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Abstract 

Objective: 

Infectious diseases are common but are not easily or readily diagnosed with current 

methodologies. This problem is further exacerbated with the constant presence of mutated, 

emerging, and novel pathogens. One of the most common sites of infection by many pathogens 

is the human throat. Yet, there is no universal diagnostic test that can distinguish these 

pathogens. Metatranscriptomic (MT) analysis of the throat represents an important and novel 

development in infectious disease detection and characterization, as it is able to identify all 

pathogens in a fully unbiased approach.  

 

Design: 

To test the utility of an MT approach to pathogen detection, throat samples were 

collected from participants before, during, and after an acute sickness.  

 

Results: 

Clear sickness-associated shifts in pathogenic microorganisms are detected in the 

participants along with important insights into microbial functions and antimicrobial resistance 

genes.  

 

Conclusions: 

MT analysis of the throat represents an effective method for the unbiased identification 

and characterization of pathogens. Since MT data include all microorganisms in the sample, this 
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approach should allow for not only the identification of pathogens, but also an understanding of 

the effects of the resident throat microbiome in the context of human health and disease.  

 

Keywords: antibiotic resistance, infectious disease, metatranscriptomics, pathogen detection, 

throat swab 

 

Introduction 

 The human throat contains a large number of both commensal and potentially pathogenic 

microorganisms performing a wide variety of metabolic functions, with potentially beneficial 

and harmful effects to the host (Gong et al., 2013). The analysis of throat swabs by 

metatranscriptomics presents an opportunity to investigate the throat microbiome and its roles in 

disease pathogenesis. 

The throat microbiome has the potential to elucidate several important chronic disease 

biomarkers. Research has shown that microorganisms in the throat microbiome including the 

genera Fusobacterium, Prevotella, Streptococcus, Lactobacilli, and Bifidobacterium are related 

to specific chronic diseases such as laryngeal carcinoma, Schizophrenia, and cystic fibrosis 

(Boutin et al., 2015; Castro-Nallar et al., 2015; Gong et al., 2014). In addition to the possible 

direct effects of the throat microbiome on human health and disease, the throat microbiome can 

also act as an important proxy to the lung microbiome, which has been shown to have dramatic 

effects on host physiology (Ibironke et al., 2020). Microorganisms in the lung microbiome (such 

as Haemophilus, Neisseria spp., and Pseudomonas aeruginosa) have 

 been associated with numerous diseases, including lung cancer, asthma, and obstructive 

pulmonary disease (Mao et al., 2018; Moffatt and Cookson, 2017). Since the throat microbiome 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.08.22273423doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22273423


 

4 

is easy to sample and can provide informative insights into the lung microbiome, it represents an 

important development in allowing for large-scale population studies. 

In addition to the connections between the throat/lung microbiomes and chronic diseases, 

the throat microbiome is also an important reservoir for infectious diseases. Throat microbiome 

sampling can be used to characterize pathogens and can provide insights into infectious disease 

severity (Lee et al., 2019; Tsang et al., 2019). Current standard clinical practices for the 

identification of pathogens from throat samples mainly rely either on quantitative real-time PCR 

(qPCR) or culture assays (Miller et al., 2019). These methods have several drawbacks which 

have limited the clinical utility of throat swabs and hampered pathogen detection.  

 Both qPCR and microbial culturing are biased methodologies. These methods rely on the 

identification of specific target pathogens and are unable to identify novel or unexpected 

pathogens (Wylezich et al., 2018). Metatranscriptomics represents the ideal method for the 

detection and characterization of pathogens. Metatranscriptomics can provide strain-level 

taxonomic resolution for all metabolically active microorganisms and viruses and can provide 

insights into the biochemical activities of the microbiome by quantifying microbial gene 

expression levels, allowing for the assessment of biochemical pathway activities (Bashiardes et 

al., 2016). These analyses are of particular importance to infectious disease diagnostics as they 

can provide insights into antimicrobial resistance genes to inform treatment options. 

