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ABSTRACT 

Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective 
in controlling motor symptoms in patients with Parkinson’s Disease (PD). However, correct 
selection of stimulation parameters is pivotal to treatment success and currently follows a 
time-consuming and demanding trial-and-error process. We conducted a double-blind, ran-
domized, cross-over, non-inferiority trial to assess treatment effects of stimulation parame-
ters suggested by a recently published algorithm (StimFit) based on neuroimaging data. 

Methods: The trial was carried out at Charité – Universitätsmedizin, Berlin, Germany and en-
rolled 35 PD patients treated with directional octopolar electrodes targeted at the STN. All 
patients had undergone DBS programming according to our centers standard of care (SoC) 
treatment before study recruitment. Based on perioperative imaging data DBS electrodes 
were reconstructed and StimFit was applied to suggest optimal stimulation settings. Patients 
underwent motor assessments using MDS-UPDRS-III during OFF-medication and in OFF- and 
ON-stimulation states under both conditions, StimFit and SoC parameter settings that were 
double blinded and randomized in a 1:1 ratio. The primary endpoint of this study was the 
absolute mean difference between MDS-UPDRS-III scores under StimFit and SoC stimulation, 
with a non-inferiority margin of five points.  

Findings: STN DBS resulted in mean MDS-UPDRS-III improvements of 48 % for SoC and 43 % 
with StimFit as compared to OFF-stimulation condition. The mean difference between MDS-
UPDRS-III scores under StimFit and SoC stimulation was not significant (1.6 points), and non-
inferiority was established. In six patients (17 %) initial programming of StimFit settings re-
sulted in acute side-effects and amplitudes were reduced until side-effects disappeared. 

Interpretation: Automated data-driven algorithms can predict stimulation parameters which 
lead to motor symptom control comparable to standard of care treatment. This approach 
could significantly decrease the time necessary to obtain optimal treatment parameters 
thereby fostering the design of more complex DBS electrodes. Long-term data including ef-
fects on quality of life require further investigation.  
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INTRODUCTION 

Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment 
option for advanced Parkinson’s Disease (PD), improving motor symptoms, quality of life and 
allowing to reduce dopaminergic medication.1-3 Yet, treatment success depends on the cor-
rect selection of stimulation parameters, which includes adaptation of amplitude, stimulation 
frequency, pulse-width, and the relative distribution of electric current across contacts.4 Cur-
rently, strategies to optimize these parameters are exclusively based on clinical testing and 
require highly trained medical personnel to iteratively adjust DBS settings in response to ther-
apeutic or adverse effects.5 Typically, this process is initiated by a monopolar review for con-
tact selection and amplitude adjustment, the two most important parameters for effective 
DBS.6 Other parameters are often refined at later stages according to patients’ symptomatic 
profile and treatment response. This procedure, however, is highly time consuming and im-
peded by multiple factors including a delayed response to parameter adjustments, symptom 
fluctuations and patient fatigue. Hence, only a fraction of the vast number of parameter com-
binations can be evaluated in this manner imposing the risk of selecting suboptimal settings 
even despite multiple thorough and time-consuming programming sessions. This problem has 
been aggravated with the introduction of directional electrodes, which allow for a more flexi-
ble shaping of the electric field but come at the cost of further inflating the number of possible 
stimulation settings.7 

To utilize the full therapeutic potential of modern DBS systems, data-driven algorithms could 
guide DBS programming by suggesting a subset of stimulation parameters.8,9 Electrode locali-
zation represents a promising input feature for such an approach since numerous studies have 
established a link to therapeutic or adverse DBS-effects across various stimulation targets and 
diseases.10-15 This seems especially feasible, since electrodes can be reconstructed from rou-
tinely acquired perioperative neuroimaging data allowing for a potential implementation in 
clinical routine without the need of additional data acquisition or equipment.16-19 Commercial 
software which can provide visual feedback for neurologists in relation to patients’ individual 
anatomy to aid clinical programming procedures is already available and first prospective ap-
plications indicate a potential benefit by reducing the time needed for clinical programming.20-

23 Despite these advantages image-guided optimization of DBS parameters remains challeng-
ing for two reasons. First, to derive optimal stimulation settings iterative adjustments of DBS 
parameters need to be conducted manually within the software. Although this allows for a 
much faster probing of different settings, this approach still does not solve the initial problem 
considering >1010 combinatorial possibilities to distribute electric current in octopolar elec-
trodes. Second, optimization objectives are unknown. Decision making is currently based on 
visualizations of simplified volumetric estimates of neuronal activation (VTA) and their overlap 
with anatomical regions. However, stimulation targets as well as regions of avoidance are not 
clearly defined and many therapeutic as well as adverse effects are likely being mediated by a 
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complex interplay of concurrent modulation of multiple white matter bundles.24 Hence, deci-
sions are driven (and potentially mislead) by the programmers’ individual understanding of 
the interplay between anatomy and function. 

Aiming at overcoming those limitations we recently developed and retrospectively validated 
StimFit, a data-driven algorithm capable of suggesting optimal stimulation parameters in PD 
patients treated with STN-DBS based on electrode location in a fully automated fashion.25 The 
model was trained on a large set of standardized monopolar review data to predict therapeu-
tic effects, as well as side-effect probabilities of different stimulation settings. An optimization 
algorithm was then implemented to find the stimulation setting which would maximize the 
therapeutic benefit while being constrained by a user-defined side-effect threshold. In the 
present randomized double-blind cross-over study we now prospectively assess the clinical 
effects of suggestions made by StimFit to the ones derived during standard of care (SoC) pro-
gramming strategies.  

