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Abstract 

Background: Prognostic biomarkers for patients admitted for a myocardial infarction (MI) 

episode are of great interest for risk stratification and follow-up care after discharge. Multi-

omics analysis is a standard approach for the discovery of diagnostic and prognostic 

biomarkers, but few studies have evaluated the prognostic potential of molecular markers in 

combination with echocardiographic imaging variables.  

 

Methods: We measured the plasma proteome and lipidome in patients discharged from an 

acute MI and followed for secondary outcomes in New Zealand for a median time of 4.85 years 

(CDCS, N=741 for network inference, N=464 for predictive analysis) and in Singapore for a 

median time of 2.0 years  (IMMACULATE, N=190 for validation). Using a network-based 

integrative analysis framework iOmicsPASS+, we mapped proteins, lipids, echocardiographic 

imaging variables and clinical biomarkers to a unified network and identified predictive 

subnetwork signatures of major adverse cardiac events (MACE) and heart failure 

hospitalization (HFH) in CDCS, with validation in IMMACULATE.  

 

Results: Specific plasma proteins and lipids showed direct connections to cardiac imaging 

variables in the network. The gold standard biomarker, NT-proBNP, remained one of the best 

prognostic marker of MACE and HFH, but a number of plasma proteins involved in 

extracellular matrix organization, chemotaxis, inflammation, and apoptosis were also strong 

predictors of both outcomes. Hub proteins of subnetwork signatures were enriched in the heart, 

arteries, kidneys, liver and lungs. BMP10, CAPG, EFEMP1, FSTL3, RSPO4, and RELT were 

those directly connected to the echocardiographic variables and natriuretic peptides. In 

particular, EFEMP1 and FSTL3 in combination with diastolic function (E/e’) were strongly 

predictive of HFH in both CDCS (AUC 0.78, 95%CI 0.72-0.83) and IMMACULATE (AUC 0.72, 

0.61-0.84).  

 

Conclusions:  

Our integrative analysis revealed competing signatures beyond established biomarkers of 

post-MI HFH, comprised of plasma proteins correlated with impaired diastolic function after 

the primary MI episode.   

  

Keywords 
Integrative analysis, multi-omics, echocardiography, major adverse cardiac events, heart 

failure-associated hospitalisation 
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Introduction 
Circulating proteins and peptides of cardiac and non-cardiac origin are clinically important 

biomarkers for diagnosis and prognosis in cardiovascular disease (CVD).1-3 Historically, 

clinical biomarker studies have favoured approaches focusing on one or a few prioritised 

candidates within a risk stratification framework for primary and secondary outcomes4-7. 

Recent trends in CVD biomarker studies have pivoted towards a more unbiased approach, 

simultaneously analysing hundreds or thousands of molecules, enabled by medium to high-

throughput omics technologies such as mass spectrometry and affinity proteomics.8-11   

Although novel assay platforms allow for data generation for different molecular types 

and the diversity propels the discovery of novel biomarker candidates, the large volume of 

data, heterogeneity of molecular variations across data types, and differential coverage of 

assay platforms altogether render the process of data interpretation a challenging task. The 

conventional approach to biomarker discovery is driven by metrics of classification accuracy 

such as sensitivity, specificity and area under the curve (AUC) of the receiver-operating 

characteristic (ROC). While this dogmatic practice is necessary for careful selection of 

biomarkers, some candidates with equally good diagnostic or prognostic values, even with 

direct biological connections to altered cardiac function and vasculature remodelling, may be 

neglected unless they outperform benchmark biomarkers in terms of the metrics.    

For unbiased assessment of the proteome as a biomarker pool in the population of 

post-myocardial infarction (MI) patients, we have recently reported plasma proteomics data 

collected from post-MI patients 30 days after hospital discharge from two distinct populations: 

(1) the Coronary Disease Cohort Study (CDCS) in New Zealand and (2) the Improving 

Outcomes in Myocardial Infarction through Reversal of Cardiac Remodelling (IMMACULATE) 

registry in Singapore.12 This work demonstrated a promising workflow for prioritising plasma 

proteins predictive of post-MI heart failure (HF) based on a comparative analysis between the 

plasma proteomic data and a single cell-resolution transcriptomics data set of mouse heart 

tissues.  

Expanding on this work, we have generated targeted mass spectrometry-based 

lipidomics data and curated cardiac imaging data 30 days after hospital discharge for the same 

patients in both cohorts. Together, the comprehensive data set consists of 1690 data features, 

including two omics-scale measurements of circulating lipids/acylcarnitines and proteins, four 

natriuretic peptides (ANP, BNP, NT-proANP, NT-proBNP), cardiac troponin I (hsTNI), 

creatinine, and 19 echocardiographic imaging variables acquired by standardised protocol. 

The data set therefore represents a comprehensive data resource to study the correlation 

structures among different data types (inter-modality correlations) and within each data type 

(intra-modality correlations), and evaluate their joint prognostic potential for secondary major 
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adverse cardiovascular events (MACE) and, more specifically, heart failure hospitalization 

(HFH).    

Given the highly correlated nature of data features within each modality, we tackled 

the multi-modal data integration problem via a network-based approach, termed 

iOmicsPASS+, which we implemented as an open-source R package. The workflow first 

identifies a network of conditionally dependent data features via estimation of a sparse 

precision matrix,13 and teases out predictive subnetwork signatures of clinical outcomes using 

a network-level scoring approach (iOmicsPASS).14 Throughout this work, we leveraged on this 

two-stage workflow as the main computational engine for data integration.  

 
Results 
Characteristics of the CDCS cohort 
Figure 1A illustrates the analysis workflow for the CDCS cohort. Using iOmicsPASS+, we 

integrated data for proteins, lipids, clinical biomarkers and echocardiographic variables from 

741 subjects by deriving a network of conditionally dependent data features using the 

graphical LASSO.15 To refer to the variables of diverse data types, we call them data features 

hereafter. For this network, we calculated partial correlation for each edge as a measure of 

association strength between the two corresponding data features, accounting for all other 

variables (see Supplementary Information). In the second step, we identified predictive 

subnetwork signatures of secondary adverse outcomes, namely MACE and HFH. This 

supervised analysis was conducted excluding 286 patients (Supplementary Information). Of 

those 464 patients,185 patients remained event-free, and 279 patients had a secondary 

MACE, including 117 patients hospitalised for HF during follow-up.  

Table 1 provides the overall characteristics of the 464 patients. The mean age was 69 

years (SD=10.7 years), with more males (69.2%) than females (30.8%). The majority were of 

European descent from New Zealand (56.7%) and other countries (27.8%), while the rest 

(7.1%) were Asians, Africans, Maoris, Fijians and the Pacific Islanders. Most patients either 

quit smoking (54.5%) or had never smoked (38.8%). Upon admission for a primary  acute MI 

episode, 29.7 % were diagnosed with STEMI and 70.3% NSTEMI. The median follow-up time 

from hospital discharge was 4.88 years, and the time from discharge to a MACE ranged from 

one day to 8.8 years (median 0.74 years). Comparison between event-free patients and MACE 

patients revealed significant differences in age, diagnosis of ST-segment elevation and 

hypertension, as well as clinical biomarkers such as serum creatinine and plasma natriuretic 

peptides. MACE patients were older (mean age= 70.6 years, SD=11.1) and more frequently 

hypertensive (56.6%) than event-free patients (36.8%). The index events were also more likely 

NSTEMI (74.6%) than STEMI (63.8%). Event-free patients had lower levels of serum 
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creatinine and plasma concentrations of natriuretic peptides (ANP, BNP, NT-proANP, NT-

proBNP) than MACE patients on follow-up.  

