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Two methods of calculating the reproduction index from daily new infection data are considered,
one by using the generation time tG as a shift (RG), and an incidence-based method directly derived
from the differential equation system of an SIR epidemic dynamics model (RI). While the former is
shown to have few in common with the true reproduction index, we find that the latter provides a
sensitive detection device for intervention effects and other events affecting the epidemic, making it
well-suited for diagnostic purposes in policy making. Furthermore, we introduce a similar quantity,
Rcalc
I , which can be calculated directly from RG. It shows largely the same behaviour as RI , with

less fine structure. However, it is accurate in particular in the vicinity of R = 1, where accuracy
is important for the corrrect prediction of epidemic dynamics. We introduce an entirely new, self-
consistent method to derive, from both quantities, an improved Rcorr

I which is both accurate and
contains the details of the epidemic spreading dynamics. Hence we obtain R accurately from data
on daily new infections (incidence) alone. Moreover, by using RI instead of RG in plots of R versus
incidence, orbital trajectories of epidemic waves become visible in a particularly insightful way,
demonstrating that the widespread use of only incidence as a diagniostic tool is clearly inappropriate.

PACS numbers:

I. INTRODUCTION

The outbreak of the illness COVID-19, caused by the
SARS-CoV-2 virus, has resulted in a pandemic with un-
precedented impact on societies all over Earth. Mitiga-
tion measures included complete lockdowns of societal
life, with severe social, economic, and individual con-
sequences [1, 2]. The dramatically varying success [3–
6] of the interventions owed in part to cultural differ-
ences [3], but also to only limited understanding of infec-
tion spreading dynamics and a severe lack of established
methods in epidemic state diagnosis and prediction. Im-
provement of this general situation is imperative, in par-
ticular as similar events are expected to strike more often
in the future [7–9].

In search for optimized strategies, a two-fold view must
be adopted. One the one hand, one needs to understand,
in retrospect, which interventions have had what effect
on the epidemic spreading dynamics, in order to properly
design future interventions. This requires sensitive diag-
nosis tools for assessing the state of the epidemic on a (if
possible) daily basis. On the other hand, tools are needed
for predicting the future of epidemic dynamics as reliably
as possible if conditions are known. Aside from extensive
simulation, this requires careful analysis of data, such as
the number of infected citizens [2, 10].

Here we discuss the system in terms of an SIR model
[11, 12], referring to the number of susceptible (S), in-
fected (I), and recovered (R) individuals, respectively,
in a population of N citizens. Here we identify with
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R all those who are neither susceptible nor infected
(R = N −S− I), which includes those who are deceased.
While the ratio of deceased vs. recovered individuals is
of greatest societal concern, it can be disregarded here,
as we will solely discuss prevention measures addressing
the spreading of the disease. We define I as the number
of individuals who carry sufficient viral load to be conta-
gious. They are assumed to remain in this state for an
average duration τ . Although the viral load changes with
time during the illness, contagion can be sufficiently well
described by this simple picture for our purposes [13].

The spreading dynamics of an epidemic can then be
described by a set of two equations [12],

∂ts = −csi ,

∂ti = csi− i
τ ,

(1)

where ∂t is the derivative with respect to time, while
s(t) = S/N and i(t) = I/N are the fractions of sus-
ceptible and infected individuals in the population, re-
spectively. The constant c is the average number of new
infections a single infected individual would cause per
unit time in an otherwise infection-free (but susceptible)
population. It is accessible to interventions such as clos-
ing schools, wearing facial masks etc., but this shall not
concern us here, as we focus solely on methods to detect
the current stage of an epidemic and to predict its near
future development, at given c.

II. THE REPRODUCTION INDEX

The base reproduction index, R0, is related to c via

R0 = cτ. (2)
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It denotes the total average number of individuals newly
infected by a single infected one under the above condi-
tions. Since the probability of infection is directly pro-
portional to the fraction of susceptibles, we have

R(t) = cτs(t). (3)

for the dynamic reproduction index, R(t) [12]. The lat-
ter is of tremendous importance for assessing the current
status of an epidemic. If R = 1, I stays constant, but
when R > 1, each infected individual causes more than
one new infection on average, such that I(t) increases
exponentially. It is thus of major interest to determine
R from epidemiological data as accurately as possible, in
particular in the vicinity of unity.

