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Abstract 14 

Control of human mobility is among the most effective measures to prevent the spread of coronavirus disease 2019 15 

(COVID-19). This study aims to clarify the correlation between home range and the number of people infected with SARS-16 

CoV-2 during the medium-term of the COVID-19 pandemic in Ibaraki City. Home ranges are analyzed by the Minimum 17 

Convex Polygon method using mobile phone GPS location history data. We analyzed the time series cross-correlation 18 

between home range lengths and the number of infected people. Results reveal a slight positive correlation between home 19 

range and the number of infected people after one week during the medium-term of the COVID-19 pandemic. Regarding 20 

home range length, the cross-correlation coefficient is 0.4030 even at a lag level of six weeks, which has the most significant 21 

coefficient. Thus, a decrease in home range is only one of the indirect factors contributing toward a reduction in the number 22 

of infected people. This study makes a significant contribution to the literature by evaluating key public health challenges 23 

from the perspective of controliing the spread of the COVID-19 infectuion. Its findings has implications for policy makers, 24 

practitioners, and urban scientists seeking to promote urban sustainability.  25 

 26 

Introduction 27 

Background 28 

The coronavirus disease 2019 (COVID-19) pandemic has drastically changed our daily lives. The rapid increase in 29 

the number of infected people risks causing a breakdown of the medical system. Control of human mobility is considered 30 

one of the most effective measures to prevent the rapid spread of COVID-19 [1]. For example, in the Osaka metropolitan 31 

area, states of emergency have been declared four times since January 2020 [2], with more substantial restrictions imposed 32 

on the activities of people living in areas closer to the city center [3]. The Subcommittee on Novel Coronavirus Disease 33 

Control in Japan requested citizens to reduce human mobility by 50% during this time [4]. However, the imposition of 34 

emergency restrictions had significant negative impacts on the daily lives of citizens. For example, excessive restrictions 35 

caused a deterioration of mental health [5]. As vaccination progresses, we need to consider more effective measures to 36 

control the spread of the infection. 37 

The research question of this study is as follows: Does the control of home range affect a reduction in the number of 38 

infected people during the medium-term of the COVID-19 pandemic? In other words, this study verifies the possibility of 39 

predicting the number of infected people based on the control of human mobility. In particular, it is difficult to predict the 40 
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number of infected people in suburban cities because of their high human mobility. Therefore, this study focuses on the 41 

aspect of home range in human mobility. Home range is defined as the areas that individuals traverse in the course of their 42 

daily activities, such as working and shopping [6]. Home range is an essential indicator for policymakers to assess and 43 

facilitate the achievement of the daily mobility activities of residents. For example, the “Location Optimization Plan” [7] 44 

is a policy that aims to maintain the home range around transit stations. Understanding the time series cross-correlation 45 

between home range and the number of infected people would support policymakers to develop policies for controlling the 46 

spread of the COVID-19 infection. 47 

Purpose 48 

This study aims to clarify the time series cross-correlation between home range and the number of people infected 49 

with SARS-CoV-2 during the medium-term of the COVID-19 pandemic in a suburban city. Home ranges were analyzed 50 

by the Minimum Convex Polygon (MCP) method using mobile phone GPS location history (LH) data. LH data includes 51 

location history data collected from individual devices, unlike area-based data such as Google mobility reports [8]. A 52 

timeseries analysis was conducted using panel data of every Wednesday from April 2020 to July 2021, a time frame where 53 

four waves of the pandemic were witnessed in Japan. This study analyzed the time series cross-correlation between the 54 

home range lengths and the number of infected people. 55 

The case study research was conducted in Ibaraki City, which is a typical suburban city in the Osaka metropolitan 56 

area. Fig 1 shows the location of Ibaraki City, which has a population of approximately 280,000, and an area of 10 km east-57 

west and 17 km north-south [9]. Due to the city’s extensive train network, residents can commute in about 30 min to Osaka 58 

City or Kyoto City. Fig 1 shows the distance from the central area of Ibaraki City, where the Ibaraki City Government Hall 59 

is located. Osaka Station, located in the central area of Osaka, is 15 km away from the central area of Ibaraki City. This 60 

distance helps us understand the home range extent. 61 

In Ibaraki City, home range decreased by approximately 50% during the first state of emergency [10]. In addition, 62 

dense clusters of people were formed in the parks as well as in the stations [11]. The frequency of walking and bicycle trips 63 

increased [12]. These studies suggest that the home range had decreased to a neighborhood scale due to the restrictions 64 

imposed during the COVID-19 pandemic in Ibaraki City. 65 

 66 

Fig 1. Locations of Osaka Prefecture and Ibaraki City. The thin lines indicate the location of Osaka Prefecture, and the 67 

thick lines indicate the location of Ibaraki City. The red point is the central area of Ibaraki City, where the Ibaraki City 68 
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Government Hall is located. The red dotted circles indicate the distance from the center of Ibaraki City. The distances are 69 

5 km, 10 km, 15 km, and 20 km. 70 

 71 

Literature review 72 

Many studies on human mobility use mobile phone data to estimate the number of people infected with SARS-CoV-73 