Table 2 shows the comparison of the echocardiographic variables between event-free 

patients and MACE patients, as well as between event-free patients and HFH patients. As 

expected, the echocardiographic variables differed more between HFH patients and event-

free patients than between all MACE patients and even-free patients. Both adverse outcome 

groups (MACE and the HFH subgroup) had greater baseline LV dimensions and lower left 

ventricle ejection fraction (LVEF) than event-free patients. Tissue Doppler variables of 

myocardial motion differed between MACE/HFH patients and event-free patients with e’ and 

E/e’ differing most between the HFH subgroup and event-free patients.   

 

Single markers of secondary MACE and HFH 
We next compared the levels of individual proteins, lipids, echocardiographic variables and 

clinical biomarkers in the patients with MACE and HFH to event-free patients. A total of 184 

data features were significantly different in mean (FDR<0.05) between MACE patients and 

event-free patients, where 66.3% were higher in MACE patients. Comparing the HFH patients 

with the event-free ones, 368 markers were significantly different (FDR<0.05). Details of this 

analysis are reported in Supplementary Table 1. 

The differential features of MACE included 166 proteins, seven lipids, five 

echocardiographic variables, and all six clinical biomarkers. Although all natriuretic peptides, 

cardiac troponin I (hsTNI) and creatinine levels were higher in MACE patients, BNP and NT-

proBNP attained the AUC of 0.65 (95% CI: 0.60-0.70 for BNP and 0.59 – 0.70 for NT-proBNP), 

indicating modest discrimination for MACE. Echocardiographic variables such as left atrial (LA) 

area, left ventricle (LV) mass, indexed left ventricle internal dimension in diastole (LVIDDi) and 

systole (LVIDSi), as well as indices of diastolic dysfunction (E/e’), were all higher in MACE 

patients than in event-free ones, yet the AUC values were modest at best. When considering 

lipids, three (phosphatidylethanolamines PE 34:1 and PE 34:2, sphingosine-1-phosphate S1P 

d18:0) were higher, whereas four species (phosphatidylcholine PC 38:4 and 40:8, 

lysophosphatidylcholine LPC 20:4, sphingomyelin SM 43:1) were lower in the MACE patients. 

Lastly, the top three markers were all plasma proteins, including macrophage-capping protein 

(CAPG) with AUC of 0.68 (95% CI: 0.63 – 0.73), aspartate aminotransferase (GOT1) with 

AUC of 0.65 (95% CI: 0.60 – 0.70) and follistatin-related protein 3 (FSTL3) with AUC of 0.64 

(95% CI: 0.59 – 0.69). 

The 368 differential features of HFH included 298 proteins, 31 lipids, nine 

echocardiographic variables, and all six clinical biomarkers. Similar to MACE, all six clinical 

biomarkers were higher in the HFH patients than in event-free ones as expected: NT-proBNP 

demonstrated the highest AUC of 0.79 (95% CI: 0.74 – 0.84), followed by BNP with AUC of 
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0.78 (95% CI: 0.73 – 0.83). In echocardiographic variables, all five variables significantly 

different in MACE also differed in the HFH subgroup. In addition,  interventricular septum (IVS), 

LA width, LVESVi were also significantly higher, while the early diastolic mitral annulus velocity 

e’ was significantly lower. The significant lipids included glycerophospholipids (8 PEs, 3 PC, 4 

phosphatidylinositol PI), four lysophospholipids (3 LPC, 1 LPE), eight sphingolipids (SM 38:1, 

38:2, 43:1, 44:1, 44:2), S1P d18:0, ceramide d19:1/24:0 and ganglioside GM3 d18:1/16:0, 

cholesteryl ester CE 20:4 and two glycerolipids (diacylglycerol DG 38:6 and triacylglycerol TG 

58:10). Among those, LPC 20:4, PE 34:2 and PE 35:2 had the highest AUCs, albeit at a 

modest value of 0.64 (95% CI: 0.57 – 0.71). Of the 298 significant proteins, 61.7% were higher 

in HFH patients than in event-free patients. CAPG had the highest AUC of 0.77 (95% CI: 0.72 

– 0.83), followed by FSTL3 with AUC of 0.75 (95% CI: 0.70 – 0.81) and Cystatin-C (CST3) 

with AUC of 0.74 (95% CI: 0.68 – 0.79). Together, although plasma proteins offered a slightly 

weaker classification power than the natriuretic peptides, best predictive proteins such as 

CAPG, CST3, FSTL3, and EFEMP1 were equally predictive of HFH with overlapping 95% CIs.  

 
Network of data features from the four modalities 
Next, we modified the integrative analysis approach called iOmicsPASS,14 originally 

developed for the integration of genomic, transcriptomic, and proteomic data over 

experimentally validated biological networks. The new implementation, iOmicsPASS+, is 

freely available to the public and amenable to general applications without pre-existing inter-

molecular networks, such as studies of circulating biomarkers (see Supplementary 
Information). Compared to the previous implementation, the new interface offers greater 

flexibility to integrate diverse types of data and infer a network of conditional dependence 

among continuously scaled data features. iOmicsPASS+ can handle data sets with missing 

entries (up to 50%) and compute a sample covariance matrix using pairwise complete 

observations in order to retain as many data features and samples for downstream analysis. 

The network inference is enabled by sparse precision matrix estimation,13 which has a well-

established foundation as Gaussian graphical models.16  

Figure 1B illustrates the network inference workflow of iOmicsPASS+. First, each data 

type was standardised and outlier observations were filtered out before being concatenated 

into a single data matrix. The network estimation module produced a network of 27,334 edges 

in this data set (1.9% of all possible edges), connecting 1,690 data features. To assign 

measures of conditional dependence to the selected edges, the regularised estimates of 

precision values were converted to partial correlations, denoted by ! (see Supplementary 
Information). The values ranged from -0.43 to 0.66 in this study. We remark that the reported 

partial correlation values are regularised estimates, i.e. not unbiased estimates.  
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Not surprisingly, the intra-modality correlations (within the same data type) were 

stronger than inter-modality correlations (between data types): only 5.4% of the edges 

connected proteins with lipids, and 373 edges connected proteins with echocardiographic 

variables and clinical biomarkers. This result shows that the proteomic variation is largely 

independent of the lipidomic variation and imaging variables, and both types of molecular data 

relate differently to the risk of future adverse outcomes.  