 

Methods 

Study design: This double-blind 2 x 2 cross-over non-inferiority trial was designed to evaluate 
the clinical effects of DBS settings suggested by StimFit, a fully automated, data-driven algo-
rithm based on neuroimaging data 25 and to compare results to standard of care (SoC). The 
study was carried out at Charité – Universitätsmedizin, Berlin, Germany and approved by the 
local ethics committee (EA2/117/19). The study was registered at the German Register for 
Clinical Trials (https://www.drks.de, Study-ID: DRKS00023115). 

Participants: 35 PD patients who underwent STN-DBS surgery with directional octopolar elec-
trodes at Charité were included in the study. Inclusion criteria were the diagnosis of PD ac-
cording to the British Parkinson's Disease Society Brain Bank without severe cognitive impair-
ment, neuropsychiatric symptoms or severe cerebral atrophy and the ability to undergo over-
night withdrawal of dopaminergic medication. DBS surgeries had to be carried out between 
three months and three years before recruitment without any major surgical complications 
like bleedings, infections of the DBS system or re-implantation of DBS electrodes. All patients 
gave informed written consent. 

Standard of care (SoC): SoC programming was conducted before enrollment according to the 
standard postoperative pipeline at our center. This included initial titration of stimulation am-
plitudes postoperatively and individualized programming approximately three months after 
surgery. Here, monopolar review examinations were conducted to identify therapeutic win-
dows under cathodal stimulation and DBS settings were adjusted along with the dopaminergic 
medication over the course of several days during in-patient stays.26 Additionally, patients un-
derwent multiple follow-up adjustments at specialized in- and outpatient facilities before 
study participation (Suppl. Fig. 1). All DBS adjustments were carried out by experienced move-
ment disorders specialists who were not involved in any other aspects of the study. 
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StimFit setting: Electrodes were reconstructed and normalized to Montreal Neurological In-
stitute (MNI) coordinate system based on multimodal preoperative Magnetic Resonance Im-
aging (MRI) and postoperative Computed Tomography (CT) using the default Lead-DBS pipe-
line as described in the original publication of the algorithm.17,25 Algorithmic suggestions of 
DBS parameters were then computed using StimFit. Briefly, the model predicts motor im-
provements and side-effect probabilities of stimulation settings based on electrode recon-
structions and simulations of the electric field in the target region. To identify which contact 
selection and stimulation amplitude would lead to the maximal therapeutic benefit an opti-
mizer iterated through different stimulation settings until the model converged to a final so-
lution (Figure 1). To constrain stimulation parameters StimFit required to specify a maximum 
side-effect probability, which was set to 20% (50% within the first four patients). Since the 
occurrence of tremor varied across patients, tremor was excluded from the prediction, i.e., 

Figure 1: Image-based 
optimization of DBS 
parameters.  

A & B: Perioperative 
neuroimaging data 
(preoperative MRI and 
postoperative CT) is 
processed using the 
Lead-DBS pipeline to 
reconstruct DBS elec-
trodes in MNI-space. C: 
Based on electric field 
simulations StimFit pre-
dicts clinical effects of 
different stimulation set-
tings. A nonlinear opti-
mization algorithm itera-
tively explores the pre-
dicted outcomes to con-
verge to a final optimal 
solution (StimFit set-
ting); MNI = Montreal 
Neurological Institute; 
MRI = magnetic reso-
nance imaging; CT = 
computed tomography 
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the model optimized DBS parameters exclusively based on akinetic-rigid symptoms. Compu-
tational time to obtain DBS parameter suggestions for both hemispheres was approximately 
50 minutes on a local workstation. The resulting stimulation parameters will be referred to as 
StimFit settings. 

Study protocol: Examinations were performed within one day after overnight withdrawal of 
dopaminergic medication according to the study protocol (Figure 2). In the preparation phase 
contact impedances were measured to confirm integrity of the DBS system and to estimate 
energy efficiency of stimulation settings (see suppl. material). StimFit settings were activated 
and assigned to a stimulation program on the pulse generator. In case any acute permanent 
side-effects occurred, stimulation amplitudes were reduced until side-effects disappeared. 
Stimulation was then switched off and motor impairment was evaluated after a 45-minute 
wash-out period using part III of the Movement Disorder Society-Sponsored Revision of the 
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-III). Both SoC and StimFit ON-stimula-
tion conditions were then evaluated after 45-minutes wash-in periods in randomized order. 
All ratings were carried out by the same rater (JR). Finally, patients were asked to guess the 
randomization sequence and to self-assess the effects of both stimulation conditions.  

Masking and randomization: Rater as well as patients were blinded to the sequence of SoC 
and Stimfit stimulation conditions. The sequence was randomized in a 1:1 ratio without ap-
plying block stratification. An unmasked research assistant (APK) generated the allocation 
schedule using a computerized random number generator. The same researcher activated the 
stimulation settings during the study visit but was otherwise not involved in patient care, clin-
ical ratings, or data analysis. 

