalProspective cohort63322Gold221Gold0 (0.0)1 (100.0)	Murcia 2017 [63]	Spain - Murcia	01/2007 - 05/2016	Urban/semiurban hospita	Case-control	144	144	Gold	160	16	Gold	13 (81.3)	3 (18.8)
Oritz 2012 [65]Chile - Region IV Choapa2006 - 2010Not specifiedProspective cohort110110Gold1003Other3 (100.0)30 ((100.0)Otero 2012 [66]Spain - Barcelona04/2008 - 05/2010Urban/semiurban hospitalProspective cohort63322Gold221Gold0 (0.0)1 (100.0)	Nisida 1999 [64]	Brazil - Sao Paulo City	Not specified	Urban/semiurban hospitals	Cross sectional	57	57	Gold	58	4	Other	0 (0.0)	4 (100.0)
Otero 2012 [66]Spain - Barcelona04/2008 - 05/2010Urban/semiurban hospitalProspective cohort63322Gold221Gold0 (0.0)1(10)	Oritz 2012 [65]	Chile - Region IV Choapa	2006 - 2010	Not specified	Prospective cohort	110	110	Gold	100	3	Other	3 (100.0)	0 (0.0)
	Otero 2012 [66]	Spain - Barcelona	04/2008 - 05/2010	Urban/semiurban hospital	Prospective cohort	633	22	Gold	22	1	Gold	0 (0.0)	1 (100.0)

Rodari 2018 [67]	Italy - Bergamo	01/2014 - 12/2016	Mixed urban/rural hospitals	Prospective cohort	376	28	Gold	29	1	Gold	0 (0.0)	1 (100.0)
Ru bio 1962 [68]	Chile - Santiago	1959	Urban/semiurban hospitals	Cross sectional	100	3	Other	50	1	Other	0 (0.0)	1 (100.0)
Salas 2007 [69]	Bolivia - Yacu iba	05/2003 - 09/2004*	Urban/semiurban hospita	Prospective cohort	2712	1144	Gold	2742	58	Other	43 (74.1)	15 (25.9)
Sasagawa 2015 [70]	El Salvador - Santa Isabel Ishuatan El Salvador - Armenia El Salvador - San Antonio del Monte El Salvador - Guaymango	03/2009 - 02/2010 09/2009 - 05/2010	Mixed u rban/ru ral hospitals	Prospective cohort	943	36	Other	36	1	Other	1 (100.0)	0 (0.0)
Sosa - Estani 2009 [71]	Argentina - Las Lomitas	01/2005 - 06/2006*	Urban/semiurban hospital	Prospective cohort	271	79	Gold	108	8	Other	6 (75.0)	2 (25.0)
Streiger 1995 [72]	Argentina - Santa Fe	1976 - 1991	Urban/semiurban hospitals	Prospective cohort	6123	Not specified	Gold	341	9	Other	3 (33.3)	6 (66.7)
Tello 1982 [73]	Chile - Santiago	05/1981 - 07/1982	Urban/semiurban hospita	Cross sectional	1000	27	Other	100	3	Other	3 (100.0)	0 (0.0)
Torrico 2004 [6]	Bolivia - Cochabamba	11/1992 - 07/1994 02/1999 - 11/2001	Urban/semiurban hospital	Prospective cohort	Not specified	Not specified	Gold	Not specified	71	Other	35 (49.3)	36 (50.7)
Valenzuela 1984 [74]	Chile - Rancagua Chile - San Fernando Chile - Santa Cruz	04/1984 - 12/1984	Mixed u rban/ru ral hospitals	Cross sectional	2135	23	Other	2146	11	Other	7 (63.6)	4 (36.4)
Valperga 1992 [75]	Argentina - San Miguel de Tucuman	05/1990 - 06/1991	Urban/semiurban hospitals	Cross sectional	1434	Not specified	Not specified	1496	4	Other	1(25.0)	3 (75.0)
Vicco 2016 [76]	Bolivia - Yacu iba	Not specified	Urban/semiurban hospital	Cross sectional	183	64	Gold	172	4	Other	4 (100.0)	0 (0.0)

Villablanca 1984 [77]	Chile - San Felipe Chile - Los Andes	04/1983 - 12/1984	Urban/semiu rban hospitals	Cross sectional	2099	62	Other	2104	61	Other	36 (59.0)	25 (41.0)
Zaidenberg 1993 [78]	Argentina - Salta	1981 - 1985	Urban/semiurban hospital	Cross sectional	937	149	Gold	929	12	Other	0 (0.0)	12 (100.0)

^aChildren recruited at various ages: 733 <6 months, 532 >6 months

^bOnly reporting the number of children in the study under the age of 1 year.

214 215 216 217 *Indicates a study whose follow-up ended past the end date: Salas 2007 ended follow-up in 2005, and Sosa-Estani 2009 ended follow-up in 2007.

Primary analyses

219	Results from the primary analyses can be found in Table 2. The primary meta-analysis of the
220	proportion of symptomatic cCD infected infants to all cCD infected infants revealed a pooled
221	proportion of 28.3% (95% CI = 19.0%, 38.5%). This estimate had a I^2 inconsistency statistic of 88.6%
222	(95% CI = 86.0%, 90.5%), suggesting considerable heterogeneity between studies for morbidity. The
223	Egger's bias statistic was statistically significant (P < 0.0001), suggesting that publication bias
224	influenced these results. The forest plot and Egger's bias plot can be viewed in Figs 1 and 2.