The core segment of the network connecting echocardiographic variables and clinical 

biomarkers to proteins, lipids, and acylcarnitines is visualised in Figure 2, using the Cytoscape 

software.17 After accounting for the indirect associations explained away by other data features, 

natriuretic peptides and hsTNI were positively correlated with each other and only BNP, NT-

proBNP and hsTNI were negatively correlated with LVEF. Among the echocardiographic 

variables, LVEDVi and LVESVi had the highest correlation (!	= 0.475), followed by LVIDSi 

with LVIDDi (!	= 0.459) and the negative correlation between LVEF and LVESVi (!	= -0.375). 

Overall, only 10 echocardiographic variables were connected with clinical biomarkers in this 

subnetwork. The highest correlations were recorded between NT-proBNP and E/e’ (!	= 0.058), 

between NT-proBNP and s’ (!	= -0.057), between BNP and LVEF (!	= -0.053) and between 

BNP and a’ (!	= -0.050). This finding suggests that myocardial motion variables measured by 

tissue Doppler imaging are particularly correlated with neurohormonal activation from primary 

MI episodes.  

Meanwhile, stronger correlations were observed among proteins, lipids, and 

acylcarnitines with clinical biomarkers than with echocardiographic variables. In the lipidomics 

assay, the highest correlation was between acylcarnitine C13:0 and creatinine (!	= 0.040). 

Two acylcarnitines (C14:2, C18:2) and two lipids (GM3 d18:1/16:0, PC-P-26:2) were positively 

correlated with NT-proBNP, whereas SM 40:0 was negatively correlated with NT-proBNP. PC-

P 26:2 was the only lipid positively correlated with all four natriuretic peptides, PC 32:0 was 

negatively correlated with echocardiographic imaging variable s’, and acylcarnitine C18:2 was 

positively correlated with both LA area and LVESVi. Sphingomyelin (SM) 37:0 was positively 

correlated with internal diameters LVIDSi and LVIDDi, while SM 39:1 and SM 40:2 were 

negatively correlated with LA width.  

Regarding the proteins, the highest correlation was between hsTNI and cardiac 

troponin T (TNNT2) (!	= 0.206), followed by the correlation between creatinine and insulin-like 

growth factor binding protein 2 (IGFBP2) (!	= 0.142), glycoprotein CD59 (!	= 0.118), and 

cystatin M (CST6) (!	= 0.115). Nine proteins were correlated with three or more natriuretic 

peptides, including positive correlation with angiopoietin-2 (ANGPT2), periostin (POSTN), R-

spondin 4 (RSPO4), insulin-like growth factor binding protein 2 (IGFBP2), thrombospondin 2 

(THBS2), Spondin-1 (SPON1), vascular endothelial growth factor D (VEGFD) (also known as 
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FIGF), bone morphogenetic protein 10 (BMP10), and negative correlations with bone 

morphogenetic protein 1 (BMP1) and coagulation factor X (F10). See Supplementary Table 
2 for the table of partial correlations among the data features from the four modalities. 

 

Subnetwork signature of MACE 
Using this network as the background, we next applied the supervised analysis module of 

iOmicsPASS+ to obtain subnetwork signatures of MACE and HFH.14 Table 2 reports the 

number of proteins, lipids, echocardiographic variables, and clinical biomarkers in the 

predictive signatures. The MACE signature included 524 edges connecting 211 nodes (cross-

validated error 38.5%). Figure 3 visualises the MACE signature, where the edges were 

coloured by the sign of the test-statistics (dik*) for the MACE group (Koh et al14 for the details 

of the test statistics as group-specific centroids). The statistics, calculated by iOmicsPASS, 

are equivalent to group-specific centroids of the network, indexed for edge i for group k (k=1 

for MACE, k=0 for event-free). The same network with the edges coloured by the signs of 

partial correlations between connected nodes is in Supplementary Figure 1A. This 

subnetwork signature contains 194 proteins, five lipids, eight echo imaging variables and all 

four natriuretic peptide markers. Although only five lipids were part of this network, four of them 

were phosphatidylethanolamines (PE 34:1, 34:2, 35:2, 37:4). 
The subnetwork was largely partitioned into two segments. The majority (96.4%) were 

highly correlated proteins, lipids, imaging variables and clinical biomarkers with higher dik
* 

scores (in red) for the MACE group. The other part was a protein-only network with lower dik
* 

scores (in blue). Here, the main driver of separation between the two groups were the edges 

connecting one protein to another (90.6%). 22 edges connected natriuretic peptides to plasma 

proteins, 13 connected echocardiographic variables to proteins, and six linked lipids to 

proteins. The edges with the highest dik* score for MACE were the connections between CAPG 

and several proteins including trefoil factor 3 (TFF3), FSTL3 and ephrin type-A receptor 2 

(EPHA2). The highest dik* scores for the event-free group were between mitogen-activated 

protein kinase kinase 4 (MAP2K4) with prolyl endopeptidase (FAP), superoxide dismutase in 

mitochondria (SOD2), histidine-rich glycoprotein (HRG) and between plasmin (PLG) and 

vascular endothelial growth factor receptor 2 (KDR). Six proteins, CAPG, FSTL3, EPHA2, 

TFF3, tumour necrosis factor receptor superfamily member 19L (RELT) and beta-2-

microglobulin (B2M) were densely connected to many other nodes (i.e. degree above 30). The 

detailed subnetwork signature is reported in Supplementary Table 3. 

Incorporating endogenous mRNA expression levels of protein coding genes in the 

heart, arteries, kidneys, liver and lungs (see Methods), we carried out biological pathway 

enrichment of the proteins in our signature for each tissue type, separately. MACE predictive 

proteins expressed in the heart were related to cell chemotaxis, cell development, extracellular 
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matrix organization, involved in apoptotic signalling pathway, muscle structure development 

and homeostatic process (Figure 3B). Those expressed in the arteries largely overlapped with 

those expressed in the heart, including cell projection organization, response to hormone, 

peptidyl-tyrosine phosphorylation and transmembrane receptor protein tyrosine kinase 

signalling pathway. Proteins specifically expressed in the liver were found to be enriched in 

inflammatory response and cytokine-mediated signalling pathways, as expected 

(Supplementary Table 4). 

Using the echocardiographic variables and natriuretic peptides as endophenotype, the 

visualisation of their first-degree neighbours in Figure 3C highlights plasma proteins as 

candidate markers for secondary outcomes with direct implication for cardiac tissue damage 

and impaired function. All network edges had higher dik* scores for the MACE group than the 

event-free group. Among the eight echocardiographic variables in the signature, E/e’ was most 

connected to plasma proteins, including EFEMP1, FSTL3, RSPO4, parathyroid hormone 

(PTH), THBS2 and SPON1, in a decreasing order of dik* score of MACE. The pair with the 

highest AUC was the pair between the ratio E/e’ with EFEMP1, followed by LV mass with 

FSTL3. BNP was connected with LV mass, LA area, LVEF, LVIDSi and E/e’; ANP was only 

connected with LV mass. NT-proBNP was connected to key proteins such as EFEMP1, 

BMP10, GDF15, IGFB2 and RSPO4; NT-proANP was connected to the same proteins except 

RSPO4 and to other proteins including B2M, CAPG, TFF3 and FSTL3. 