To date, metatranscriptomic methods have been limited due to the cost, turnaround time, 

and complexity of both laboratory and bioinformatic methods (Knight et al., 2012). Effective 

RNA preservation has been challenging, traditionally requiring a cold chain that is expensive and 

complicated. Another challenge of working with RNA is that the majority of RNA is 

uninformative ribosomal RNA (rRNA), with messenger RNA (mRNA), the most informative 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.08.22273423doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22273423


 

5 

RNA species, making up only about 1-5% of cellular RNA (He et al., 2010). By removing the 

non-informative prokaryotic and eukaryotic RNAs, thereby enriching for informative mRNA 

sequences, sequencing data can be generated at a fraction of the analysis cost (Bashiardes et al., 

2016). 

Here we present an unbiased method for the quantitative metatranscriptomic analysis of 

throat samples that can easily be applied to clinical studies, clinical trials, biosurveillance, and 

clinical testing globally. The method is automated, high-throughput, inexpensive, and includes a 

fully automated, rapid, and clinically validated bioinformatics suite for strain-level taxonomic 

classification of all microorganisms, viruses, and their quantitative gene expression. Importantly 

for infectious disease diagnostics, the current method has a clinically useful turnaround time, and 

results can be reported within 48 hours of sample collection; the method can be further 

developed to bring turnaround time to under 24 hours. This level of turnaround time is 

comparable to traditional methods of infectious disease diagnostics, such as qPCR and cultures 

(Caliendo et al., 2013; Larremore et al., 2020). An RNA preservation buffer mixed with the 

throat sample at the point of collection inactivates all pathogens (bacteria, fungi, and viruses), 

preserves RNA integrity, and enables safe transportation globally at ambient temperatures (Hatch 

et al., 2019; Toma et al., 2020).  
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Methods 

Ethics Statement 

All procedures involving human subjects were performed in accordance with the United 

States ethical standards and approved by a federally-accredited Institutional Review Board (IRB) 

committee. Informed consent was obtained from the participants, all of whom were over the age 

of eighteen and residents of the USA at the time. 

 

Sample Collection 

 Oropharynx swabs were collected using flocked swabs (Puritan 25-3206-H 20MM). 

Swabs were collected by sampling across the tonsils and uvula four to five times while avoiding 

the tongue and cheeks. After collection, swab tips were placed into a bead beating tube 

containing a proprietary RNA Preservative Buffer (RPB) and broken off. RPB has been 

previously shown to preserve RNA in clinical samples for up to 28 days at room temperature 

(Hatch et al., 2019; Toma et al., 2020). Samples were stored at room temperature for up to 2 

weeks before being frozen at -80C prior to sample processing. 

 

Study Design: 

247 throat swabs were collected from 38 individuals between September 2019 and March 

2020 at regular intervals, typically weekly. For participants that naturally developed a sickness, 

throat swabs were collected at an increased interval, typically daily, until after symptoms 

subsided, at which point weekly sample collection was resumed.The samples from six 

participants (male: 4, female: 2) that reported at least one moderate or severe symptom 

associated with a sickness were analyzed. Throat swabs from prior to the sickness, during the 
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sickness, and after the sickness were analyzed (for a detailed sample collection timeline see 

supplemental table 1). A symptom survey was administered for each collection to assess if an 

individual felt sick, and to quantify their symptoms (supplemental table 2). 

 

Laboratory analysis 

Throat samples were lysed by bead beating in RPB, as previously described (Hatch et al., 

2019; Toma et al., 2020). Briefly, the samples were lysed using a combination of chemical and 

mechanical (bead beading) methods. RNA was extracted using silica beads and a series of 

washes, followed by elution in molecular biology grade water. DNA was degraded using RNase-

free DNase. Prokaryotic and human rRNAs were removed using a subtractive hybridization 

method previously described (Hatch et al., 2019). Biotinylated DNA probes with sequences 

complementary to microbial and human rRNAs were added to total RNA, the mixture was 

heated and cooled, and the probe-rRNA complexes were removed using magnetic streptavidin 

beads. The remaining RNAs that contain an enriched mRNA fraction were converted to 

directional sequencing libraries using unique dual-barcoded adapters and ultrapure reagents. 