226

Table 2. Primary Analyses and Subgroup Analyses

	Pooled Proportion				Egger's	
	%	95% CI	$I^{2}(\%)$	95% CI	Bias	P-Value*
Primary Analyses (N=47)						
Morbidity	28.3	19.0,38.5	88.6	86.0,90.5	2.5	< 0.0001
Mortality	2.2	1.3,3.5	9.6	0.0,37.5	0.3	0.01
Subgroup 1 (N=45)						
Infant gold (n=13)	18.7	6.1,36.1	86.8	79.2,90.8	1.8	0.00
Infant other (n=32)	32.5	23.0,42.9	78.9	70.5,84.1	1.8	0.08
Subgroup 2 (N=47)						
Europe (n=12)	20.0	11.4,30.2	10.2	0.0,54.8	2.3	0.04
Latin America and the Caribbean (n=35)	29.4	18.3,41.8	91.3	89.3,92.7	2.9	< 0.0001
Subgroup 3 (N=47)						
Hepatosplenomegaly	12.5	6.6,19.9	85.8	82.2,88.4	1.4	0.003
Preterm birth	6.0	3.3,9.5	61.2	44.5,71.1	0.8	0.0003
Low birth weight	5.8	3.2,9.1	60.7	43.8,70.8	0.7	0.0008
Anemia	4.9	2.4,8.2	64.1	49.2,73.1	0.6	0.0155
Jaundice	4.7	2.4,7.7	59.9	42.4,70.3	0.4	0.0394

- *Egger's Bias plot statistical significance for asymmetry

247 Fig 1. Morbidity Forest plot

The pooled proportion of cCD infected infants that died to all infected infants was 2.2% (95% CI = 1.3%, 3.5%) (**Fig 3**). The I² inconsistency statistic was 9.6% (95% CI = 0% to 37.5%), suggesting between-study heterogeneity did not influence mortality. The 0.26 Egger's bias statistic (**Fig 4**) was statistically significant (P = 0.0084), suggesting publication bias influenced results.

312 Fig 3. Morbidity Forest plot

Proportion meta-analysis plot [random effects]

339 340

341

342 **Subgroup analyses**

343 Subgroup analysis results are in Table 2. Subgroup 1 analysed 45 studies with available 344 information by whether gold standard diagnosis was used for cCD. The pooled proportion of 345 symptomatic infants with cCD diagnosed with the gold standard was 18.7% (95% CI 6.1%, 36.1%), 346 versus 32.5% (95% CI 23.0%, 42.9%) among infants diagnosed with an alternative.

347

348 Subgroup 2 analysed the proportion of symptomatic infants with cCD by geographic region in 349 47 studies. European studies (n=12) had a pooled proportion of 20.0% (95% CI 11.4%, 30.2%) versus 350 29.4% (95% CI 18.3%, 41.8%) in Latin American and Caribbean studies (n=35).

Subgroup 3 analysed the proportion of symptomatic infants with cCD by symptom to determine frequency of each symptom. Hepatosplenomegaly, reported as either hepatomegaly, splenomegaly, or hepatosplenomegaly, occurred most frequently, with a pooled proportion of 12.5% (95% CI 6.6%,19.9%). The following symptoms occurred the most frequently after hepatosplenomegaly: preterm birth with a pooled proportion of 6.0% (95% CI 3.3%, 9.5%), LBW 5.8% (95% CI 3.2%, 9.1%), anemia 4.9% (95% CI 2.4%, 8.2), and jaundice 4.7% (95% CI 2.4%, 7.7%).

359

360 **Discussion**

361 Main findings

Our primary meta-analysis of the proportion of symptomatic cCD infected infants to all cCD infected infants revealed a pooled proportion of 28.3% across 47 included studies. The pooled proportion of mortality cases among all cCD infected infants was estimated at 2.2%. Sensitivity analyses were conducted to determine robustness of results based on review decisions. Sources of heterogeneity were investigated based on infant characteristics and study characteristics across three subgroups. Detailed results and interpretations are described in **S6 File**.

368 **Interpretation**

369 Our study expands on the body of work surrounding cCD and to our knowledge is the first 370 to estimate its burden using an exhaustive search strategy that identified 47 studies for meta-371 analysis. Prior global estimates of the burden of cCD were likely underestimated given the 372 influence of cited issues in diagnosing cCD on population-based data sources [18, 19]. Other 373 estimations have been based on the results of individual observational studies [79, 80]. Our meta-374 analysis of observational studies allows for a more robust estimation of the burden of cCD in 375 comparison to population-based data sources to describe the global burden of Chagas disease. A 376 previous systematic review estimated that the pooled cCD transmission rate was 4.7% (95% CI:

3.9-5.6%) [3]. Our study suggests that of these cCD cases, 28.3% might present with morbidity and
2.2% with mortality. Compared to other congenital infections, about 10.0-30.0% of infants with
congenital toxoplasmosis present with clinical symptoms at birth [81] and estimates from a study in
Brazil suggest that 11.1% of congenital infections will result in fetal death [82]. In addition, 10.015.0% of infants born with congenital cytomegalovirus are symptomatic at birth with a mortality
rate of <5% [83].