 

Subnetwork signature of HFH  
Next, we repeated the supervised analysis for HFH, a subset of MACE. iOmicsPASS+ 

identified 566 edges in the HFH signature (cross-validated misclassification error 26.7%). This 

subnetwork consists of 164 proteins, 8 lipids, 12 echocardiographic variables and 5 clinical 

biomarkers, all of which largely overlapped with the MACE signature (Table 3). The network 

with the edges coloured by the signs of partial correlations between connected nodes is 

visualised in Supplementary Figure 1B. Not surprisingly, echocardiographic variables 

contributed to the signature with more enhanced dik* scores for the prediction of HFH. In 

addition to the eight variables in the MACE signature, four additional echocardiographic 

variables (LA width, LVEDVi, LVIDDi, a’) were included in the HFH signature. hsTNI, seven 

proteins including POSTN, IL1RL1, CD55 and CD93, two lipids (PE(O-36:4), PC(P-30:0)) and 

acylcarnitine C14:0 were also unique in this signature.  

Similarly, the HFH subnetwork signature showed two contrasting segments, one with 

higher dik* scores for HFH (red edges) and the other with lower scores (blue edges) compared 

to event-free patients (Supplementary Figure 2A). Most edges were connections between 

plasma proteins (84.1%), 34 edges were between natriuretic peptides and proteins, 18 were 

between echocardiographic variables and proteins, and 12 were between lipids and proteins. 
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Interestingly, the edges with the highest dik* scores for HFH did not involve NT-proBNP. 

Instead, CAPG connected with FSTL3, TFF3, B2M and EPHA2 and EFEMP1 connected with 

FSTL3, GDF15, B2M, RSPO4, BMP10 and E/e’ (scores between 1.60 to 1.85) had dik* scores 

for HFH higher than the score between NT-proBNP with EFEMP1. The ratio E/e’, a common 

measure of diastolic function, was also connected with other proteins such as FSTL3, RSPO4, 

THBS1, PTH, SPON1 and the four natriuretic peptides, illustrating its joint prognostic value in 

predicting future HFH. Full results are reported in Supplementary Table 5. 

Proteins in the signature with respective mRNA expression levels in the arteries and 

the heart were enriched for extracellular matrix organization, external encapsulating structure 

organization and an additional cell chemotaxis in the latter. Kidney-expressed proteins were 

pro-inflammatory response, lipid response, cytokine production and chemical homeostasis, 

whereas the proteins of hepatic origin were related to adaptive immune response and cell-

growth (Supplementary Figure 2B). The results of the tissue-specific enrichment analyses 

are reported in Supplementary Table 6. 

Focusing on the the echocardiographic variables, natriuretic peptides and hsTNI, we 

visualised the direct neighbours of each marker (Supplementary Figure 2C). Both ANP and 

NT-proANP were connected to BMP10; both BNP and NT-proBNP were connected to THBS2, 

RSPO4, IGFBP2, VEGFD/FIGF and SPON1. Only one protein IGFBP2 was strongly 

connected to all four natriuretic peptides. Among the echocardiographic variables, other than 

E/e’, LV mass connected with all four natriuretic peptides and two proteins (FSTL3, RELT). 

On the other hand, the ratio of LVEF to BNP, LV mass and TNNT2 (i.e. negative correlation) 

yielded higher dik* scores for the HFH group than the event-free group.  

 

Characterisation of plasma proteins by tissues of origin 
To further delineate the proteins directly associated with cardiac assault and tissue damage 

post-MI, we mapped the proteins to the tissue-enriched genes in the transcriptomic data 

provided by the Genotype-Tissue Expression (GTEx) database.18 Based on our definition of 

tissue-enriched genes (see Methods), 63.4% of the proteins in the MACE signature and 66.5% 

of the proteins in the HFH signature were enriched in at least one of the 54 tissues catalogued 

in the GTEx. Supplementary Figure 3 shows the gene expression of the tissue-enriched 

markers from the two signatures, illustrating the specificity of hub proteins to the five tissues 

related to the heart, arteries, kidneys, liver and skeletal muscle. 

In the MACE signature, 10.6% of proteins were specifically of hepatic origin, followed 

by lungs (9.8%) and arteries (5.7%). In the HFH subnetwork signature, the majority were 

enriched in lungs (13.8%), followed by liver (8.3%) and kidney (5.5%) (Table 3). In both 

signatures, only four proteins were enriched in the heart tissues: BMP10, TNNT2, cysteine 

and glycine rich protein 3 (CSRP3) and hFABP (FABP3). Among the proteins enriched in the 
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aortic and coronary arteries, EFEMP1, IGFBP2, THBS2, metalloproteinase inhibitor 1 (TIMP1), 

were shared between both signatures; biglycan (BGN), contactin-4 (CNTN4) and inhibin beta 

A chain (INHBA) were unique to the MACE signature, while POSTN to the HFH signature. 

The table of tissue-enriched proteins is reported in Supplementary Table 7.  

 
Validation of subnetwork signatures in IMMACULATE cohort  
Lastly, we assessed the predictive power of the two subnetwork signatures in 190 post-MI 

patients from the IMMACULATE registry, applying the same inclusion criteria. In 

IMMACULATE, we did not remove any patients with self-reported history of MI due to the 

small number of MACE cases and the lack of information regarding how long ago the episode 

took place. This cohort was recruited between 2011 and 2014 in Singapore (median follow-up 

period 3.9 years). The two cohorts therefore represent post-MI patient populations from two 

different time periods with substantially heterogeneous ethnic and genetic background and 

more contemporary clinical management during the follow-up in the latter.  

In IMMACULATE, 38 patients had secondary MACE events, of which 23 were HFH, 

representing a lower frequency of secondary MACE than CDCS, although there may be under-

reporting of MACE as hospitalizations due to unstable angina information were not collected. 

Despite these differences and in the absence of NT-proANP and ANP, the prognostic value 

of NT-proBNP as a single marker of MACE and HFH remained exceptionally high. 

Supplementary Figure 4 clearly shows that NT-proBNP stratifies post-MI patients into three 

groups of well-separated risks (log-rank test P-values<0.01) based on tertiles in both studies, 

respectively.  

Using this signature, we calculated the probability scores of MACE and HFH for the 

IMMACULATE subjects, a class probability score computed for each patient (see Koh et al14 

for details). Stratifying the subjects by the probabilities, we also observed that the survival 

curves of high and low risk groups were well separated for MACE (P=0.015) and HFH 

(P=0.059), although the separation of survival curves showed a slightly weaker separation 

than the results of NT-proBNP as the stratification resulted in more dichotomised grouping of 

patients (Figure 4A). Given that the subnetwork signatures included NT-proBNP, howcver, 

the lack of improvement in the multivariate signatures alludes to the fact that the global 

correlation structure of data features is heterogeneous between the two cohorts, and therefore 

the multivariable signatures of these highly correlated predictors were not directly transferrable 

between two populations. By contrast, single markers do not have such limitations. For the 

network signatures to attain improved performance, it would thus require additional tuning of 

classifier parameters in a specific population with a sufficient amount of training data, i.e. by 

additional analysis of post-MI patients from Singapore hospitals.  
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As the patient population differences hindered the portability of predictive subnetworks, 

we next dissected the class probabilities by smaller units of predictive data features. The linear 

construction of the logit transform of class probabilities across all edges easily allows us to the 

contribution of each pair of data features (edge) to the overall class probabilities in a given 

patient. In particular, we examined the patient-specific, edge-level scores for 41 pairs of data 

features with absolute group-level dik* scores above 1.2. Of the 41, Table 4 shows that the top 

10 pairs of data features that had the highest AUC values using their edge-level scores of 

individual patients. All 11 proteins involved in these connections happened to be network hubs: 

particularly CAPG, EFEMP1, FSTL3, and echo imaging variable E/e’. Similar to the CDCS 

cohort, we discovered that the differential distribution and the joint predictive powers of most 

pairs, as measured by AUC of ROC, were comparable to that of NT-proBNP in IMMACULATE. 