By combining eq. (3) with the first eq. (1), we obtain

R(t) =
τ |∂ts|
i

. (4)

This relies only on quantities which can be derived from
data usually available from the health care system. ∂tS
represents the number of new infections per unit time
(daily incidence) and can be considered known accu-
rately. τ is known from clinical experience with the dis-
ease, and I(t) (and hence i) can be estimated once τ is
known. We will see below that it is in particular the
dynamic variations of R which yield considerable insight
into the infection process.

Since infection data are discrete data collected on a
daily basis [14], we will now write down a discrete version

of eq. (4). The daily incidence will be called Ṡ = |∂tS|.
τ as well as t will henceforth be expressed in units of
days, and treated as discrete variables. We then may
be tempted to simply write R(t) = τ Ṡ/I. However, we
must be aware that for rather general infrastructural rea-
sons, the reporting efficiency of infection numbers varies
characteristically, e.g., on weekends. We therefore should
provide for suitable averaging. Hence we write

RlkI (t) =

1
2l+1

l∑
j=−l

−Ṡ(t− j)

1
k

l+k∑
j=l+1

I(t− j)
τ, (5)

where l and k are parameters determining the intervals
over which −Ṡ and I are being averaged, respectively.
Since the typical variability of data reflects the sequence
of seven weekdays, it appears reasonable to average −Ṡ
over seven consecutive days. If we furthermore average
the (less variable) number of infected individuals over a
period k = τ , we obtain

RI(t) = R3τ
I (t) =

1
7

+3∑
j=−3

Ṡ(t− j)

τ+3∑
j=4

I(t− j)
τ2 (6)

for the incidence-based dynamic reproduction index.
While Ṡ is known precisely, I can only be estimated

based, among others, on τ . However, this has only minor
effects on the accuracy of RI and its dynamic variations,
as I enters only as an average over the duration τ .

FIG. 1: Top panel: the two reproduction indices RG(t) (dot-
ted) and RI(t) (solid) as obtained form infection data in Ger-
many during the SARS-CoV2 pandemic. The arrows indicate
certain events and interventions (see table I) as discussed in
the text. The grey shaded curve at the bottom indicates the
prevalence (number of infected). the corresponding grey scale
bar to the right corresponds to one half million people. Bot-
tom panel: RI(t) as obtained from RG(t) through eq. (14)
for different values of τ (black curves) and numerically from
infection data (grey, same as black curve in top panel). The
vertical arrows are located where the black curves reach unity,
and coincide well with the extrema of the prevalence. In the
interval t ∈ [75, 225], the prevalence curve has been scaled by
a factor of 20 for visibility.

The merits of RI show up clearly when compared to
other definitions of reproduction indices which are cur-
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TABLE I: A number of events marked in the top panel of
Fig. 1.

t date label event
[d] (d/m/y) (Fig. 1)

65 5/5/2020 open reopening stores and restaurants
109 18/6/2020 Tönnies outbreak at Tönnies company site

(Gütersloh) is noticed
245 1/11/2020 LL lockdown light
275 1/12/2020 LA december lockdown announced
290 16/12/2020 LD december lockdown starts
306 1/1/2021 NY new year’s day
347 11/2/2021 MG Mardi Gras
400 5/4/2021 EH Easter holidays

rently used in epidemic data based diagnostics of the in-
fection dynamics. Since we will later use data from Ger-
many in our analysis, we refer to what is issued by the
Robert Koch Institute (RKI) in Germany as the ”repro-
duction index”. It is based on the idea of calculating the
ratio of incidence data, taken on two successive instants,
separated by a delay time tG [15]. The latter is called
the generation time and represents the average time in-
terval between an infection and a subsequent ”successful”
transmission of the infection to a third person. The RKI
uses tG = 4 days. The definition of this generation-time
based reproduction index is then [16, 17]