383 This study has raised concerns about the quality of studies that are conducted on cCD and 384 their ability to attribute symptoms to the disease. Only two eligible studies compared symptoms in 385 infected to non-infected mother-infant dyads [6, 60]. Torrico et al. revealed statistically significant 386 increase in premature rupture of membranes and statistically significant decrease in birth weight 387 and gestational age in infected dyads compared to non-infected dyads [6]. Similarly, Messenger et 388 al. showed that T.cruzi infected infants were 2.7 times as likely to be low birthweight compared to 389 non-infected infants (OR = 2.7, 95% CI 1.1, 5.8) [60]. Despite low risk of bias in these two studies, 390 most other included studies were found to be moderate or high risk of bias. Coupled with a lack of 391 comparison group, these studies have limited capability of attributing infected infants' signs and 392 symptoms to T. cruzi infection. Higher quality observational studies of cCD are needed.

393 There are various barriers to improving quality of cCD research. First, given that Chagas is 394 defined as a neglected tropical disease (NTD) by the World Health Organization (WHO) and 395 primarily affects impoverished populations, few resources have been dedicated to addressing the 396 disease [84]. Disease control efforts historically have focused on vector control [85] historically 397 leaving health systems unprepared to address cCD [86]. This is reflected in poor quality of studies 398 published prior to major regional efforts in Latin America and the Caribbean (2017) [87]. The 399 World Heart Federation has identified gaps in efforts to reduce cCD including ill-prepared 400 healthcare personnel and lack of pregnancy screening programs [86]. The control strategies to close 401 these gaps are cost-effective and reduce direct and indirect costs due to disease complications and 402 death [88-90]. Despite this, the body of cCD literature still lacks in quality and further investment is 403 needed.

404	We identified moderate to high risk of bias in over half of the included studies in reporting of
405	results (71%), exposure and outcome measurement (65%), statistical methods (61%), and declaration
406	of conflict and ethical statements (56%). Studies performed poorly in cCD diagnosis and reporting of
407	these results, which has been cited as an issue due to limited access to and performance of the gold
408	standard diagnostic algorithm, and the subsequent estimated 50% loss to follow-up of at-risk infants
409	[3, 18]. In regard to outcome measurement, some studies only report signs and symptoms displayed,
410	making it possible some may have been missed if studies did not explicitly evaluate for them.
411	Furthermore, certain symptoms were not reported frequently enough to be analyzed such as intensive
412	care unit (ICU) admission rate and low Apgar score. Four cases across three studies reported a low
413	Apgar score (below 7 at 1 minute), and seven cases across three studies were admitted to the ICU.
414	Low reporting frequency may be due to limitations in studies method of reporting; however, these
415	symptoms are an important proxy for clinical severity. Furthermore, the proportion of infants
416	presenting with low birth weight was 6.0%, lower than the rate in Latin America and the Caribbean
417	(8.7%), North America, Europe, Australia, and New Zealand (7.0%), and globally (14.6%) [91]. This
418	number is lower than expected and may be due to issues in outcome measurement and low-quality
419	reporting of results. Given that previous literature has identified signs and symptoms of cCD through
420	individual studies [2, 6-8, 10, 11, 79], the exhaustive list of signs and symptoms identified in this
421	study can improve clinical surveillance and guide outcome measurement in future observational
422	research.
423	The burden of cCD may increase as untreated children grow older and become chronic
424	cases that may develop cardiac and/or gastrointestinal symptoms [18]. cCD is almost 100% curable
425	in infants less than 1 year old and treatments are tolerated well [18]. In addition, treating infected
426	women and girls before they bear children can prevent vertical transmission of <i>T. cruzi</i> [92, 93]. As
427	such, our estimated proportion of 28.3% of cCD cases that present with symptoms may be
428	preventable through increased screening and treatment. Despite this, an analysis of the 2010 Global
429	Burden of Disease project data revealed that the decrease in Chagas' burden of disease in DALYs

430 was lower than that of other NTDs from 1990 to 2010 [94]. Given this burden is preventable, more

431 investment in disease control and our understanding of its burden is needed.

432 Strengths and limitations

433	This study has several strengths. First, to our knowledge there exists no other study that
434	provides a pooled proportion of symptomatic cCD infected infants. This study employed a
435	comprehensive search strategy, employed on databases that include those primarily focused on
436	Latin American research, without language restrictions. Additionally, estimates produced were
437	precise, as shown by narrow confidence intervals. The subgroup analysis focused on geographic
438	region allowed for informed analyses of how this factor influences the proportion of symptomatic
439	cCD infected infants. The mortality proportions estimates had low heterogeneity, suggesting studies
440	are similar enough to combine and confidently interpret their results. The subgroup analysis of
441	method of diagnosis informs how using a gold standard diagnosis influences the proportion of
442	symptomatic cCD infected infants. Lastly, subgroup analysis by symptoms displayed provides
443	further insight on the symptoms that are indicative of cCD in infants.
444	This study also has several limitations. First, grey literature was not searched, and given the
445	statistical significance of the Egger's bias estimate, this study is vulnerable to the effects of
446	publication bias and ultimately its generalizability and validity. Additionally, most included studies
447	did not compare morbidity or mortality in infected and non-infected mother-infant dyads. Without
448	the comparison to an non-infected control group, this limits ability to associate signs and symptoms
449	to cCD. The subgroup analysis of geographic region did not allow for disaggregation of results
450	further than Latin American and Caribbean region due to a small sample size of studies from
451	Mexico and Central America to analyse separately. Certain mortalities such as abortion and
452	stillbirth may be underreported as these cases were only included in this analysis if the fetus has
453	been diagnosed with Chagas disease post-mortem. Apgar scores were only collected at 1 minute as
454	the majority of studies did not report scores at 5 minutes. Additionally, the majority of I^2 estimates
455	for morbidity proportions displayed considerable heterogeneity between studies, suggesting
456	inconsistencies between studies are not due to chance alone and thus caution should be used when
457	interpreting results. The risk of bias assessment revealed that overall, 34(72.3%) of included articles
458	had a high risk of bias, 10 (21.3%) of articles had a moderate risk of bias, and only 3(6.4%) of