Figure 2: Study protocol  

Patients underwent study examinations after overnight withdrawal of dopaminergic medication. In the prepara-
tion phase contact impedances were measured and StimFit settings were programmed and activated for a short 
duration to detect potential acute stimulation-induced side-effects. Amplitudes were reduced in those cases until 
side-effects disappeared. MDS-UPDRS-III scores were assessed in OFF-stimulation conditions after a wash-out 
period of 45 minutes. Afterwards ON-stimulation assessments were performed under both, StimFit and SoC 
stimulation, again after a 45-minutes wash-in. Rater and patients were blinded to the sequence of both conditions 
which were randomized in a 1:1 ratio. After motor assessments were completed, patients were asked to self-
assess both stimulation conditions on a VAS from “0 = very unsatisfactory” to “100 = very satisfactory” and to 
guess the correct order of both stimulation conditions. VAS= visual analogue scale; SoC= standard of care; MDS-
UPDRS-III = part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease 
Rating Scale 
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Outcome parameters: Demographic and treatment data at the time of study participation 
included age, sex, disease duration, time since DBS surgery and time since last adjustment of 
SoC settings. SoC stimulation data was retrieved from the device and included stimulation 
amplitude, pulse-width, and frequency as well as the relative distribution of electric current 
across contacts, contact polarities and impedances. Dates and type of in- and out- patient 
visits related to DBS treatment were obtained retrospectively from electronic medical records 
at Charité and Beelitz Hospital for Parkinson’s disease. Levodopa equivalent daily doses 
(LEDDs) were calculated based on pre-operative medical records as well as medication sched-
ules at the time-point of study examination.27,28  

Primary outcome parameter was the difference between total MDS-UPDRS-III score under SoC 
and StimFit stimulation conditions. Additionally, mean improvement of MDS-UPDRS motor 
score relative to OFF stimulation was calculated for both stimulation conditions to verify ef-
fective DBS. Secondary outcome parameters were differences between MDS-UPDRS-III sub-
scores for akinetic-rigid, tremor and axial symptoms under both conditions. A definition of 
MDS-UPDRS-III items included in each of the scores is provided in the suppl. material. Further 
secondary outcome parameter was the patients’ self-rating of the subjective perception of 
both ON-stimulation settings. Patients were asked to rate each setting according to the ques-
tion: “How satisfied were you with the overall effects of the stimulation?” on a visual analogue 
scale (VAS) from 0 = “very unsatisfied” to 100 = “very satisfied”. Additionally, patients were 
asked to guess the randomization sequence of both conditions which was documented on a 
binary scale as “correct” or “incorrect”. Permanent side-effects that might have occurred dur-
ing initial programming of StimFit settings were documented along with the reduction of the 
stimulation amplitude necessary to achieve side-effect relieve. Post-hoc, energy efficiency of 
both settings was estimated according to the formulas for multiple independent current con-
trol published by Zhang et al (details described in the suppl. material).23,29,30 Patients with 
bipolar SoC stimulation settings were excluded from this analysis. 

Sample size calculation and statistical analysis: The study was powered to assess non-inferi-
ority of StimFit compared to SoC settings using absolute differences between corresponding 
MDS-UPDRS-III scores as a primary endpoint. Schrag et al suggested that a difference in im-
provements of at least five points should be considered clinically significant.31 Using a one-
sided t-test with an alpha of 5 % and power of 80 % a sample size of n = 35 was needed to 
show non-inferiority with a margin of five points. Calculations were based on an estimated 
mean difference between treatments of 0 ± 16.4 points, which was derived from a comparable 
cohort from our center.9 The sample-size calculation was supported by the local statistics de-
partment using the TrialSize-package in R.  

In addition to non-inferiority, the primary outcome was tested for superiority using a two-
sided t-test. Secondary endpoints included absolute differences in MDS-UPDRS-III sub-scores, 
patients’ VAS self-ratings and battery drain under StimFit and SoC stimulation and were ana-
lyzed using Wilcoxon signed rank tests. Patients were excluded from specific MDS-UPDRS-III 
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sub-score analyses if they did not experience the corresponding symptom at baseline (sub-
score in OFF-stimulation state equal to zero). A two-sided binomial test was applied to evalu-
ate whether patients could guess the correct order of stimulation settings above chance level. 
Significance levels were set to an α of 0.05, and no multiplicity adjustment was applied. Sta-
tistical analyses were conducted using Matlab 2020a. 

 

RESULTS 

Medical records of 86 PD patients who underwent bilateral STN-DBS surgery at Charité be-
tween Apr 1, 2018 and Apr 30, 2021 were screened for eligibility criteria. Out of the remaining 
67 potential study participants, 52 patients were contacted for recruitment until the intended 
sample size of n = 35 (32 Boston VerciseTM Cartesia, 3 Medtronic SenSightTM) was achieved 
(Supp. Fig. 2). Study visits were conducted between Oct 23, 2020 and Oct 28, 2021. All patients 
who participated in the study were included in the analysis. The first four patients were re-
invited for study participation after a final patch to the StimFit software was applied and data 
from their first study visits were excluded from the analysis. Patient demographics and treat-
ment data as well as electrode localizations are summarized in the supplementary material 
(Suppl.Table 1, Suppl. Fig. 3). OFF-stimulation MDS-UPDRS-III scores improved from 47.3 ± 
17.1 to 24.7 ± 12.4 (48 %) and 26.3 ± 12.4 (43 %) under SoC and StimFit stimulation, respec-
tively (Fig. 3A). Mean difference between motor scores was -1.6 ± 7.1 (95% CI: [-4.0, 0.9], p = 
0.20, n = 35) establishing non-inferiority at a margin of five points (p = 0.0038, Fig. 3B). 17 
patients (49 %) had better motor scores under StimFit stimulation compared to SoC. 