RG(t) =

3∑
j=0

Ṡ(t− j)

3∑
j=0

Ṡ(t− j − tG)

. (7)

Its mathematical meaning becomes clearer in a continu-
ous formulation,

Rcont
G (t) =

∂ts(t)

∂ts(t− tG)
. (8)

This can be written as

R+
G(t) = Rcont

G (t+ tG) = 1 + tG ∂t ln |∂ts(t)|, (9)

where we have truncated the Taylor expansion after
the first term. This reveals that RG is directly re-
lated to the logarithmic derivative of the daily incidence,
|∂ts(t)|, with some delay equal to tG. Hence when-
ever the daily incidence happens to vary exponentially,
∂ts(t) ∝ exp (R− 1)t, RG can indeed be interpreted as a
reproduction index. At any other time, however, when
this is not the case, the use of RG as a reproduction in-
dex lacks mathematical foundation. Note furthermore
that while c enters directly in R (as given by eqs. (3) and
(4)), it cancels out in all expressions for RG. Hence pub-
lic measures affecting c will readily show up in RI , which
has been defined according to eq. (4), but not in RG.

III. APPLICATION TO EPIDEMIC DATA

From data obtained in Germany during the SARS-
CoV2 pandemic in 2020 and 2021 [18], let us now cal-
culate RI(t) and RG(t) by means of eqs. (6) and (7),
respectively. The result is displayed in the top panel of
Fig. 1, exposing the remarkable differences between the
two quantities. There is a strong tendency of RG(t) to
stay closer to unity than RI(t), which reflects the dynam-
ics more pronouncedly. Events like the strong increase of
RI(t) up to a value of 2.3 at the end of October 2020
(around day 245) hardly show up in RG(t).

For a more detailed discussion, a number of important
events are listed in table I. After day 63, which corre-
sponds to May 5, 2020, we see a sharp increase of RI . At
the end of the first wave during March and April, the Ger-
man Chancellor and the Conference of prime ministers of
the Länder had decided to relax public life to almost nor-
mal conditions. Hence stores, restaurants, cultural insti-
tutions, and museums were opened. Because there was
only little change in incidence (and prevalence) during
the rest of spring and summer, it went unnoticed that
the reproduction index was undergoing strong changes.
That these were much less pronounced in RG (which was
used) than in RI made their detection particularly diffi-
cult.

A few days after a strong rise in RG was noticed, a
major disease outbreak was reported on day 109 at the
Tönnies sloughterhouse site near Gütersloh, among the
large number of loan workers living at the site. But since
prevalence remained low after that, the further rise of R
was not noticed, or taken seriously, certainly in part due
to the noisiness of the data. After the incidence then
rose very sharply in the fall of 2020, the German gov-
ernment decided on what became known as a ”lockdown
light”, starting from November 2nd (day 245). This was
associated with a hope of possibly easing restrictions for
Christmas.

Because the pronounced decrease of the reproduction
index is not reflected by RG, and incidence did not seem
to decrease, it was not noticed that the situation was ac-
tually relaxing during November. Consequently, a hard
lockdown (including widespread closures of shops, busi-
nesses, schools, etc.) was announced on December 1st
(day 275), which would start on December 16th (day
290). In particular, the relaxations for Christmas that
had been previously promised were withdrawn. This an-
nouncement led to a short-lived but sharp increase in in-
fections, as many people squeezed through the two-weeks
bottleneck for their Christmas shopping. The subsequent
decline (presumably due to the start of the Christmas
school holidays) abruptly terminated on new year‘s day
(day 347), when many people had visited relatives and
friends. A similar feature appears on day 400 at the
Easter holidays, for similar reasons. Clearly, most (if not
all) of these features are only poorly (if at all) discernible
in RG.