459	articles had low risk of bias. This, in combination with a significant difference between the
460	sensitivity analysis results excluding those studies with high risk of bias, suggests that the risk of
461	bias influencing the results is high. Lastly, there was a large portion of studies with missing data for
462	certain symptoms and missing values were assumed to be 0. Although this method likely meets the
463	assumption that studies only reported symptoms that were displayed and all other values were zero,
464	there is a chance this assumption was not met, and bias may have been introduced into these
465	subgroup results due to this imputation.

466 **Conclusion**

467	Among 47 included studies, the pooled proportion of symptomatic infections of cCD
468	among all infected fetuses and infants was 28.3%; the pooled proportion of mortality for cCD
469	among all cCD infected fetuses and infants was 2.2%. Caution should be used when interpreting
470	estimated morbidity proportions, as there was considerable heterogeneity between studies.
471	Furthermore, sensitivity analyses revealed that excluding studies with a high risk of bias was
472	significantly lower than the overall proportion (16.6%). Mortality proportions had low
473	heterogeneity between studies and may be interpreted confidently. Studies comparing infected and
474	non-infected mother-infant dyads are needed to determine the morbidity and mortality associated
475	with cCD.

476

477 Acknowledgements

The authors would like to thank Agustín Ciapponi and Luz Gibbons for their support and adviceduring this study.

480 **Disclosure of interests**

- 481 All authors declare that there are no financial, personal, political, intellectual, or religious conflicts
- 482 of interest. The author's views expressed in this publication do not necessarily reflect the views of
- 483 their affiliated organizations.

484

485 **Contribution to authorship**

- 486 **Conceptualization**: AFT, SM, PB, KPP, MEB, MC
- 487 Study conduction, data collection and data analysis: AFT, SM, PB, KPP, MEB, MC, DC
- 488 Drafting of first manuscript: AFT, SM
- 489 Review and approval of final manuscript: AFT, SM, PB, KP, MEB, MC, DC

490

491

493 **References**

- Institute for Health Metrics and Evaluation. GBD results tool. Seattle, WA: University of
 Washington.
- 496 2. Oliveira I, Torrico F, Munoz J, Gascon J. Congenital transmission of Chagas disease: a clinical
- 497 approach. Expert Rev Anti Infect Ther. 2010;8(8):945-56.
- 498 3. Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P. Frequency of the congenital
- 499 transmission of *Trypanosoma cruzi*: a systematic review and meta-analysis. Bjog.
- 500 2014;121(1):22-33.
- 501 4. Dumonteil E, Herrera C, Buekens P. A therapeutic preconceptional vaccine against Chagas
- 502 disease: A novel indication that could reduce congenital transmission and accelerate vaccine

503 development. PLoS Negl Trop Dis. 2019;13(1):e0006985-e.

- 504 5. The Apgar Score. Pediatrics. 2015;136(4):819-22.
- 505 6. Torrico F, Alonso-Vega C, Suarez E, Rodriguez P, Torrico MC, Dramaix M, et al. Maternal
- 506 *Trypanosoma cruzi* infection, pregnancy outcome, morbidity, and mortality of congenitally
- 507 infected and non-infected newborns in Bolivia. Am J Trop Med Hyg. 2004;70(2):201-9.
- Torrico F, Vega CA, Suarez E, Tellez T, Brutus L, Rodriguez P, et al. Are maternal re-infections
 with *Trypanosoma cruzi* associated with higher morbidity and mortality of congenital Chagas
 disease? Trop Med Int Health. 2006;11(5):628-35.
- 511 8. Kemmerling U, Osuna A, Schijman AG, Truyens C. Congenital transmission of *Trypanosoma*
- 512 *cruzi*: A review about the interactions between the parasite, the placenta, the maternal and 513 the fetal/neonatal immune responses. Frontiers in Microbiology. 2019;10.
- S14 9. Cevallos AM, Hernández R. Chagas' disease: pregnancy and congenital transmission. Biomed
 S15 Res Int. 2014;2014:401864.