Analysis of MDS-UPDRS-III sub-scores revealed an improvement for akinesia-rigidity of 46 % 
and 43 %, tremor 70 % and 62 %, and axial score 36 % and 35 % under SoC and StimFit stimu-
lation, respectively (Fig. 4). This resulted in following mean differences in sub-scores between 
both stimulation conditions (Fig. 3B): Akinesia-rigidity score: -0.2 ± 4.4 (95% CI: [-1.7, 1.3], p = 
0.98, n = 35), tremor score: -1.4 ± 3.3, (95% CI: [-2.7, -0.1], p = 0.046, n= 28) and axial score: -
0.2 ± 2.0 (95% CI: [-0.9, 0.5], p = 0.67, n = 34).  

Patients’ self-assessments of the overall stimulation effects from 0 = “very unsatisfactory” to 
100 = “very satisfactory” showed significant differences in favor of SoC, with SoC settings on 
average scoring 74 ± 19 points as compared to 55 ± 24 under StimFit stimulation (mean differ-
ence: 19 ± 28, 95% CI: [9, 29], p < 0.001, n = 34, Fig. 5). StimFit settings were rated superior to 
SoC by eight (24 %) and equal ratings were given by three patients (9 %). 19 patients (56 %) 
correctly guessed the order of stimulation conditions, which was not significantly above 
chance level (p = 0.50). One patient was accidentally unblinded before the first ON-stimulation 
assessment by looking at the patient programmer and was therefore excluded from the self-
assessment analyses. The patient was not excluded from the remaining analyses since the 
sequence was not revealed to the rater before the study visit was completed.  
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In six patients (17 %) initial programming of StimFit settings (during the preparation phase) 
resulted in acute side-effects (two muscle contractions, two dysarthria, two vertigo). Stimula-
tion amplitudes were reduced until side-effects disappeared (mean reduction 0.41 ± 0.16 mA 
ranging from 0.3 to 0.7 mA). Delayed onset dyskinesias appeared in three patients under Stim-
Fit stimulation. In two cases these were rated as severe and potentially interfered with motor 
ratings. Dyskinesias were also observed in two cases under SoC stimulation but did not affect 
motor assessments. 

 

Figure 3: Primary endpoint and summary statistics  

A: Violin plots showing total MDS-UPDRS-III scores under OFF (grey), SoC (purple) and StimFit (blue) stimu-
lation conditions on the left as well as differences of motor scores between StimFit and SoC stimulation on the 
right (green). Mean and 95% CIs are displayed at each plot. B: Summary statistics of the primary endpoint and 
symptom-specific MDS-UPDRS-III sub-scores. Mean absolute differences between both ON-stimulation con-
ditions are shown together with their 95% CIs. The CI of the total score did not include the margin of five points, 
establishing non-inferiority. SoC= standard of care; CI = confidence interval; MDS-UPDRS-III = part III of the 
Unified Parkinson’s Disease Rating Scale 
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Figure 4: Secondary endpoint I: Symptom-specific motor effects 

Violin plots showing symptom specific motor scores for akinetic-rigid (A) and axial (B) symptoms, as well as 
tremor (C). Each panel depicts scores under OFF (grey), SoC (purple) and StimFit (light blue) stimulation condi-
tions on the left and differences of motor scores between StimFit and SoC stimulation on the right (green). Mean 
and 95% CIs are displayed at each plot. SoC= standard of care; CI = confidence interval 
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LEDDs were reduced by 57 % under SoC treatment compared to pre-surgical medication and 
SoC settings had remained unchanged for 6.7 ± 5.8 months prior to study participation. Mean 
stimulation amplitudes were 2.6 ± 1.1 mA and an average of 3.2 ± 1.4 contacts were active. 
Bipolar settings were applied on four electrodes. One patient was treated with interleaving 
stimulation bilaterally. Mean pulse-widths and frequencies were 60 ± 3 µs and 134 ± 25 Hz. 
Mean stimulation amplitude suggested by StimFit was 2.4 ± 0.3 mA distributed across 5.4 ± 
2.1 active contacts. Battery drain was estimated to be 57 ± 29 µA in SoC compared to 50 ± 21 
µA in StimFit settings (p = 0.5, n = 32). All impedance values were within normal ranges. The 
parameters of both stimulation conditions are provided in the supplementary material for 
each subject and in a summarized form (Supplementary Tables 2 & 3).  

Since SoC treatment was conducted before study recruitment the exact times spent for pa-
rameter optimization in each patient were not available. However, during 20 ± 11 months 
since DBS surgery, patients received DBS-related treatment at specialized in- and out-patient 
facilities on 28 ± 16 days, including thorough monopolar reviews and OFF-medication assess-
ments. The StimFit algorithm converged to a final solution within ~50 minutes in all patients 
and did not require manual steps. 