Libraries were pooled and quality controlled with dsDNA Qubit (Thermo Fisher Scientific) and 

Fragment Analyzer (Advanced Analytical) methods. Library pools were sequenced on Illumina 

NovaSeq instruments using 300 cycle kits.  

 

Bioinformatic analysis 

Viome’s bioinformatics methods include quality control, strain-level taxonomic 

classification, and microbial gene expression. The quality control includes per-sample and per-

batch quality metrics, such as the level of barcode hopping, batch contamination, positive and 
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negative process controls, DNase efficacy, and the number of reads obtained per sample. 

Following the quality control, the paired-end reads are aligned to a catalog containing ribosomal 

RNA (rRNA), human genome, and 53,660 genomes spanning archaea, bacteria, fungi, protozoa, 

and viruses. Reads that map to rRNA or host are filtered out. Strain-level relative activities were 

computed from mapped reads via the expectation-maximization (EM) algorithm (Dempster et 

al., 1977). Relative activities at other levels of the taxonomic tree are then computed by 

aggregating according to taxonomic rank. Relative activities for the biological functions are 

computed by mapping paired-end reads to a catalog of 52,324,420 genes, quantifying gene-level 

relative activity with the EM algorithm, and then aggregating gene-level activity by KEGG 

Ortholog (KO) annotation (Kanehisa and Goto, 2000). The identified and quantified active 

microbial species and KOs for each sample are then used for downstream analysis.   

For the identification of antimicrobial resistance genes, sequencing reads from the throat 

swab samples were mapped to a total of 5,735 NCBI antimicrobial resistance proteins using 

Diamond. Mappings with e-value > 1e-10 were discarded. For reads that were mapped to several 

targets, the mapping with the smallest e-value was kept. 

 

Data analysis 

Statistical parameters, including transformations and significance, are reported in the 

figures and figure legends. To compare pairs of samples, we report Jaccard similarity (which 

ignores expression and considers overlap in genes detected), Spearman correlations (which are 

invariant to absolute expression levels of the genes and only consider the similarity of ranked 

expression), Pearson correlations on logged data (which measure the linear relationship between 

gene expression levels), and Hellinger distance (an appropriate distance measure for 
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compositional data). Pearson and Spearman correlation coefficients were performed on centered 

log-ratio (CLR) transformed data (Aitchison, 1982), as is commonly done to reduce false 

discoveries due to the compositional nature of sequencing data. Statistical analyses were 

performed in python.  

 

Results 

 

Sequencing Metrics 

Of the thirty-six throat samples that were analyzed from the six donors, the average 

number of reads per sample was 9,542,332 reads (standard deviation: 2,268,830 reads) and the 

average species richness was 479 species (standard deviation: 72 species). The top ten microbial 

species by abundance that were detected across all samples accounted for 29% of all microbial 

reads. The species were Streptococcus salivarius (accounting for 5.7% of microbial reads and 

detected in 100% of samples), Veillonella atypica (accounting for 4.9% of microbial reads and 

detected in 100% of samples), Tannerella sp. oral taxon HOT-286 (accounting for 3.5% of 

microbial reads and detected in 88.9% of samples), Gemella sanguinis (accounting for 2.6% of 

microbial reads and detected in 100% of samples), Veillonella sp. oral taxon 158 (accounting for 

2.6% of microbial reads and detected in 100% of samples), Prevotella shahii (accounting for 

2.4% of microbial reads and detected in 88.9% of samples), Leptotrichia wadei (accounting for 

2.2% of microbial reads and detected in 100% of samples), Streptococcus mitis (accounting for 

1.7% of microbial reads and detected in 100% of samples), Streptococcus parasanguinis 

(accounting for 1.7% of microbial reads and detected in 100% of samples), and Streptococcus 

infantis (accounting for 1.6% of microbial reads and detected in 100% of samples). Based on a 
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post-hoc test with Mann-Whitney, there was no significant difference between any of the 

participants in terms of reads or species richness  (figure 1A and 1B). The average percent of 

sequencing reads that mapped to microbial species (microbial load) was 7.57% (standard 

deviation: 4.74%). Participant PID-0001 showed significantly increased microbial load 

compared to all other participants (p<0.05) (figure 1C). 