- 516 10. Carlier Y, Sosa-Estani S, Luquetti AO, Buekens P. Congenital Chagas disease: an update. Mem
- 517 Inst Oswaldo Cruz. 2015;110(3):363-8.
- 518 11. Flores-Chavez M, Faez Y, Olalla JM, Cruz I, Garate T, Rodriguez M, et al. Fatal congenital
- 519 Chagas' disease in a non-endemic area: a case report. Cases J. 2008;1(1):302.
- 520 12. Carlier Y, Altcheh J, Angheben A, Freilij H, Luquetti AO, Schijman AG, et al. Congenital Chagas
- 521 disease: Updated recommendations for prevention, diagnosis, treatment, and follow-up of
- 522 newborns and siblings, girls, women of childbearing age, and pregnant women. PLoS Negl
- 523 Trop Dis. 2019;13(10):e0007694.
- 524 13. Basile L, Oliveira I, Ciruela P, Plasencia A, working group for developing the Catalonian
- 525 Screening Programme for congenital transmission of Chagas disease. The current screening
- 526 programme for congenital transmission of Chagas disease in Catalonia, Spain.
- 527 Eurosurveillance. 2011;16(38):19972.
- 528 14. Pan American Health Organization. EMTCT Plus, Framework for elimination of mother-to
 529 child transmission of HIV, Syphilis, Hepatitis B, and Chagas. 2017.
- 530 15. World Health Organization. Control of Chagas disease: second report of the WHO expert
 531 committee. Geneva: World Health Organization; 2002.
- 532 16. Chatelain E. Chagas disease research and development: Is there light at the end of the
 533 tunnel? Comput Struct Biotechnol J. 2017;15:98-103.
- 534 17. Carlier Y, Torrico F, Sosa-Estani S, Russomando G, Luquetti A, Freilij H, et al. Congenital
 535 Chagas disease: recommendations for diagnosis, treatment and control of newborns,
- siblings and pregnant women. PLoS Negl Trop Dis. 2011;5(10):e1250-e.
- 537 18. Picado A, Cruz I, Redard-Jacot M, Schijman AG, Torrico F, Sosa-Estani S, et al. The burden of
- 538 congenital Chagas disease and implementation of molecular diagnostic tools in Latin
- 539 America. BMJ Global Health. 2018;3(5):e001069.

540	19.	Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369
541		diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for
542		the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1204-22.
543	20.	Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA
544		statement for reporting systematic reviews and meta-analyses of studies that evaluate
545		healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.
546	21.	Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of
547		observational studies in epidemiology: a proposal for reporting. Meta-analysis Of
548		Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008-12.
549	22.	Tannis A, Matthews S, Puchner K, Bottazzi ME, Cafferata ML, Comandé D, et al. Estimation of
550		the morbidity and mortality of congenital Chagas disease: a systematic review and meta-
551		analysis. PROSPERO. 2020.
552	23.	Veritas Health Innovation. Covidence systematic review software. Melbourne, Australia.
553	24.	von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The
554		Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement:
555		guidelines for reporting observational studies. The Lancet. 2007;370(9596):1453-7.
556	25.	National Heart Lung and Blood Institute. Study Quality Assessment Tools.
557	26.	Freeman MF, Tukey JW. Transformations related to the angular and the square root. The
558		Annals of Mathematical Statistics. 1950:607-11.
559	27.	Jerrold H. Biostatistical analysis fourth edition. Englewood Cliffs, NJ: Prentice Hall; 1998.
560	28.	Stuart A, Arnold S, Ord JK, O'Hagan A, Forster J. Kendall's advanced theory of statistics:
561		Wiley; 1994.

- 562 29. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials.
- 563 1986;7(3):177-88.
- 564 30. Deeks JJ, Higgins JP, Altman DG, Group CSM. Analysing data and undertaking
- 565 meta analyses. Cochrane handbook for systematic reviews of interventions. 2019:241-84.
- 566 31. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med.
- 567 2002;21(11):1539-58.
- 568 32. Miller JJ. The inverse of the Freeman–Tukey double arcsine transformation. The American
 569 Statistician. 1978;32(4):138-.
- 570 33. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple,
- 571 graphical test. BMJ. 1997;315(7109):629-34.
- Apt W, Zulantay I, Arnello M, Oddó D, González S, Rodríguez J, et al. Congenital infection by
 Trypanosoma cruzi in an endemic area of Chile: a multidisciplinary study. Transactions of the
- 574 Royal Society of Tropical Medicine and Hygiene. 2013;107(2):98-104.
- Arcavi M, Orfus G, Griemberg G. Incidence of Chagas infection in pregnant women and
 newborn infants in a non-endemic area. Medicina. 1993;53(3):217-22.
- 577 36. Bahamonde MI, Baeza M, Chambel C, Ramirez C, Goycolea M, Cáceres J. Prevalencia de la
- 578 infección transplacentaria por *Trypanosoma cruzi* en el Hospital de Calama, II Región-Chile.
- 579 Revista de Patologia Tropical/Journal of Tropical Pathology. 2002;31(1):87-96.
- 580 37. Barona-Vilar C, Gimenez-Marti MJ, Fraile T, Gonzalez-Steinbauer C, Parada C, Gil-Brusola A,
- 581 et al. Prevalence of *Trypanosoma cruzi* infection in pregnant Latin American women and
- 582 congenital transmission rate in a non-endemic area: the experience of the Valencian Health
- 583 Programme (Spain). Epidemiol Infect. 2012;140(10):1896-903.