 

DISCUSSION 

In this prospective double-blind cross-over randomized non-inferiority trial bilateral STN-DBS 
was applied in 35 PD patients using stimulation parameters suggested by an automated algo-
rithm (StimFit) based on electrode locations. StimFit stimulation reduced motor symptoms 
with a statistically non-significant mean difference of 1.6 points compared to SoC on the MDS-
UPDRS-III scale, establishing non-inferiority within a predefined margin of five points. Im-
portantly, both stimulation conditions resulted in significant motor improvements of 48 % and 
43 % compared to OFF-stimulation baseline confirming effective STN-DBS and sufficient wash-
out/wash-in time between conditions in this patient group.1-3 In line with this, previous long-

Figure 5: Secondary outcome II: 
Self-assessments 

Violin plots showing results of patient 
ratings of both SoC (purple) and StimFit 
(light blue) stimulation conditions on the 
left as well as differences between rat-
ings on the right (green). Mean and 
95% CIs are displayed at each plot. 
SoC= standard of care; CI = confidence 
interval 
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term SoC treatment had led to reduction of dopaminergic medication (LEDD) by 57% com-
pared to preoperative treatment in our cohort.  

A strength of this study was the prospective double-blind cross-over design and the fact that 
it used for the first time a data-driven algorithm capable of suggesting optimal stimulation 
parameters in PD patients treated with STN-DBS based on electrode location in a fully auto-
mated fashion. A limitation was the short observational period, which precluded assessment 
of long-term motor effects and quality of life. Moreover, only cathodal contact configurations 
are suggested since the algorithm has not been tested for bipolar or interleaving settings. In 
addition, the algorithm was trained and validated on data with a fixed pulse-width of 60 µs 
and stimulation frequency of 130 Hz. It does not allow to account for effects of varying fre-
quencies, pulse-shapes or -durations. We further noticed that the variation of stimulation am-
plitudes suggested by StimFit was relatively small compared to SoC. Initial amplitudes ranged 
between 2.3 and 2.5 mA across the cohort at a side-effect threshold of 20 %. This might indi-
cate that variance in electrode location and active contact configuration only had limited im-
pact on side-effect predictions compared to stimulation amplitude and suggests that our mod-
eling approach for side-effects should be optimized further. 

Ever more complex DBS electrode designs call for guided programming by integrating bi-
omarkers to identify beneficial combinations of stimulation parameters. Computational mod-
els of different complexities are available linking the relationship between electrode location, 
stimulation parameters and clinical outcome.32-38 Due to its simplicity and low computational 
demands the binarized approach of modeling the volume of activated tissue (VTA) in respect 
to patients’ brain anatomy has become a popular method and was recently implemented in 
commercially available software.19 However, “bottom-up” biophysical models of neuronal ac-
tivation are based on many pre-assumptions, most of which are unknown in the individual 
patient, e.g., fiber diameters and their orientation relative to the electric field, which has 
shown to impact fiber activation in silico and in vivo.39,40 Further, direct axonal activation is 
the only mechanism of action considered by the model neglecting potential stimulation ef-
fects on dendrites, glial cells, intracellular cascades, transmitter depletion and network dy-
namics.41 Consequently, the VTA should be considered a rather vague metric to estimate the 
anatomical regions affected by stimulation. To complicate things even more, exact target re-
gions, as well as regions of avoidance are still a matter of debate and were not defined within 
currently available software for image-guided DBS. This requires physicians to adjust DBS pa-
rameters in respect to visible anatomical structures without a clear optimization objective 
leaving room for different solutions based on the anatomical intuition and training of the pro-
grammer. Finally, this in silico optimization needs to be performed manually demanding time 
and resources. With StimFit we aimed at overcoming some of these limitations. First, the un-
derlying prediction model is based on the properties of the electric field in the vicinity of the 
electrode and does not require assumptions about mechanisms of action of DBS. Predictions 
made by this biophysically naïve approach could proof to be more robust across different be-
havioral effects since they are independent of the underlying neurophysiological mechanisms. 
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Second, the model was trained and cross-validated on a large sample of monopolar review 
data allowing to predict and quantify stimulation effects. Predictions were tested on an inde-
pendent test dataset before, third, the model was embedded in a mathematical optimization 
framework to identify optimal stimulation settings in a time-efficient manner and without 
need of any manual interactions. 

While many studies in the field of DBS neuroimaging have applied out-of-sample testing to 
retrospectively validate their results 10,11,13-15, prospective applications have remained sparse. 
Frankemolle et al. used image-based models to identify stimulation settings which would min-
imize spread of electric current to nonmotor regions of the STN.42 Applied in ten patients, 
these settings led to a better performance in a working memory task compared to standard 
of care stimulation and they concluded that cognitive decline associated with STN-DBS could 
be avoided by using model-based stimulation parameters. Other prospective studies con-
cluded that software-assisted programming was significantly faster compared to standard 
clinical procedures.20-22 In three studies, model-based parameters achieved therapeutic ben-
efit comparable to clinical programming after parameters were re-adjusted based on behav-
ioral feedback. No adjustments were made in a study by Waldthaler et al. and non-inferiority 
was reported at a margin of 20 % improvement relative to OFF-stimulation baseline. However, 
keeping in mind that larger controlled DBS trials have reported mean motor improvements 
ranging from 24 % to 49 %, this margin should be considered too liberal.43 