 

Pathogen Detection and Characterization 

Five of the six participants had a significant change in the relative abundance of one or 

more pathogenic organisms during the sickness compared to all of the intra-participant healthy 

samples (both pre and post-sickness) based on two sample t-test. Participants PID-0098 and PID-

0026 had significant increases in Human coronavirus HKU1 abundance, PID-0038 had a 

significant increase in Moraxella catarrhalis abundance, PID-00279 had a significant increase in 

Klebsiella pneumoniae abundance, and PID-0019 had significant increases in Rhinovirus A, 

Streptococcus pneumoniae, and Haemophilus influenzae abundance and a significant decrease in 

Haemophilus parainfluenzae abundance in the sick time points compared to all of the healthy 

time points (table 1, figure 2). 

 Participant PID-0001 did not have a significant change in pathogenic microorganisms 

during the sickness (figure 2). PID-0001 primarily reported a severe cough which they have 

noted is a chronic cough that has afflicted them for over ten years. Their symptoms are consistent 

with that of persistent bacterial bronchitis in adults (Finch et al., 2019). The significantly higher 

microbial load (figure 1) observed in all of the throat swabs from PID-0001 compared to all other 

participants corroborates this probable diagnosis (Sibila et al., 2019). In addition, all samples 

from PID-0001 show the presence of Haemophilus influenzae, whose presence is associated with 
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persistent bacterial bronchitis (Gallucci et al., 2020). These results indicate that the participant 

may be suffering from bronchiectasis characterized by a general overgrowth of microorganisms 

in the throat leading to airway and epithelial damage which is the root cause of their cough, as 

opposed to being caused by a transient pathogenic infection (Martin and Harrison, 2015). 

 For several participants, the symptomatic data (supplemental table 2) that was collected 

also aligned with expected symptoms related to the purported infections. PID-0098 and PID-

0026, for example, both contracted Human coronavirus HKU1 based on throat swab analysis. 

Their predominant symptom was severe rhinorrhea (runny nose) and mild sore throat. 

Rhinorrhea and sore throat are common symptoms of Human coronavirus HKU1 infection 

(Kanwar et al., 2017). Based on throat microbiome analyses, PID-0019 had an infection 

dominated by Streptococcus pneumoniae. Their predominant complaints were a sore throat, body 

aches, and sinus pressure, which are consistent with symptoms observed in bacterial sinusitis, 

which Streptococcus pneumoniae is known to cause (CDC, 2019; Scheid and Hamm, 2004).  

 

Functional and Taxonomic Shifts in Response to the Sickness 

 In addition to the significant changes in infectious organisms in the sick conditions, three 

participants also showed significant changes in highly expressed microbial functions or highly 

abundant non-pathogenic microbial species between the sick and the healthy time points based 

on paired t-test and corrected using Benjamini-Hochberg FDR correction (figure 3). Several 

functions associated with carbohydrate metabolism (K00134 and K01624) were significantly 

upregulated in participants PID-0019 and PID-0279 during the sickness compared to after the 

sickness (p<0.05). In addition, the expression of elongation factor Tu (EF-Tu/K02358) was 

significantly elevated during the sickness compared to after the sickness for participant PID-0279 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.08.22273423doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22273423


 

12 

(p<0.05). Two participants also showed significant changes in the relative abundance of two 

commensal bacteria as a result of the sickness. PID-0038 showed a significant reduction in the 

abundance of Prevotella sp. oral taxon 306 in response to the sickness (sick time point 1 

p=0.0014, sick time point 2 p=0.0060). PID-0279 showed a significant reduction in the 

abundance of Actinomyces sp. Marseille-P2825 in response to the sickness (p=0.0215). A 

metatranscriptomic analysis of the throat microbiome is able to provide additional information 

about the functional and community shifts observed in response to a sickness, which can provide 

further insights into disease progression.  