- 584 38. Barousse A, Eposto M, Mandel S, Martínez F. Congenital Chagas' disease in a non-endemic
- 585 area. Medicina. 1978;38(6 Pt 1):611-5.
- 586 39. Basile L, Ciruela P, Requena-Méndez A, Vidal MJ, Dopico E, Martín-Nalda A, et al.
- 587 Epidemiology of congenital Chagas disease 6 years after implementation of a public health
- 588 surveillance system, Catalonia, 2010 to 2015. Eurosurveillance. 2019;24(26):1900011.
- 589 40. Bern C, Verastegui M, Gilman RH, Lafuente C, Galdos-Cardenas G, Calderon M, et al.
- 590 Congenital *Trypanosoma cruzi* transmission in Santa Cruz, Bolivia. Clin Infect Dis.
- 591 2009;49(11):1667-74.
- 592 41. Bisio M, Seidenstein ME, Burgos JM, Ballering G, Risso M, Pontoriero R, et al. Urbanization of
 593 congenital transmission of *Trypanosoma cruzi*: prospective polymerase chain reaction study
 594 in pregnancy. Trans R Soc Trop Med Hyg. 2011;105(10):543-9.
- 595 42. Bittencourt ACL, Mota E, Ribeiro Filho R, Fernandes LG, Almeida PRCd, Sherlock ÍRdA, et al.
 596 Incidence of congenital Chagas' disease in Bahia, Brazil. 1985.
- 597 43. Buekens P, Cafferata ML, Alger J, Althabe F, Belizán JM, Bustamante N, et al. Congenital
- 598 transmission of *Trypanosoma cruzi* in Argentina, Honduras, and Mexico: an observational
- 599 prospective study. The American Journal of Tropical Medicine and Hygiene. 2018;98(2):478-
- 600 85.
- 601 44. Cardoso EJ, Valdéz GC, Campos AC, de la Luz Sanchez R, Mendoza CR, Hernández AP, et al.
 602 Maternal fetal transmission of *Trypanosoma cruzi*: a problem of public health little studied in
 603 Mexico. Experimental Parasitology. 2012;131(4):425-32.
- 604 45. Castillo S, Mardones C, Hormazábal G, Cubillos R, Barahona N, Zepeda S, et al. Chagas'
- disease in Chile. Urban sectors. VI. Frequency of Chagas' infection in blood donors and in
- 606 mothers and newborn infants of the cities of Antofagasta and Calama. II Region (1983-1984).
- 607 Boletin Chileno de Parasitologia. 1984;39(1-2):28-32.

608	46.	Contreras S, Fernández MR, Agüero F, Desse Desse J, Orduna T, Martino O. Congenital
609		Chagas-Mazza disease in Salta, Argentina. Rev Soc Bras Med Trop. 1999;32(6):633-6.
610	47.	Cucunuba Z, Valencia C, Flórez C, León C, Castellanos Y, Cardenas A, et al. Pilot program for
611		surveillance of congenital Chagas disease in Colombia 2010-2011. International Journal of
612		Infectious Diseases. 2012;16:e343.
613	48.	De Rissio AM, Riarte AR, Garcia MM, Esteva MI, Quaglino M, Ruiz AM. Congenital
614		Trypanosoma cruzi infection. Efficacy of its monitoring in an urban reference health center in
615		a non-endemic area of Argentina. Am J Trop Med Hyg. 2010;82(5):838-45.
616	49.	Flores-Chavez MD, Merino FJ, García-Bujalance S, Martin-Rabadan P, Merino P, Garcia-
617		Bermejo I, et al. Surveillance of Chagas disease in pregnant women in Madrid, Spain, from
618		2008 to 2010. Euro Surveill. 2011;16(38).
619	50.	Francisco-González L, Gastañaga-Holguera T, Montero BJ, Pérez ZD, Ramos MI, Amador PM,
620		et al. Seroprevalence and vertical transmission of Chagas disease in a cohort of Latin-
621		American pregnant women in a tertiary hospital in Madrid. Anales de Pediatría (English
622		Edition). 2018;88(3):122-6.
623	51.	Freilij H, Altcheh J. Congenital Chagas' disease: diagnostic and clinical aspects. Clinical
624		Infectious Diseases. 1995;21(3):551-5.
625	52.	Fumado V, Juncosa T, Posada E, Fisa R, Gallego M, Gascon J. Paediatric Chagas in a non-
626		endemic area. Enfermedades infecciosas y microbiologia clinica. 2014;32(5):293-6.
627	53.	Giménez MJ, Gómez-Ruiz MD, Calabuig A, Perez-Tamarit A, Otero MC, Fernández-Silveira J,
628		et al., editors. Congenital transmission of Chagas' disease in Latin American immigrants in a
629		health department of Valencia, Spain. European Congress of Clinical Microbiology and
630		Infectious Diseases; 2010; Vienna, AT: Clinical Microbiology and Infection.

631	54.	Iglesias J, Schenone S, Contreras M, Danitz A, Pineda C, Badulli A, et al. Chagas' disease in
632		Chile. Urban sections. IX. Frequency of Chagas' disease in mothers and newborn infants of
633		the Eastern Section of the Metropolitan area, Chile, 1985. Boletin chileno de parasitologia.
634		1985;40(1-2):30-3.
635	55.	Mallimaci MC, Sosa-Estani S, Russomando G, Sánchez Z, Sijvarger C, Alvarez IM, et al. Early
636		diagnosis of congenital Trypanosoma cruzi infection, using shed acute phase antigen, in
637		Ushuaia, Tierra del Fuego, Argentina. Am J Trop Med Hyg. 2010;82(1):55-9.
638	56.	Martínez de Tejada B, Jackson Y, Paccolat C, Irion O. Congenital Chagas disease in Geneva:
639		diagnostic and clinical aspects. Revue Medicale Suisse. 2009;5(222):2091-2, 4.
640	57.	Mayer JP, Biancardi M, Altcheh J, Freilij H, Weinke T, Liesenfeld O. Congenital infections with
641		Trypanosoma cruzi or Toxoplasma gondii are associated with decreased serum
642		concentrations of interferon-c and interleukin-18 but increased concentrations of
643		interleukin-10. Annals of Tropical Medicine & Parasitology. 2010;104(6):485-92.
644	58.	Mendoza C, Ruiz S, Maya S, Del Río M, Rodríguez E. Vertical transmission of <i>T. cruzi</i> : Our
645		experience at a secondary hospital in Barcelona. The Journal of Maternal-Fetal & Neonatal
646		Medicine. 2014;27(sup1):1-437.
647	59.	Mendoza J, Longa E, Contreras M, Sandoval L, Amigo C. Chagas' disease in Chile. Urban
648		sections. III. Frequency of Chagasic infection in mothers and newborns from the Hospital of
649		Copiapo (III Region, Chile). Boletin Chileno de parasitologia. 1983.
650	60.	Messenger LA, Gilman RH, Verastegui M, Galdos-Cardenas G, Sanchez G, Valencia E, et al.
651		Toward improving early diagnosis of congenital Chagas disease in an endemic setting. Clin
652		Infect Dis. 2017;65(2):268-75.