Interestingly, in our cohort akinetic-rigid and axial sub-scores showed similar improvements 
under both stimulation conditions, while tremor responded significantly less to StimFit stimu-
lation. Our understanding of anatomical target structures involved in therapeutic neuromod-
ulation is currently undergoing a paradigm shift from a disease- to a symptom-centric view.44 
More specifically, in PD, multiple recent publications point toward an anatomical segregation 
of DBS “sweetspots” for suppression of tremor on the one hand and akinesia and rigidity on 
the other hand.13 Moreover, the dentato-rubro-thalamic tract might be a common target 
structure for the suppression of tremor across different pathologies.45 This has potential im-
plications for personalized DBS programming procedures since optimal DBS parameters would 
depend on individual patients’ symptom profiles. Within the StimFit software this concept is 
now implemented by allowing to modify the optimization objective (motor symptom control) 
to maximize the predicted therapeutic effects of tremor or akinetic-rigid symptoms on a con-
tinuous spectrum. In this present study, however, we did not yet include tremor subitems 
from StimFit predictions, forcing the model to find settings which would maximize improve-
ment of akinetic-rigid symptoms, exclusively. Seeing this being reflected in our sub-score anal-
ysis provides prospective evidence to support the assumption of symptom-specific stimulation 
sites and underlines the importance of taking baseline symptomatology into account in auto-
mated DBS programming procedures. However, further prospective studies are necessary to 
proof that optimization procedures adapted to patients’ symptom profile will yield higher clin-
ical benefit. 
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Despite non-inferiority of StimFit stimulation being established for objective motor assess-
ments, subjective patient ratings showed significant differences favoring SoC. To investigate 
potential reasons for this discrepancy we explored the characteristics of patients which clearly 
preferred SoC ratings over StimFit. We found that the presence of hyperkinetic symptoms un-
der StimFit stimulation was associated with lower VAS ratings compared to SoC. More specif-
ically, patients who experienced suboptimal tremor control or strong dyskinesias under Stim-
Fit stimulation strongly favored SoC settings. This led us to conclude that hyperkinetic symp-
toms might have excessively contributed to VAS ratings due to the explicitly observable pa-
tient feedback. An optimization procedure tailored to patients’ symptomatic profile might 
therefore also improve their subjective perception of treatment benefit. 

Stimulation settings differed between StimFit and SoC with respect to numbers of contacts 
activated with more multi-contact configurations suggested by the algorithm. Clinical optimi-
zation strategies usually start by conducting a monopolar review to assess therapeutic win-
dows of stimulation amplitudes for individual contacts or contact levels. Based on these infor-
mation, more complex multi-contact configurations which might provide superior benefit will 
then be probed. This process is carried out analogously by StimFit which starts the optimiza-
tion procedure by predicting motor and side-effects at different amplitudes to identify favor-
able monopolar solutions which are then used as starting points for a gradient descent algo-
rithm to explore potentially superior multi-cathode solutions. The number of iterations in this 
optimization procedure depends on the solver's stopping criteria, such as the changes in pre-
dicted benefit in previous iterations. Clinical programming strategies also need to apply cer-
tain stopping criteria, but due to the limited number of iterations those need to be much more 
liberal, so that further adjustments are often only made when therapeutic outcome is clearly 
suboptimal, or patients are not satisfied with treatment effects. In many cases this results in 
monopolar, or pseudo-monopolar stimulation settings (equal distribution of electric current 
across all contacts at one segmented level), which were chosen for SoC in 46 % of the cases in 
this cohort. StimFit, however, predicted superior clinical outcome for multi-contact configura-
tions in 93 % of the cases. Overall, StimFit solutions show a more gradual distribution of elec-
tric current across contacts compared to SoC. Such settings could not be derived from clinical 
trial-and-error programming but might bear potential therapeutic advantages, underlining the 
importance of automated optimization strategies in modern DBS devices. Importantly, battery 
drain was similar for both stimulation settings in our study. This was in contrast to a reduction 
in estimated battery drain that has been reported for stimulation settings obtained from anat-
omy-guided programming.23 Future algorithms could incorporate estimated energy efficiency 
as an additional variable to obtain settings with an optimized battery life cycle. 

In conclusion, results of this prospective randomized double-blind cross-over trial showed that 
application of STN-DBS parameters suggested by a data-driven optimization algorithm in a 
cohort of 35 PD patients led to a significant reduction of motor impairment compared to OFF 
stimulation, similar to the effects obtained during SoC stimulation. This suggests that data-
driven strategies which allow for quantitative predictions of stimulation effects, embedded in 
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mathematical optimization procedures, could govern future programming strategies. This 
could not only reduce programming time and resources but might pave the way for novel 
electrode designs to further optimize treatment benefit. 

 

CONTRIBUTORS 

JR, TAD, AH and AAK conceptualized the study. Funding was acquired by JR and AAK. JR, JA, 
JB, APK, GHS and PK contributed to data acquisition. JR conducted the statistical analysis and 
data visualization. JA and JB verified the data and reviewed the analysis. TAD and AAK contrib-
uted to data interpretation. AAK supervised and administered the study. JR wrote the first 
draft and all other authors reviewed and commented on the report. All authors approved the 
final published version and agree to be accountable for all aspects of the work in ensuring that 
questions related to the accuracy or integrity of any part of the work are appropriately inves-
tigated and resolved. 