By contrast, other pairs such as the edge connecting FSTL3 and CAPG were not as portable 

between the two populations (Figure 4B). Taken together, a unique subset of subnetwork 

signatures is validated in an independent cohort and these pairs of data features are as 

predictive of MACE and HFH as benchmark biomarkers.  

 

Discussion 
In this work, we delineated the global landscape of plasma proteins and lipids in connection 

with echocardiographic imaging variables and clinical-grade biomarkers in patients 

hospitalised for a primary acute MI. Plasma proteins carried stronger prognostic signals than 

lipids in both cohorts, and communities of plasma proteins were associated with increased 

risks of secondary MACE and HFH. The composite network signatures did not outperform the 

benchmark biomarkers used in routine care, i.e. natriuretic peptides, in validation in an 

independent cohort. Notwithstanding the lack of superior performance, our analysis clearly 

shows that many plasma proteins and echocardiographic variables can stratify the risk of 

secondary MACE in these patients with prognostic value equivalent to NT-proBNP, and the 

findings may also point to pathophysiological mechanisms reported by plasma proteins.  

Hub proteins in both predictive subnetworks were CAPG, EFEMP1, and FSTL3. CAPG, 

referred to as Cap-G, is a Ca2+-sensitive actin binding protein in the gelsolin/villin family of 

barbed end blocking proteins19, notably expressed in macrophages. Given the ambivalence 

between the pro-inflammatory role of bone marrow / spleen-derived, classically activated 

macrophages during the early inflammatory phase of the primary MI and the cardioprotective 

role of resident cardiac macrophages during the repair stage20, the elevation of CAPG levels 

in these patients indicates a shift in the macrophage population following the primary 

thrombotic occlusion. EFEMP1, also known as fibulin-3, is an extracellular matrix glycoprotein 

implicated in vascular endothelium remodeling,21 and plays a role in reducing vascular 
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calcification and inhibiting metalloproteinases in oxidative stress.22-24 While fibulin-3 does not 

seem to be a direct mechanistic cue in cardiac repair, we observed strong predictive signals 

of secondary events with moderate correlations with NT-proBNP. FSTL3, an extracellular 

regulator of TGF-b family cytokines such as activin A, is involved in various biological functions 

including cell proliferation and inflammation, and altered transcriptomic regulation of the gene 

with another follistatin family member FSTL1 in myocardium has been associated with HF 

severity.25 This protein also showed positive partial correlation with diastolic function variable 

(E/e’). FSTL3 was also characterised as a stress-induced regulator of cardiac hypertrophy 

through Smad signalling pathway modulation in a mouse model26, opening up an opportunity 

for investigation as a therapeutic target for HF.   

In this study, circulating lipids showed weak prognostic values for MACE in both 

cohorts. While ceramides have been reported to be useful in the assessment of CVD risk,27-29 

none of the ceramides were significantly different between MACE and event-free patients. 

When we investigated the lipid-based CERT1, CERT2, SIC risk scores, and the recently 

proposed cardiac lipid panel consisting of triacylglycerol (TG 18:1/18:0/18:0), PC 16:0/18:2 

and sum of three isobaric SMs (d18:1/23, d18:2/23:0, d17:1/24:1) for predicting chronic HF,30 

none of those lipids in our panel were significantly different across the different outcome (data 

not shown).   

Although lipids did not show a comparable prognostic power to proteins, both 

subnetwork signatures included four lipid transport proteins, namely APOL1, APOE, APOA1 

and FABP3. FABP3 encodes hFABP, a marker of myocardial injury, and it was connected with 

multiple acylcarnitine species in both subnetwork signatures. hFABP has previously been 

implicated in HF, where reduced fatty acid utilization in the heart leads to the progression of 

chronic heart failure, left ventricular hypertrophy and remodelling.31, 32 Interestingly, here we 

found that circulating levels of hFABP and acylcarnitines (C12:0, C14:0, C14:1, C14:2, C16:1) 

were jointly increased in MACE and HFH patients, suggesting that the levels in circulation may 

reflect leakage products from the remaining cardiac injury.  

 Taken together, our multi-modal data integration approach underscores the 

importance of effective integration of multi-omic measurements, cardiac imaging variables, 

and clinical biomarkers. Although univariate assessment of individual marker candidates is of 

utmost importance for biomarker discovery, a plethora of molecular features representing 

biologically interpretable signals may go unnoticed as false negatives when the underlying 

correlation structure is not carefully explored. As blood is frequently the only available reporter 

tissue in CVD biomarker discovery, we also annotated individual proteins in terms of the 

potential tissue(s) of origin. With the emergence of similar large-scale, blood plasma-based 

investigation of other diseases, we expect this and other novel data analytic approaches to 

play important roles in the prioritization of potential therapeutic targets.  
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Data Availability 
iOmicsPASS+ is publicly available as an open-source R package in the GitHub repository 

(https://github.com/cssblab/iOmicsPASSplus). The proteomic and lipidomic data in support of 

the findings of this study is available at https://github.com/Hiromikwl/Data_iOP. Patient-level 

clinical records, including echocardiographic imaging variables and clinical biomarkers, can 

be shared after reasonable preliminary discussion and agreement with both corresponding 

authors due to ethics and privacy concerns.  
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Methods 
The Coronary Disease Cohort Study (CDCS) 
The CDCS cohort consists of 2,140 patients recruited from two tertiary hospitals (Christchurch 

Hospital and Auckland City Hospital) in New Zealand (NZ) for an acute coronary syndrome 

(ACS) event from 2002 to 2009. CDCS was a registered trial - ACTRN 12605000431628. 

Participants were invited to return to the hospital 30 days after discharge for baseline 

measurements. Patients were excluded from the study if their life expectancy was estimated 

as less than 3 years.  The study was approved by the New Zealand Multi-region Ethics 

Committee (CTY/02/02/018) and all participants gave written informed consent. More 

information on the study can be found in Prickett et al.33 Details of the cohort, and the subset 

of 741 patients analysed in this report can also be found in Supplementary Information, 

along with further inclusion and exclusion criteria for the supervised analysis (N=464). 