653	61.	Munoz J, Coll O, Juncosa T, Verges M, del Pino M, Fumado V, et al. Prevalence and vertical
654		transmission of Trypanosoma cruzi infection among pregnant Latin American women
655		attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis. 2009;48(12):1736-40.
656	62.	Munoz P, Lorca M, Thiermann E, Astorga B, Arias A, Pino S. Transmisión congénita del
657		<i>Trypanosoma cruz</i> i: Investigación en la maternidad del Hospital San Juan de Dios, de
658		Santiago. Revista Chilena de Pediatría. 1982;53(1-6):22-7.
659	63.	Murcia L, Simón M, Carrilero B, Roig M, Segovia M. Treatment of infected women of
660		childbearing age prevents congenital <i>Trypanosoma cruzi</i> infection by eliminating the
661		parasitemia detected by PCR. The Journal of infectious diseases. 2017;215(9):1452-8.
662	64.	Nisida IVV, Amato Neto V, Braz LMA, Duarte MIS, Umezawa ES. A survey of congenital
663		Chagas' disease, carried out at three Health Institutions in São Paulo City, Brazil. Revista do
664		Instituto de Medicina Tropical de São Paulo. 1999;41(5):305-11.
665	65.	Ortiz S, Zulantay I, Solari A, Bisio M, Schijman A, Carlier Y, et al. Presence of Trypanosoma
666		cruzi in pregnant women and typing of lineages in congenital cases. Acta tropica.
667		2012;124(3):243-6.
668	66.	Otero S, Sulleiro E, Molina I, Espiau M, Suy A, Martin-Nalda A, et al. Congenital transmission
669		of Trypanosoma cruzi in non-endemic areas: evaluation of a screening program in a tertiary
670		care hospital in Barcelona, Spain. Am J Trop Med Hyg. 2012;87(5):832-6.
671	67.	Rodari P, Angheben A, Gennati G, Trezzi L, Bargiggia G, Maino M, et al. Congenital Chagas
672		disease in a non-endemic area: Results from a control programme in Bergamo province,
673		Northern Italy. Travel Medicine and Infectious Disease. 2018;25:31-4.
674	68.	Rubio M, Ebensperger I, Howard J, Knierim F, Naquira F. Search for Chagas' disease in 100
675		mothers of premature infants, with the finding of a case of congenital Chagas' disease.

676 Boletin Chileno de Parasitologia. 1962;17:13-6.

677	69.	Salas NA, Cot M, Schneider D, Mendoza B, Santalla JA, Postigo J, et al. Risk factors and
678		consequences of congenital Chagas disease in Yacuiba, south Bolivia. Trop Med Int Health.
679		2007;12(12):1498-505.
680	70.	Sasagawa E, Aiga H, Soriano EYC, Marroquín BLC, Ramírez MAH, de Aguilar AVG, et al.
681		Mother-to-child transmission of chagas disease in El Salvador. The American Journal of
682		Tropical Medicine and Hygiene. 2015;93(2):326-33.
683	71.	Sosa-Estani S, Dri L, Touris C, Abalde S, Dell'arciprete A, Braunstein J. Vectorial and
684		congenital transmission of <i>Trypanosoma cruzi</i> in Las Lomitas, Formosa. Medicina (B Aires).
685		2009;69(4):424-30.
686	72.	Streiger M, Fabbro D, del Barco M, Beltramino R, Bovero N. Congenital Chagas disease in the
687		city of Santa Fe. Diagnosis and treatment. Medicina (B Aires). 1995;55(2):125-32.
688	73.	Tello P, Fernández P, Sandoval L, Ampuero G, Pizarro T, Schenone H. <i>Trypanosoma cruzi</i>
689		infection in mother and child from the north section of Santiago, Chile. Boletin Chileno de
690		Parasitología. 1982;37(1/2):23-4.
691	74.	Valenzuela M, Pinto M, Contreras M, Sandoval L, Silva M, Cerda G, et al. Enfermedad de
692		Chagas en Chile. Sectores urbanos. VIII. Frecuencia de la infeccion por Trypanosoma cruzi en
693		donantes de sangre en madres y recien nacidos de las ciudades de Rancagua, San Fernando
694		y Santa Cruz. VI Region, 1983-1984. Bol Chil Parasitol. 1984:75-7.
695	75.	Valperga SM, Castagnaro AE, Ovejero de Valperga GJ, Mirabella de Miotti MG, Arnau Enrico
696		SC, Alonso BE, et al. Prevalencia de Chagas congénito: segundo estudio en Tucumán,
697		Argentina. Cienc Méd(San Miguel de Tucumán). 1992:137-55.
698	76.	Vicco MH, Rodeles L, Capovilla GS, Perrig M, Choque AGH, Marcipar I, et al. IgG
699		autoantibodies induced by <i>T. cruzi</i> during pregnancy: Correlation with gravidity