Nevertheless, it may seem that some features in RG(t)
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appear a little earlier than corresponding features in
RI(t). This is apparent most clearly from the points
where unity is crossed, which for RG(t) lie significantly
before those for RI(t). This could be interpreted as RG
being better suited for forecast purposes than RI , at it
discloses the same information at an earlier time. How-
ever, this turns out to be a delusive mathematical arti-
fact. As we see from eq. (9), with help form eq. (1), R+

G

can be written as

R+
G = 1 + tG

∂t|∂ts|
csi

. (10)

By means of eqs. (4) and (1), the numerator of the second
term can be expressed as

∂t|∂ts| =
i

τ
∂R + |∂ts|(cs−

1

τ
). (11)

Consequently, we have

1

tG
(R+
G − 1) =

1

τ
(R− 1) + ∂tlnR. (12)

In other words, the deviation of R+
G(t) from unity is com-

posed of a term proportional to the deviation of R(t) from
unity and the logarithmic time derivative of R(t). Hence
RG has a much more complex structure than R, exhibit-
ing additional features (and additional noisiness) from
the time derivative of R. It hence cannot be interpreted
in terms of a true reproduction index.

We have seen above that RI is a powerful diagnosis
tool, as it reacts sensitively to events and interventions
in society. Nevertheless, it comes with its downsides.
From the second wave (around day 300) we see that
the absolute magnitude of RI cannot be accurate, as
the number of infections rises considerably shortly be-
fore day 300, while RI is clearly smaller than unity. This
may be attributed to the fact that RI depends on τ (cf.
eqs. (6)), which cancels out for RG, as it is obvious form
eq. (7). The inherent problem is that τ may not only
be known with poor accuracy, but it can also undergo
gradual changes during the epidemic. An obvious cause
may be the gradual appearance of mutations, which often
result in shifts in the clinical picture, possibly including
changes in the duration of the illness, hence in τ . It will
only rarely be possible to receive regular reliable data on
τ .

IV. SELF-CONSISTENT CORRECTION OF R

It turns out that the independence of RG from τ may be
exploited here by inverting eq. (12), in order to calculate
RI from RG. If we denote by DG = R+

G − 1 the deviation

of R+
G from unity, we can rewrite eq. (12) (by multiplying

with τ and dividing by R) into

∂t

(
τ

R(t)

)
+

(
DG(t)

tG
+

1

τ

)
τ

R(t)
− 1 = 0. (13)

This is a linear differential equation in τ/R and can be
solved by means of the method of variation of parameters.
The result is

Rcalc
I (t) =

τe
∫
p(t)dt∫

e
∫
p(t)dtdt

, (14)

where

p(t) =
DG(t)

tG
+

1

τ
. (15)

One finds that Rcalc
I depends on τ only weakly, because

its role as a prefactor im eq. (14) and its appearance in
p(t) cancel each other to a large extent. In the bottom

panel of Fig. 1, Rcalc
I (t) thus obtained is plotted for three

different values of τ as the black curves. The grey curve is
RI as in the top panel. Clearly, all of the more prominent
features of RI are reproduced.

There are two main differences between Rcalc
I (t) and

RI(t). First, there is a vertical shift which varies with
time only very slowly. Second, much finer details are
visible in RI . The striking feature of Rcalc

I is that close
to its transitions through unity, there is almost no sensi-
tivity to τ . Hence should τ vary over the course of the
epidemic by, e.g., as much as 40 percent (as between the

dashed and the dotted curve), the shape of Rcalc
I (t) would

not change much. In particular, the points where it hits
unity do not change their position appreciably. As the
vertical arrows show, these points are very close to the
extrema of the number of infected people, as one would
correctly expect for the reproduction index.

Hence what we display in the bottom panel of Fig. 1
may well be called the best of both worlds. In RI(t)
we see very fine details which allow to identify the ef-
fects of social events, and to assess the effectiveness of
public interventions in retrospect. In Rcalc

I (t), which we
derived from RG(t) by means of eq. (14), we see less de-
tail, but obtain a more accurate estimate of the repro-
duction index. This allows for more reliable predictions
of near-future epidemic dynamics, as Rcalc

I is particularly
accurate close to unity. The difference between RI and
RG is presumably due to a (slowly) varying τ .