 

DISCLOSURES 

JR was supported by the Einstein Center for Neurosciences. TAD was supported by the Cologne 
Clinician Scientist Program (CCSP) / Faculty of Medicine / University of Cologne funded by the 
German Research Foundation (DFG, FI 773/15-1). AH was supported by the German Research 
Foundation (Deutsche Forschungsgemeinschaft, Emmy Noether Stipend 410169619 and 
424778381 – TRR 295), Deutsches Zentrum für Luft- und Raumfahrt (DynaSti grant within the 
EU Joint Program Neurodegenerative Disease Research, JPND), the National Institutes of 
Health (2R01 MH113929) as well as the Foundation for OCD Research (FFOR). AAK was sup-
ported by the German Research Foundation (Deutsche Forschungsgemeinschaft, 424778381 
– TRR 295) and the Lundbeck Foundation and declares that she is on the advisory board of 
Boston Scientific and Medtronic, and has received honoraria from Boston Scientific, Med-
tronic, Zambon and Stadapharm. 

 

FUNDING 

This study was funded by the NeuroCure Clinical Research Center (Germany´s Excellence Clus-
ter – EXC-2049 – 390688087) and by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) – Project ID 4247788381 - TRR 295 Grant.  

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.22272471doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22272471
http://creativecommons.org/licenses/by/4.0/


 
16 

 

ACKNOWLEDGEMENTS 

We thank Friederike Borngräber and Gregor Wenzel for their support during patient eligibility 
screening. We further thank the NeuroCure Clinical Research Center which provided funding 
as well as structural and administrative support (Germany´s Excellence Strategy – EXC-2049 – 
390688087).  

 

DATA AVAILABILITY 

Behavioral data as well as data on stimulation settings are provided in the supplementary 
material. Other data supporting the findings of this study are available upon reasonable re-
quest from the corresponding author but will not be made publicly available due to their con-
taining information that could compromise the privacy of study participants.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.22272471doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22272471
http://creativecommons.org/licenses/by/4.0/


 
17 

 

REFERENCES 

1. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for 
Parkinson's disease. N Engl J Med 2006;355:896-908. 

2. Deep-Brain Stimulation for Parkinson's Disease Study G, Obeso JA, Olanow CW, et al. Deep-brain 
stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. 
N Engl J Med 2001;345:956-63. 

3. Limousin P, Krack P, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced 
Parkinson's disease. N Engl J Med 1998;339:1105-11. 

4. Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a 
retrospective analysis from 2 movement disorders centers. Arch Neurol 2005;62:1250-5. 

5. Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in 
Parkinson's disease. Mov Disord 2006;21 Suppl 14:S284-9. 

6. Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson's disease of 
electrical parameter settings in STN stimulation. Neurology 2002;59:706-13. 

7. Dembek TA, Reker P, Visser-Vandewalle V, et al. Directional DBS increases side-effect thresholds-A 
prospective, double-blind trial. Mov Disord 2017;32:1380-8. 

8. Connolly MJ, Cole ER, Isbaine F, et al. Multi-objective data-driven optimization for improving deep 
brain stimulation in Parkinson's disease. J Neural Eng 2021;18. 

9. Wenzel GR, Roediger J, Brucke C, et al. CLOVER-DBS: Algorithm-Guided Deep Brain Stimulation-
Programming Based on External Sensor Feedback Evaluated in a Prospective, Randomized, Crossover, 
Double-Blind, Two-Center Study. J Parkinsons Dis 2021. 

10. Al-Fatly B, Ewert S, Kubler D, Kroneberg D, Horn A, Kuhn AA. Connectivity profile of thalamic deep brain 
stimulation to effectively treat essential tremor. Brain 2019;142:3086-98. 

11. Baldermann JC, Melzer C, Zapf A, et al. Connectivity Profile Predictive of Effective Deep Brain 
Stimulation in Obsessive-Compulsive Disorder. Biol Psychiatry 2019. 

12. Dembek TA, Barbe MT, Astrom M, et al. Probabilistic mapping of deep brain stimulation effects in 
essential tremor. Neuroimage Clin 2017;13:164-73. 

13. Dembek TA, Roediger J, Horn A, et al. Probabilistic sweet spots predict motor outcome for deep brain 
stimulation in Parkinson disease. Ann Neurol 2019;86:527-38. 

14. Horn A, Reich M, Vorwerk J, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson 
disease. Ann Neurol 2017;82:67-78. 

15. Reich MM, Horn A, Lange F, et al. Probabilistic mapping of the antidystonic effect of pallidal 
neurostimulation: a multicentre imaging study. Brain 2019. 

16. Horn A, Kuhn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and 
visualizations. Neuroimage 2015;107:127-35. 

17. Horn A, Li N, Dembek TA, et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain 
stimulation imaging. Neuroimage 2019;184:293-316. 

18. Lauro PM, Vanegas-Arroyave N, Huang L, et al. DBSproc: An open source process for DBS electrode 
localization and tractographic analysis. Hum Brain Mapp 2016;37:422-33. 

19. Miocinovic S, Noecker AM, Maks CB, Butson CR, McIntyre CC. Cicerone: stereotactic 
neurophysiological recording and deep brain stimulation electrode placement software system. Acta 
Neurochir Suppl 2007;97:561-7. 