 

The Improving Outcomes in Myocardial Infarction through Reversal of Cardiac 
Remodelling (IMMACULATE) cohort  
The IMMACULATE cohort consists of 859 patients who were admitted for MI into three local 

hospitals in Singapore (National University Hospital, Tan Tock Seng Hospital and Singapore 

General Hospital) from 2011 to 2014. The patients were followed up for a median of 2.0 years 

(interquartile range IQR: 1.9-2.1 years) from their hospital discharge date. The study was 

approved by the institutional review board and the ethics committee at Singapore’s National 

Healthcare Group Domain Specific Review Board (DSRB 2013/00248 and 2013/00635). All 

participants provided written informed consent. Criteria for initial inclusion in IMMACULATE 

and the selection of 190 patients analysed in this report can be found in Supplementary 
Information.  

 

Proteomics, lipidomics and clinical biomarker measurements 
Protein abundance was measured using Slow Off-rate Modified Aptamer (SOMAmer)–based 

capture array, called SOMAscan (somaLogic, Inc, Boulder, CO, USA).34 Targeted lipidomics 

experiments were performed using an Agilent 6495A triple-quadrupole (QQQ) mass 

spectrometer coupled to an Agilent 1290 Infinity-II UHPLC system, with automated data 

processing and quality control by the MRMkit tool.35 Acylcarnitines were also measured as 

part of this panel. Well-established cardiac markers, including natriuretic peptides (ANP, BNP, 

NT-proANP, NT-proBNP), high sensitivity troponin-I (hsTNI) and creatinine, were measured 

using clinical-grade assays. Due to the higher accuracy and sensitivity of the biomarker assays, 

we removed four corresponding proteins measured in SOMAscan that were targeting the 
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same proteins to prevent duplicated information. Refer to Supplementary Information for full 

details on the assay platforms and data processing.  

 

Echocardiography 
Standard  M-mode measurements of LV dimensions, wall thickness, LA dimensions were 

made according to the recommendations of the American Society of Echocardiography 

(ASE).36 LV volumes and the derived left ventricular fraction was measured by the Simpson 

modified biplane method.37 Doppler indices were also acquired according to the ASE 

guidelines for Doppler echocardiography.38 Mitral pulsed-wave Doppler velocities of early 

passive (E) and atrial (A) filling were obtained from the apical 4-chamber view with a 5 mm 

sample volume placed between the tips of the mitral leaflets,39 and systolic (S), diastolic (D), 

and atrial reversal (A) pulmonary vein velocities were acquired from the apical 4-chamber view 

with a 5 mm sample volume placed 1 cm into the right upper pulmonary vein. Lastly, Ommen 

et al. provides the methods of tissue Doppler measurements of early diastolic velocity (e’), late 

diastolic velocity (a’), and systolic velocity of the myocardial muscle (s’), where we used the 

average of the septal annulus velocity and the lateral annulus velocity for each 

measurement.40 Echocardiographic variables with missing data proportion less than 25% were 

considered. This filter resulted in 19 echocardiographic variables to be considered for the 

downstream analysis. Missing values in those variables were imputed together with missing 

entries with the six clinical biomarkers using multiple imputation by chained equations 

(MICE).41  

 

Ascertainment of MACE 
The primary outcome of interest was 5-point MACE, defined as a composite outcome that 

includes non-fatal acute MI, non-fatal stroke, hospitalization for unstable angina, heart failure 

and/or a cardiovascular (CV)-related death.42, 43 Stroke included the occurrence of an ischemic 

stroke, haemorrhagic stroke and transient ischemic attack (TIA). Acute MI included both ST-

elevation (STEMI) and non ST-elevation (NSTEMI) myocardial infarction. Diagnosis of MI and 

HF adhered to established clinical guidelines on the diagnosis and management of MI and 

HF.44-49 Adverse remodelling of the heart was assessed by changes in echocardiographic left 

ventricle ejection systolic volume (LVESV) from the baseline visit to first follow-up at four 

months.  

All patients were followed from the time of their primary hospital discharge to a future 

major adverse cardiac event, death or end of study, whichever was earlier. For both CDCS 

and IMMACULATE, we defined three phenotypic outcomes: (1) patients who remained event-

free (event-free), (2) patients with 5-point MACE (or MACE) and (3) patients hospitalised due 

to HFH. Patients with HFH are a subset of those with MACE and are considered as HFH 
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regardless of the precedence of any MACE outcome. Event-free individuals are those who 

remained free of any major cardiac event (i.e. acute MI, stroke, unstable angina, HF, CV-

related death) during the entire course of the follow-up period. To prevent confounding in the 

predictive analyses, we removed patients with previously remodelled hearts and those with a 

medical history of stroke or HF; and among those with a history of prior MI we retained only 

those in whom this event had occurred more than five years prior to recruitment. We use the 

term MACE to refer to the traditional 5-point MACE throughout this paper unless otherwise 

stated and 4-point MACE to refer to the subset of MACE that excludes HFH patients. 

 

Statistical analysis 
Clinical characteristics of the CDCS cohort were compared across event-free patients and 

patients with MACE. For continuous variables, two-sample t-test was used to compare the 

difference in means across groups, whereas for categorical variables, Chi-squared test was 

used to test for associations with groups. Fisher-exact test was used when any of the cell-

frequencies were less than five. For variables with missing or unknown self-reported entries, 

they were removed before performing the statistical test for association. All P-values were 

adjusted for multiple testing correction using the Benjamini-Hochberg’s (BH) method to control 

the false discovery rates (FDR) below 0.05. The AUC of the ROC was also computed for each 

marker to evaluate their predictive performance. 

For the estimation of a confounding-free partial correlation-based network, we utilised 

all the non-missing markers across 741 CDCS samples and computed a cross-covariance 

matrix using all pairwise complete observations as input to graphical LASSO13, for the 

inference of the network structure and calculation of partial correlations, built in as a module 

within iOmicsPASS+. Note that the partial correlations reported in this work are regularised 

values, not unbiased estimates. Using the estimated network, we searched for sparse 

predictive subnetwork signatures across 464 patients to differentiate (1) MACE patients from 

event-free one, as well as separate (2) patients with HFH from event-free ones, with the 

assistance of 10-fold cross-validation (CV) for parameter optimisation. The network signatures 

are characterised by group-specific centroids of edge-level scores. For every i-th edge (pair 

of correlated data features), interaction scores were calculated for individual patients and 

modified test statistics (scaled group centroids), denoted by dik*, were computed for all groups 

($ = 1,… , )). The latter represents whether the two connected nodes had higher or lower 

values in the same or opposite directions in the k-th phenotypic group, depending on the sign 

of the respective partial correlations. These test statistics were penalised iteratively to select 

the optimal sparse networks for the two classification tasks, and were reflected in the colour 

and thickness of edges in the network visualisations. Details of this method are described in 

Koh et al.14 
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The proteins included in the final predictive signatures were annotated in terms of their 

biological processes in Gene Ontology (GO) using gProfiler50. Enrichment analysis was 

repeated with an additional filtering of query and background gene lists with regard to the 

minimal expression level (transcript per million reads, or TPM > 5) in each tissue type as 

provided by the GTEx.18 The tissue types considered in this study include the heart (atrial 

appendage, left ventricle), arteries (aorta, coronary), kidneys (cortex, medulla), liver, lungs 

and skeletal muscle.  