Antibiotic Resistance Genes 

 A robust understanding of antibiotic resistance genes is critical for the proper treatment 

of bacterial infections. The improper use of antibiotics can result in harmful effects to the host 

(via off-target effects on human microbiomes) and can also exacerbate antibiotic resistance 

(Hayhoe et al., 2018). Metatranscriptomic analyses allow for the identification of the expressed 

antibiotic resistance genes to inform treatment options and the selection of effective antibiotics. 

In the dataset, 170 antibiotic resistance genes were identified, which could be used in a clinical 

setting to inform the treatment of the infection (figure 4, supplemental table 3). 

 

Discussion 

 

The current standard of care for the diagnosis of infectious diseases is inadequate and 

antiquated. Metatranscriptomic analysis of clinical samples presents an important advancement 

that allows for unbiased detection of all pathogens coupled with informative gene expression 

analysis (such as antibiotic resistance genes) that can inform treatment options. The throat 
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microbiome can be readily sampled and can provide informative data on pathological 

biomarkers.  

The metatranscriptomic method reported here is novel in that it is able to unbiasedly 

identify all pathogenic microorganisms at the highest resolution (strain level), can be used to 

investigate new and emerging pathogens, and can be deployed globally all while providing 

clinically relevant and actionable information in a timely manner . After physically removing the 

microbial and human rRNAs from the total RNA pool, the full length of all other RNAs are 

sequenced. Using the sequence information, accurate strain-level taxonomic classification can be 

performed for all microorganisms, including bacteria, fungi/molds, and RNA viruses, such as 

SARS-CoV-2, Influenza, etc. This approach will transform infectious disease diagnostics since 

healthcare providers will not need to rely on the symptoms to guess which test to run. 

One of the most important advancements that metatranscriptomic analysis offers over 

traditional methodologies is its ability to identify pathogens that are difficult to detect with 

standard methods. For example, in the data presented in this paper, participant PID-0038 showed 

a likely infection with Moraxella catarrhalis (Table 1, figure 2). Moraxella catarrhalis is a 

common human pathogen that has been associated with several different diseases including 

sinusitis, ear infection, and COPD (Goldstein et al., 2009). Despite the prevalence of associated 

diseases with Moraxella catarrhalis, it was not recognized as a respiratory tract pathogen until 

recently, due to inadequate diagnostic methods and the inability of current diagnostic methods to 

differentiate Moraxella catarrhalis from other microorganisms such as Neisseria species 

(Goldstein et al., 2009). The methods reported in this paper overcome these limitations, allowing 

for unbiased identification and characterization of pathogens. 
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In this paper, it was also identified that participant PID-0001 likely suffers from chronic 

bronchiectasis, as opposed to a specific transient infection. Metatranscriptomic analysis of the 

entire throat microbiome is better able to differentiate between chronic conditions and infectious 

diseases with similar symptoms, which can facilitate proper treatment options. 

Metatranscriptomics’ ability to quantify gene expression also offers exciting potential for 

the further characterization of infectious diseases and their role on host physiology, and for the 

development of more personalized treatment options. In the data presented in this paper, two 

participants showed alterations to the gene expression of two specific microbial functions in 

response to the sickness (figure 3). Increases in both carbohydrate metabolism and the expression 

of EF-Tu were observed. Participant PID-0279 showed increased EF-Tu expression which has 

been associated with the adhesion of pathogens to host cells and may assist in the pathogenicity 

of the infection (Harvey et al., 2019). Our findings also support previous research that has 

observed a co-occurrence between Klebsiella pneumoniae infection and a release of outer 

membrane vesicles containing EF-Tu (Harvey et al., 2019; Lee et al., 2012). Participants PID-