20. Pavese N, Tai YF, Yousif N, Nandi D, Bain PG. Traditional Trial and Error versus Neuroanatomic 3-
Dimensional Image Software-Assisted Deep Brain Stimulation Programming in Patients with Parkinson 
Disease. World Neurosurg 2020;134:e98-e102. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.22272471doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22272471
http://creativecommons.org/licenses/by/4.0/


 
18 

 

21. Pourfar MH, Mogilner AY, Farris S, et al. Model-Based Deep Brain Stimulation Programming for 
Parkinson's Disease: The GUIDE Pilot Study. Stereotact Funct Neurosurg 2015;93:231-9. 

22. Waldthaler J, Bopp M, Kuhn N, et al. Imaging-based programming of subthalamic nucleus deep brain 
stimulation in Parkinson's disease. Brain Stimul 2021;14:1109-17. 

23. Lange F, Steigerwald F, Malzacher T, et al. Reduced Programming Time and Strong Symptom Control 
Even in Chronic Course Through Imaging-Based DBS Programming. Front Neurol 2021;12:785529. 

24. Noecker AM, Frankemolle-Gilbert AM, Howell B, et al. StimVision v2: Examples and Applications in 
Subthalamic Deep Brain Stimulation for Parkinson's Disease. Neuromodulation 2021;24:248-58. 

25. Roediger J, Dembek TA, Wenzel G, Butenko K, Kuhn AA, Horn A. StimFit-A Data-Driven Algorithm for 
Automated Deep Brain Stimulation Programming. Mov Disord 2021. 

26. Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A. Programming Deep Brain Stimulation for 
Parkinson's Disease: The Toronto Western Hospital Algorithms. Brain Stimul 2016;9:425-37. 

27. Schade S, Mollenhauer B, Trenkwalder C. Levodopa Equivalent Dose Conversion Factors: An Updated 
Proposal Including Opicapone and Safinamide. Mov Disord Clin Pract 2020;7:343-5. 

28. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose 
equivalency reporting in Parkinson's disease. Mov Disord 2010;25:2649-53. 

29. Juarez-Paz LM. In silico Accuracy and Energy Efficiency of Two Steering Paradigms in Directional Deep 
Brain Stimulation. Front Neurol 2020;11:593798. 

30. Zhang S, Silburn P, Pouratian N, et al. Comparing Current Steering Technologies for Directional Deep 
Brain Stimulation Using a Computational Model That Incorporates Heterogeneous Tissue Properties. 
Neuromodulation 2020;23:469-77. 

31. Schrag A, Sampaio C, Counsell N, Poewe W. Minimal clinically important change on the unified 
Parkinson's disease rating scale. Mov Disord 2006;21:1200-7. 

32. Astrom M, Diczfalusy E, Martens H, Wardell K. Relationship between neural activation and electric field 
distribution during deep brain stimulation. IEEE Trans Biomed Eng 2015;62:664-72. 

33. Butson CR, Cooper SE, Henderson JM, McIntyre CC. Patient-specific analysis of the volume of tissue 
activated during deep brain stimulation. Neuroimage 2007;34:661-70. 

34. Duffley G, Anderson DN, Vorwerk J, Dorval AD, Butson CR. Evaluation of methodologies for computing 
the deep brain stimulation volume of tissue activated. J Neural Eng 2019;16:066024. 

35. Frankemolle-Gilbert AM, Howell B, Bower KL, Veltink PH, Heida T, McIntyre CC. Comparison of 
methodologies for modeling directional deep brain stimulation electrodes. PLoS One 
2021;16:e0260162. 

36. Gunalan K, Chaturvedi A, Howell B, et al. Creating and parameterizing patient-specific deep brain 
stimulation pathway-activation models using the hyperdirect pathway as an example. PLoS One 
2017;12:e0176132. 

37. Howell B, Gunalan K, McIntyre CC. A Driving-Force Predictor for Estimating Pathway Activation in 
Patient-Specific Models of Deep Brain Stimulation. Neuromodulation 2019;22:403-15. 

38. Maks CB, Butson CR, Walter BL, Vitek JL, McIntyre CC. Deep brain stimulation activation volumes and 
their association with neurophysiological mapping and therapeutic outcomes. J Neurol Neurosurg 
Psychiatry 2009;80:659-66. 

39. Anderson DN, Duffley G, Vorwerk J, Dorval AD, Butson CR. Anodic stimulation misunderstood: 
preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural 
Eng 2019;16:016026. 

40. Lehto LJ, Slopsema JP, Johnson MD, et al. Orientation selective deep brain stimulation. J Neural Eng 
2017;14:016016. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.22272471doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22272471
http://creativecommons.org/licenses/by/4.0/


 
19 

 

41. Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action 
of deep brain stimulation-a systematic review on established indications and outlook on future 
developments. EMBO Mol Med 2019;11. 

42. Frankemolle AM, Wu J, Noecker AM, et al. Reversing cognitive-motor impairments in Parkinson's 
disease patients using a computational modelling approach to deep brain stimulation programming. 
Brain 2010;133:746-61. 

43. Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From 
Experimental Surgery to Evidence-Based Therapy. Mov Disord 2019;34:1795-810. 

44. Hollunder B, Rajamani N, Siddiqi SH, et al. Toward personalized medicine in connectomic deep brain 
stimulation. Prog Neurobiol 2021;210:102211. 

45. Listik C, Santiago N, Reis PR, et al. Targeting the hot spot in a patient with essential tremor and 
Parkinson's disease: Tractography matters. Clin Neurol Neurosurg 2018;174:230-2. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.22272471doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.08.22272471
http://creativecommons.org/licenses/by/4.0/