All the aforementioned analyses were carried out in R studio (R version 4.0.2),51 using 

external R packages huge,52 gplots,53 mice,54 pROC,55 clusterProfiler,56 as well as 

iOmicsPASS+ presented in this paper. Visualization of networks were done using Cytoscape 

(version 3.8.2).17 The full description of statistical analysis and network-oriented classification 

analysis using iOmicsPASS+ is provided in Supplementary Information. 
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Figures 
 

 
Figure 1. Analysis workflow applied to the CDCS cohort. (A) The background network 
reflecting the conditional dependence structure among the four data types is inferred using 
graphical LASSO. From the network, subnetwork signatures of secondary MACE and HFH 
are obtained using the training data (CDCS).  (B) Data features are standardised and outliers 
are removed prior to integration of multi-modal data sets. In CDCS, 1,289 proteins from 
SOMALOGIC and 376 lipids from targeted MS were integrated with 19 cardiac imaging 
variables and 6 clinical biomarkers through this network inference.   
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Figure 2. Visualization of the network connecting plasma proteins and lipids with 
echocardiographic imaging variables and cardiac biomarkers. Plasma proteins and lipids were 
drawn as nodes in light red and cyan, and echocardiographic variables and cardiac biomarkers 
in blue and light purple, respectively. Network edges were coloured according to the signs of 
partial correlations, i.e. positive in red and negative in light purple.  
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Figure 3. Subnetwork signatures of secondary MACE.  (A) Network visualization with plasma 
proteins, lipids and acylcarnitines, echocardiographic imaging variables, and clinical 
biomarkers in different colours. Edges were coloured according to the signs of the group-
specific test statistics (scaled centroids) computed by iOmicsPASS+. (B) Enrichment of 
biological functions in the constituent nodes in panel (A), accounting for tissue-specific 
expression of genes at the mRNA level (TPM > 5 in each tissue). (C) Visualization of the 
subnetwork connecting plasma proteins and echocardiographic imaging variables as well as 
clinical biomarkers.  
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Figure 4. Risk stratification by the patient-level probability scores of the most predictive feature 
pairs in the CDCS and IMMACULATE cohorts. (A) Kaplan-Meier curves with the tertile-based 
stratification of patients according to the probability scores of MACE and HFH in the training 
data (CDCS) and the validation data (IMMACULATE). (B) Boxplots of the scores of the four 
top scoring feature pairs predictive of HFH and the respective ROC curves.  
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Tables 
 
Table 1. Clinical characteristics of post-myocardial infarction patients in CDCS study 

  
CDCS study (New Zealand) 

All Event-free MACE 
P-value (n = 464) (n = 185) (n = 279) 

Follow-up time, median (yrs) 4.88 4.84 4.96   
Time to MACE, median (yrs)   - 0.74   
Age (yrs), mean (SD) 69 (10.7) 66.7 (9.6) 70.6 (11.1) <0.001 
BMI (kg/m2), mean (SD) 27.1 (4.9) 27 (3.9) 27.2 (5.5) 0.603 
Gender, n (%)         

Males 321 (69.2) 126 (68.1) 195 (69.9) 0.760 
Females 143 (30.8) 59 (31.9) 84 (30.1)   

Ethnicity, n (%)         
NZ European 263 (56.7) 102 (55.1) 161 (57.7) 0.485 
Other Europeans 129 (27.8) 42 (22.7) 87 (31.2)   
Others 33 (7.1) 12 (6.5) 21 (7.5)   
Unknown 39 (8.4) 29 (15.7) 10 (3.6)   

Smoking status, n (%)         
Current Smoker 31 (6.7) 13 (7) 18 (6.5) 0.318 
Ex-Smoker 253 (54.5) 93 (50.3) 160 (57.3)   
Never Smoked 180 (38.8) 79 (42.7) 101 (36.2)   

Alcohol consumption, n (%)         
Current drinker 294 (63.4) 127 (68.6) 167 (59.9) 0.070 
Ex-drinker 52 (11.2) 14 (7.6) 38 (13.6)   
non-drinker 118 (25.4) 44 (23.8) 74 (26.5)   

ST-elevation status, n (%)         
ST-elevated MI, STEMI 138 (29.7) 67 (36.2) 71 (25.4) 0.017 
Non ST-elevated MI, NSTEMI 326 (70.3) 118 (63.8) 208 (74.6)   

Family history of CAD, n (%) 185 (39.9) 80 (43.2) 105 (37.6) 0.345 
Diabetes Mellitus, n (%) 82 (17.7) 27 (14.6) 55 (19.7) 0.197 
Hypertension, n (%) 226 (48.7) 68 (36.8) 158 (56.6) <0.001 
Hyperlipidemia, n (%) 209 (45) 82 (44.3) 127 (45.5) 0.687 
Clinical- biomarkers#, mean (SD)         

Creatinine, mg/dL 99.4 (59.7) 90.3 (18.7) 106 (75.2) <0.001 

high-sensitive Troponin I (hsTNI), ng/L 57.8 (506.6) 18.3 (51.5) 84.6 
(654.0) <0.001 

Atrial natriuretic peptide (ANP), pg/mL 401 (271.8) 347 (210.5) 436 (301) 0.001 

N-terminal pro ANP, pg/mL 12200 
(8652.3) 

9830 
(5839.7) 

13700 
(9810.5) <0.001 

Brain natriuretic peptide (BNP), pg/mL 260 (283.5) 187 (198.8) 310 (319.0) <0.001 

N-terminal pro BNP, pg/mL 1330 
(1539.8) 925 (908.6) 1600 

(1795.6) <0.001 

* P-values of the comparisons across the three groups (Event-free, MACE and HFH patients) where 
ANOVA is used for continuous variables and chi-square test is used for categorical variables. 
† Markers were measured during hospital admission for a primary MI event. 
‡ Markers were measured one month from hospital discharge post MI. 
 
CDCS, Coronary artery Disease Cohort Study; CAD, coronary artery disease; NZ, New Zealand; BMI, 
body mass index; MI, myocardial infarction; HF, heart failure; LVEF, left ventricular ejection fraction; 
STEMI, ST-elevated myocardial infarction; NSTEMI, non ST-elevated myocardial infarction; LDL, low-
density lipoprotein; HDL, high-density lipoprotein; hsTNI, high-sensitive Troponin I; NT-proANP, N-
terminal pro-hormone atrial natriuretic peptide; NT-proBNP, N-terminal pro-hormone brain natriuretic 
peptide. 
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Table 2. Echocardiographic imaging variables of post-myocardial infarction patients in CDCS study 

CDCS study 

  