700 complications and early ou	utcome assessment of the newborns.	Maternal and Vhild Health
--------------------------------	------------------------------------	---------------------------

- 701 Journal. 2016;20(10):2057-64.
- 702 77. Villablanca E, Osorio L, Salinas P. Chagas' disease in Chile. Urban sections. VII. Frequency of
- 703 Chagasic infection in blood donors and mothers and newborns from the cities of San Felipe
- 704 and Los Andes. V Region, 1983-1984. Bol Chil Parasitol. 1984;39(3-4):72-4.
- 705 78. Zaidenberg M, Segovia A. Congenital Chagas' disease in Salta, Argentina. Revista do Instituto
 706 de Medicina Tropical de São Paulo. 1993;35(1):35-43.
- 707 79. Cevallos AM, Hernández R. Chagas' Disease: Pregnancy and congenital transmission.
 708 2014;2014:1-10.
- 709 80. Messenger LA, Bern C. Congenital Chagas disease. Current Opinion in Infectious Diseases.
 710 2018;31(5):415-21.
- 81. Guerina NG, Marquez L, Weisman LE. Congenital toxoplasmosis: Clinical features and
 diagnosis. UpToDate UpToDate, Waltham, MA. 2019.
- 82. Bragheto M, Murata FHA, Spegiorin L, Pereira-Chioccola VL, de Mattos L, Mattos CCBd. Fetal
 death caused by Toxoplasma gondii infection. *International Journal of Infectious Diseases*2019; **79**: 82.
- 716 83. Boppana SB, Ross SA, Fowler KB. Congenital cytomegalovirus infection: clinical outcome.

717 Clinical infectious diseases: an official publication of the Infectious Diseases Society of

- 718 America. 2013;57 Suppl 4(Suppl 4):S178-S81.
- World Health Organization. Accelerating work to overcome the global impact of neglected
 tropical diseases. World Health Organization Geneva, Switzerland; 2012.
- 721 85. Dumonteil E, Herrera C. Ten years of Chagas disease research: Looking back to
- achievements, looking ahead to challenges. PLoS Negl Trop Dis. 2017;11(4):e0005422.

- 723 86. Echeverría LE, Marcus R, Novick G, Sosa-Estani S, Ralston K, Zaidel EJ, et al. WHF IASC
- 724 Roadmap on Chagas Disease. Glob Heart. 2020;15(1):26-.
- 725 87. Crudo F, Piorno P, Krupitzki H, Guilera A, López-Albizu C, Danesi E, et al. How to implement
- 726 the framework for the elimination of mother-to-child transmission of HIV, syphilis, hepatitis
- 727 B and Chagas (EMTCT Plus) in a disperse rural population from the Gran Chaco region: A
- tailor-made program focused on pregnant women. PLoS Negl Trop Dis.
- 729 2020;14(5):e0008078.
- 730 88. Imaz-Iglesia I, Miguel LG, Ayala-Morillas LE, García-Pérez L, González-Enríquez J, Blasco-
- 731 Hernández T, et al. Economic evaluation of Chagas disease screening in Spain. Acta Trop.
- 732 2015;148:77-88.
- Sicuri E, Muñoz J, Pinazo MJ, Posada E, Sanchez J, Alonso PL, et al. Economic evaluation of
 Chagas disease screening of pregnant Latin American women and of their infants in a non
 endemic area. Acta Trop. 2011;118(2):110-7.
- 90. Billot C, Torrico F, Carlier Y. Cost effectiveness study of a control program of congenital
 737 Chagas disease in Bolivia. Revista da Sociedade Brasileira de Medicina Tropical. 2005;38
 738 Suppl 2:108-13.
- 91. Blencowe H, Krasevec J, de Onis M, Black RE, An X, Stevens GA, et al. National, regional, and
 worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic
 analysis. The Lancet Global Health. 2019;7(7):e849-e60.
- 742 92. Fabbro DL, Danesi E, Olivera V, Codebó MO, Denner S, Heredia C, et al. Trypanocide
- 743 treatment of women infected with *Trypanosoma cruzi* and its effect on preventing
- congenital Chagas. PLoS Negl Trop Dis. 2014;8(11):e3312.

- 745 93. Álvarez MG, Vigliano C, Lococo B, Bertocchi G, Viotti R. Prevention of congenital Chagas
- 746 disease by Benznidazole treatment in reproductive-age women. An observational study.
- 747 Acta Tropica. 2017;174:149-52.
- 748 94. Stolk WA, Kulik MC, le Rutte EA, Jacobson J, Richardus JH, de Vlas SJ, et al. Between-country
- 749 inequalities in the neglected tropical disease burden in 1990 and 2010, with projections for
- 750 2020. PLoS Negl Trop Dis. 2016;10(5):e0004560-e.

751

752 Supporting information

- 753 **S1 File**. Morbidity signs and symptoms of congenital Chagas disease
- 754 S2 File. Search strategy
- 755 S3 File. Hierarchy for consideration of full-text articles
- 756 **S4 File.** Summary of extracted data
- 757 S5 File. Risk of bias algorithms, summary within-domain risk of bias, and results
- 758 S6 File. Sensitivity analyses results and assessment of heterogeneity
- 759 S1 Dataset. Data extraction form
- 760 S1 Table. Congenital cases morbidity characteristics
- 761 S2 Table. Congenital cases mortality characteristics

762