If we explicitly demand variation in τ to be slow as
compared to the rapid variations seen in RI , we can ap-
proximately determine τ(t) from RI and RG in a self-
consistent manner. First we calculate the ratio r =
Rcalc
I /RI and fit a low order polynomial q(t) to it, such

that high-frequency components are cut off. Then we
set τ1(t) = τ0q(t), where τ0 is the constant τ we used
initially calculating RI from eq. (6). This yields a new
p1(t) = 1

tG
DG + 1

τ1(t)
, which we use, together with τ1(t),

to recalculate Rcalc
I from eq. (14). This is repeated un-

til the result of the polynomial fit has become stable.
Rcorr
I = q(t)RI is then a reproduction index which is self-

consistently matched to the one obtained from RG and
should, just as the latter, provide high accuracy (in par-
ticular close to unity) while keeping all the fine details we
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FIG. 2: Self-consistent matching of the low-frequency com-
ponents of RI(t) (black) and Rcalc

I (t) (grey). Matching has
been achieved by setting τ = q(t)τ0, where τ0 = 14 has been
used for the initial calculation of RI(t), and q(t) is a fourth-
order polynomial. It is indicated by the dotted curve. The
corresponding values of τ(t) can be read off the scale to the
right.

found to be present in RI , which we initially calculated
from eq. (6).

The result we obtained using fourth-order polynomi-
als for q(t) is presented in Fig. 2. After five iterations,
the result for q(t), did not change anymore. As one can

clearly see, Rcalc
I has been rather well matched to Rcorr

I ,
aside from some high-frequency variations. We have ex-
ploited the separation of time scales between τ and RI .
One may admit faster variations to τ in order to achieve
an even better match between Rcorr

I and Rcalc
I , but this

shall not concern us here. q(t) is indicated by the dot-
ted curve in the figure, to be read off the left scale. The
scale to the right shows the corresponding values of τ .
Note that the pronounced peak around day 240 reaches
a very high value, deviating from unity by about four
times more strongly than RG (dotted curve in Fig. 1).
This highlights the importance of our method to calcu-
late RI for predictions of near-future epidemic spreading
dynamics. Around day 240, using RG would have (or ac-
tually has) over-estimated the doubling time of infections
by a factor of 4.5.

V. REVEALING THE ORBITAL STRUCTURE
OF EPIDEMIC WAVES

Finally, it is instructive to elaborate on some additional
aspects of data presentation and analysis. In Fig. 3a
we plot the number of new infections during a period τ
against the prevalence, i.e., the total number of currently
ill individuals. The ordinate is calculated from the seven-
day averaged incidence by multiplying with τ/7. Each

FIG. 3: Day-by-day epidemic trajectories (circles with poly-
gons). First wave (open), t < 130. Second wave (filled grey),
t ∈ [130, 351]. Third wave (filled black), t > 351. (a) Total
number of new infections within a time interval τ versus total
number of acutely infected. Each wave appears as a clockwise
orbit, with smaller sub-orbits. Data points tend to group
along the first diagonal (dashed line). Solid curve: a sam-
ple simulation of an epidemic trajectory, showig the generic
clockwise orbit structure, very similar to the data from the
first wave. Both are asymptotic to the dash-dotted line with
slope R0 = 3.3. The second (lower) asymptote corresponds to
the terminal value of R = 0.14. The horizontal axis spans the
maximum range of SARS-CoV2 infections acceptable to the
German health system (about one half million). (b) Repro-
duction index versus seven-days incidence. The orbit struc-
ture is more clearly revealed. This presentation allows to as-
sess in which phase of an epidemic wave the system currently
is. All data stay just above the asymptotic (dotted curve)
solution of eq. (1), which enters the vertical axis at the ter-
minal value of R1 = 0.14. Various incidents mentions in table
I are marked along the trajectory. Note that R is generally a
forerunner to incidence, and a new orbit is marked as a sharp
increase of R. Hence one may miss important developments
when monitoring incidence alone.
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of the small circles represents one day, with the symbol
style representing the three epidemic waves (open, first
wave. full grey, second wave. full black, third wave).
The data are gathering into an elongated cloud along the
first diagonal (dashed line). If we assume that about 3%
of individuals infected with SARS-CoV2 need intensive
care, we can estimate the maximum prevalence the soci-
ety could bear. Since there are 16734 intensive care beds
in Germany [19], we conclude that the displayed range of
the abscissa represents the maximum ”acceptable” range
of prevalence (one half million infected individuals).