Event-free, 
EF MACE P-value for 

EF vs 
MACE 

HFH P-value for 
EF vs HFH 

(n = 185) (n = 279) (n = 117) 
Heart dimensions      

Interventricular septum, IVS (mm) 11.4 (2.2) 12.1 (2.9) 0.008 12.4 (2.8) 0.001 
Posterior wall thickness, PWT (mm) 11 (1.9) 11.5 (2.9) 0.105 11.5 (2.3) 0.106 
Left ventricle (LV) mass, LVMi (g/m2) 124 (31.1) 141 (46.6) <0.001 148 (39.0) <0.001 
Left ventricle internal dimension diastole, LVIDDi (mm/m2) 28.1 (3.8) 29.2 (4.3) 0.008 30.2 (5.0) <0.001 
Left ventricle internal dimension systole, LVIDSi (mm/m2) 18.8 (3.9) 19.9 (4.6) 0.010 21.4 (5.0) <0.001 
Left ventricle end diastolic volume, LVEDVi (mL/m2) 64.4 (15.3) 66.9 (20.9) 0.211 69.0 (22.4) 0.060 
Left ventricle end systolic volume, LVESVi (mL/m2) 27.7 (12.1) 31.6 (17.6) 0.021 35.7 (20.3) <0.001 
Left ventricle ejection fraction, LVEF (%) 58.4 (10.8) 56 (12.4) 0.032 51.7 (13.6) <0.001 
Left Atrial (LA) width (mm) 40.3 (5.9) 41.8 (7) 0.018 44.3 (6.9) <0.001 
Left Atrial (LA) area (cm2) 20.7 (5.7) 23 (5.6) <0.001 24.6 (6.2) <0.001 

Transmitral flow           
Deceleration Time, DT (msec) 238 (67.3) 237 (73.8) 0.865 229 (77.5) 0.288 
Peak E/A ratio 1.11 (0.6) 1.04 (0.4) 0.195 1.05 (0.5) 0.421 

    Pulmonary vein flow      
Peak S/D ratio 1.39 (0.5) 1.32 (0.4) 0.145 1.23 (0.5) 0.017 
Peak AR (cm/s) 28.7 (7.8) 28.1 (7.7) 0.415 28.8 (8.4) 0.942 

Tissue Doppler imaging           
e' (cm/s), average of lateral and septal annuli 8.1 (2.2) 7.6 (2.2) 0.027 7.2 (2.3) 0.001 
a' (cm/s), average of lateral and septal annuli 9.3 (2.1) 9.1 (2.4) 0.368 8.6 (2.3) 0.005 
s' (cm/s), average of lateral and septal annuli 7.6 (1.4) 7.4 (1.7) 0.288 6.9 (1.6) <0.001 
e'/a' ratio 0.91 (0.3) 0.89 (0.4) 0.519 0.88 (0.4) 0.485 
E/e' ratio 9.2 (3.1) 10.7 (4.2) <0.001 12.2 (5.0) <0.001 
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Table 3. Summary of the predictive subnetwork signatures of lipids, proteins and clinical markers in two comparisons, separating 
event-free post MI patients from those with a future adverse cardiac outcome (MACE) and from HFH patients. 

  

MACE 
from 

event-free 
patients 

HFH from 
event-free 
patients Overlaps Common features 

Features 
unique to 

MACE 

Features 
unique to 

HFH 
Number of predictive network edges 524 566 414    
Total number of features 211 189 160    
Mean cross-validation error 38.5% 26.7%     

Proteins 194 164 143    
Over-expressed in at least one tissue 123 109 91    

Heart-enriched ‡ 4 4 4 BMP10, CSRP3, FABP3, 
TNNT2 - - 

Artery-enriched † 7 5 4 EFEMP1, IGFBP2, TIMP1, 
THBS2 

BGN, CNTN4, 
INHBA POSTN 

Skeletal muscle-enriched 5 5 5 CA3, CSF3, CSRP3, 
FABP3, SOD2 - - 

Kidney-enriched # 5 6 4 GDF15, MMP7, SPP1, 
TDGF1 TNFSF15 IL1RL1, REN 

Liver-enriched 13 9 8 ASGR1, C4A/C4B, CCL15, 
CPB2, HRG, IL27, PLG* 

AHSG, EPO, 
FABP1, FCN2, 

THPO 
CLEC4M 

Lung-enriched 12 15 11 

CCL18, CD4, CD300C, 
CHIT1, CSF3, CST5, 

CXCL8, CXCL9, CXCL10, 
FIGF, RSPO4 

ACP5 AGER, CD55, 
CD93, IL1RL1 

Lipids 5 8 5    

Phosphatidylethanolamine 4 5 4 PE 34:1, PE 34:2, PE 35:2, 
PE 37:4 - PE(O-36:4) 

Phosphatidylcholine 0 1 0 -  - PC(P-30:0) 

   Acylcarnitines 1 2 1 AcylCarnitine C12:0 - AcylCarnitine 
C14:0 

Echo imaging variables 8 12 8 IVS, LVEF, LVMi, LA area, 
LVESVi, LVIDSi, E/e’, e' - 

LA width, 
LVEDVi, 

LVIDDi, A' 
Clinical- biomarkers 4 5 4 ANP, NT-proANP, BNP, NT-

proBNP - hsTNI 
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* Plasminogen (PLG) was detected twice; one as the complete plasminogen and the other as angiostatin, an proteolytic fragment. 
*Tissues enriched in the kidney include cortex and medulla. 
†Tissues enriched in the artery include aorta and coronary artery. 
‡Tissues enriched in the heart include atrial appendage and left ventricle. 
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Table 4. Top ten pairs of data feature with the highest AUC (HFH) and test statistics scores (dik*) of the largest magnitude in 
iOmicsPASS+ in the CDCS and IMMACULATE studies 
 

Interaction pair 
Feature 

A Feature B DataTypeA DataTypeB 

dik* 

score 
for 

Event-
free 

dik* 
score 

for HFH 

CDCS study IMMACULATE study 

AUC 
95% CI for 

AUC AUC 
95% CI for 

AUC 
EFEMP1 --- NT-proBNP EFEMP1 NT-proBNP Protein Biomarker -1.538 1.319 0.80 (0.75 - 0.85) 0.80 (0.73 - 0.88) 

CAPG --- FSTL3 CAPG FSTL3 Protein Protein -2.206 1.891 0.79 (0.74 - 0.84) 0.69 (0.59 - 0.79) 
FSTL3 --- E/e' FSTL3 E/e' Protein Echo Imaging -1.690 1.449 0.78 (0.73 - 0.83) 0.73 (0.61 - 0.85) 

EFEMP1 --- E/e' EFEMP1 E/e' Protein Echo Imaging -2.129 1.825 0.78 (0.72 - 0.83) 0.71 (0.60 - 0.83) 
CAPG --- TFF3 CAPG TFF3 Protein Protein -2.179 1.868 0.78 (0.72 - 0.83) 0.68 (0.57 - 0.79) 

EFEMP1 --- FSTL3 EFEMP1 FSTL3 Protein Protein -2.161 1.853 0.77 (0.72 - 0.83) 0.74 (0.64 - 0.84) 
RSPO4 --- BNP RSPO4 BNP Protein Biomarker -1.469 1.259 0.77 (0.72 - 0.83) 0.77 (0.68 - 0.87) 
CAPG --- CST3 CAPG CST3 Protein Protein -1.539 1.320 0.77 (0.72 - 0.83) 0.59 (0.47 - 0.71) 

EFEMP1 --- GDF15 EFEMP1 GDF15 Protein Protein -1.981 1.698 0.77 (0.71 - 0.82) 0.72 (0.61 - 0.83) 
CAPG --- B2M CAPG B2M Protein Protein -1.963 1.683 0.77 (0.71 - 0.82) 0.61 (0.49 - 0.74) 
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