0279 and PID-0019 also showed significantly increased functions associated with carbohydrate 

metabolism during the sickness. Modulations to carbohydrate metabolism pathways are 

important factors that allow pathogens to adapt to, and thrive in, different host niches, improving 

the overall success of the infection (Echlin et al., 2020). Finally, functional analyses are able to 

identify antibiotic resistance genes, allowing for informed treatment options that are best suited 

for the specific infection. Metatranscriptomic analysis is, therefore, able to provide a plethora of 

functional information which can add to an understanding of the disease progression, 

pathogenicity, and potential treatments.  
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Since the throat microbiome is an effective proxy to the lung microbiome, analyses of the 

throat microbiome also offer the opportunity to investigate several chronic conditions that are 

associated both with the throat and lung microbiomes. Throat sampling is easy to perform and 

could help to dramatically increase the understanding of how the throat and lung microbiomes 

impact human health and disease.  

Although there are a myriad of benefits to the use of metatranscriptomics in infectious 

disease diagnostics, the current method does have several limitations. The primary limitation to 

the method is the complexity of the laboratory analyses. Although the process is automated, the 

laboratory space, reagent storage requirements, and training are limitations to implementing in 

diverse testing environments, for example in point of care settings. A limitation of this study is 

the limited sample size; to gain a robust understanding of the utility of metatranscriptomics in 

infectious disease diagnostics, further experiments should be performed. 

Here we describe a novel throat metatranscriptome test that is capable of producing high-

quality microbial taxonomic classifications and microbial gene expression profiles to facilitate 

the identification and characterization of pathogens. The test is also able to provide insight into 

the throat microbiome to further research its role in human health and disease. The sample 

collection described in this paper can be performed by anyone, anywhere, and samples can be 

stored and shipped at ambient temperature. The method is automatable, inexpensive, high 

throughput, and can be implemented in clinics and/or large-scale population studies. 
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Figure 4: Expression level (log10 parts per million) distribution of all antibiotic resistance 

genes detected in all samples.  
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Figure 3: Significant changes in the expression of microbial functions and the abundance of 

commensal microorganisms in response to a sickness based on paired t-test and corrected 

using Benjamini-Hochberg FDR correction. 
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Figure 2: Significantly different relative abundances (in parts per million) of pathogenic 

microorganisms in throat samples during a sickness compared to all healthy timepoints based 

on two sample t-test. All participants showed at least one significantly different microorganism 

in response to the sickness, except for PID-0001. 
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Figure 1: Comparison of sequencing metrics from all samples for all donors. Based on a post-

hoc test with Mann-Whitney U (MWU) test, there is no significant difference between donors 

for (A) the number of sequencing reads and (B) species richness. PID-0001 has a significant 

elevation in (C) the microbial load of their samples. Each donor had six samples analyzed. 
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Table 1: Significantly different abundance of pathogenic microorganisms between any sick 

time point and all healthy time points based on two sample t-test. 

 

Species Name 

FDR p 

value 

Taxonomy ID 

(NCBI) 

Sick Time 

Point Participant ID 

Rhinovirus A 0.0000027 147711 1 PID-0019 

Haemophilus 

parainfluenzae 0.0019993 729 1 PID-0019 

Streptococcus 

pneumoniae 0.0019993 1313 1 PID-0019 

Haemophilus 

influenzae 0.0019993 727 1 PID-0019 

Rhinovirus A 0.0000060 147711 2 PID-0019 

Haemophilus 

parainfluenzae 0.0032927 729 2 PID-0019 

Streptococcus 

pneumoniae 0.0032927 1313 2 PID-0019 

Human 

coronavirus 

HKU1 0.0000254 290028 1 PID-0026 

Human 0.0000251 290028 2 PID-0026 
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coronavirus 

HKU1 

Moraxella 

catarrhalis 0.0001042 480 1 PID-0038 

Moraxella 

catarrhalis 0.0002534 480 2 PID-0038 

Human 

coronavirus 

HKU1 0.0000004 290028 1 PID-0098 

Human 

coronavirus 

HKU1 0.0000010 290028 2 PID-0098 

Klebsiella 

pneumoniae 0.0000192 573 1 PID-0279 
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