In order to analyse the internal structure of the data
cloud, we compare with a numerically simulated sample
trajectory of eq. (1), which is shown as the solid curve.
It forms a lobe, starting off at the origin with a slope
equal to R0, proceeds clockwise (arrows) and re-enters
the origin at an inferior slope of R1 = 0.14 (lower dash-
dotted line) for t −→ ∞. The initial slope, which is
indicated by the upper dash-dotted line, follows eq. (4),
since the ordinate and abscissa just represent τ |∂ts| and
i, respectively. For the simulation, we have set R0 =
3.3 in order to match typical values assumed for SARS-
CoV2. The size of the lobe corresponds to the number
of people affected by the epidemic. As a consequence of
the structure of the solutions to eq. (1), R1 is a function
of R0, and R1(3.3) = 0.14.

In fact, the data representing the first wave (open cir-
cles close to the origin) exhibit just the same lobe shape,
initially following the dash-dotted line, and as time pro-
ceeds is traversed in clockwise direction. A closer look
at the second (grey) and third (black) wave reveals that
their trajectories tend to form clockwise orbits as well,
with smaller sub-orbits, thus exposing additional fine
structure of the infection dynamics. Positioning data
within the course of an orbit may be very useful to assess
the stage of the epidemic spreading.

This orbit structure is revealed even more clearly in a
different presentation, when we plot RI versus incidence,
as shown in Fig. 3b. What we can clearly see, for in-
stance, is that the situation was already on a relaxing
path when the ”lockdown light” came into effect on day
245. When the hard December lockdown was announced
on day 275, the orbit was in fact almost finished and
back towards the origin. Things would thus have proba-
bly eased off by themselves, if no major mistakes would
have been made. After Mardi Gras (day 347), incidence
stayed calm, and RG remained featureless within noise
level, as Fig. 1 (top) shows. Hence no countermeasures

were taken. The trajectory in Fig. 3b, however, clearly
shows that this was when a new orbit had formed. This
very probably launched the third wave. Most impor-
tantly, we see from Fig. 3b that the widespread exclusive
use of the incidence (abscissa) for assessing the state of
the epidemic is void of any sound basis, as it does not
reflect the orbital structure of epidemic waves. In par-
ticular, the use of threshold values for incidence in leg-
islation on public mitigation interventions is clearly not
appropriate.

VI. CONCLUSIONS

We have presented analysis tools for different aspects
of epidemic mitigation and management interventions.
First, we showed that from data of daily incidence (and
prevalence derived therefrom) one can derive, via eq. (6),
an accurate value for the reproduction index. RI(t) pro-
vides a very sensitive seismograph of the currrent state
of the epidemic. Second, we have shown that a simi-
lar quantity, Rcalc

I (t), can be derived via eq. (14) from
the generation-based reproduction index, RG. It has the
same general behaviour as RI(t), but has the particu-
lar merit of being very accurate whenever it is close to
unity. This is of great interest for forecasting the epi-
demic development, which abruptly changes at R = 1.
The fact that it lacks much of the fine details showing up
in RI(t) makes it particularly suited for polynomial ex-
trapolation towards unity. Third, we have shown that a
much improved (corrected) form of R(t) can be obtained
in a self-consistent manner, thereby also providing the
so far only poorly known, slowly varying, τ(t). Finally,
we have demonstrated that a presentation of standard
epidemic data in the plane spanned by the reproduction
index and the incidence exploits the internal orbit struc-
ture of epidemic waves in a way beneficial for assessing
the current epidemic state of affairs. It should be a very
useful tool for policy makers during dangerous epidemics,
such as the recent outbreak of COVID-19.
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