2. In particular, many studies focused on Wuhan, where the first infected person was identified. In the early stages of the 74 

pandemic, the spatial distribution of the number of infected people was found to explain the movement of the population 75 

from Wuhan between January 1 and January 24, 2020 [13]. After January 24, 2020, findings suggested that the lockdown 76 

reduced the number of COVID-19 cases in Wuhan by limiting human mobility within the city [14]. Based on these results, 77 

simulations to determine the feasibility of measures for the successful control and containment of the COVID-19 pandemic 78 

showed the necessity of restricting human mobility by 20%-40%, using the case of Shenzhen in China [15]. In the United 79 

States, human mobility was severely restricted during the early stages of the pandemic [16]. Using mobile phone data 80 

across the United States from January 1 to April 20, 2020, it was found that COVID-19 transmission correlated strongly 81 

with mobility patterns [17]. In addition, based on mobile phone data from March 1 to June 9, 2020, a positive correlation 82 

was found between the number of infected people and mobility inflow at the country level in the United States [18]. Further, 83 

in the European context, the spread of COVID-19 was positively correlated with the number of people staying in each area 84 

and with human mobility between March 1 to June 6, 2020, at lag levels of one, two, and three weeks [19]. This could be 85 

attributed to the fact that in Europe, lockdowns generally affect long-distance travel behavior [19]. In addition, between 86 

January 1 and April 15, 2020, it was found that the estimated adequate reproduction number of COVID-19 correlated 87 

strongly with human mobility (or social contact) in Tokyo, Japan [20]. The changes in human mobility pertaining to 88 

nightlife spaces were more significantly associated with the number of COVID-19 cases [21]. These studies of the early 89 

stages of the pandemic indicate that the number of infected people correlates with human mobility. 90 

The novelty of this study is to analyze the medium-term relationship between the number of infected people and home 91 

range. In Japan, the state of emergency was called a “soft lockdown” [22] because the Japanese government did not restrict 92 

the activities of individuals [23]. Therefore, most citizens could at least go out in a limited capacity even under the state of 93 

emergency. Thus, while multiple emergency declarations were in effect, the home range did not change significantly, but 94 

the number of infected people decreased steadily. This suggests that factors other than home range might influence the 95 

spread of the infection. This study will allow policymakers to develop policies for controlling the infection during the 96 

COVID-19 pandemic in the medium to long term. 97 
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 98 

Materials and methods 99 

Location History Data 100 

The study used LH data collected by Agoop Corporation. Agoop Corporation collected the LH data by obtaining 101 

consent from users, who contracted with a specific mobile phone carrier company or installed specific applications [24]. 102 

All participants were provided with information regarding the type of data collected, purpose of use and provision to third 103 

parties, and a privacy policy [25]. Agoop Corporation provides anonymized LH data for research purposes. Due to the 104 

availability of high-quality data in a Japanese context, many studies utilized LH data relating to the spread of COVID-19 105 

[10–12]. This research protocol was approved by the ethics committee of the Graduate School of Life Science, Osaka City 106 

University (No.21-40). Additionally, all methods were carried out in accordance with “Guidelines for the Use of Device 107 

Location Data,” a common regulation for location data analysis in Japan [26]. The guideline prohibits using GPS data for 108 

any purpose that involves identifying individual users to protect the privacy of users' GPS location history. 109 

Depending on the mobile phone type, the LH data were collected in the form of logs approximately every 15 min, 110 

and the LH data were obtained from mobile phones with users’ consent. In Ibaraki City, the number of logs was 111 

approximately 1,600,000 per day, and the number of users was approximately 12,000, indicating that 5% of the residents 112 

of Ibaraki City was adequate for analyzing the home range of residents. 113 

The variables in the LH data used in this study were user ID, year, month, day, hour, minutes, and latitude and 114 

longitude. The user IDs are anonymized 96-digit alphanumeric codes, the permanent ID assigned to each device, and enable 115 

panel data analysis.  116 

Time series cross-correlation 117 

This study used a time series analysis method to analyze the cross-correlation between home range length and the 118 

number of infected people. The time-series cross-correlation allows us to understand the similarity of data in a time series 119 

and the lag of the period. In this study, the lag was set to eight weeks, considering that the duration between the date of 120 

exposure and onset of symptoms is usually a few weeks [27]. 121 

The analysis period was from April 2020 to July 2021, during which Japan experienced four waves, and a state of 122 

emergency was imposed four times in Ibaraki City. On April 7, 2020, when a state of emergency was declared in all 123 

prefectures, the Japanese government requested people to stay at home. Following the end of this state of emergency, the 124 
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Japanese government attempted to recover the economy through various measures such as the “Go-To Travel” campaign 125 

for the hotel and restaurant industries [28]. However, by the winter of 2020, the number of infected people had gradually 126 

increased [29]. A second state of emergency was subsequently declared from January 14 to February 28, 2021. The Japanese 127 

government also developed priority preventive measures before the next emergency declaration [2]. These priority 128 

preventive measures were in effect from April 5 to June 24, 2021, and a third state of emergency was declared from April 129 

25 to June 20, 2021. A second set of priority preventive measures was introduced from June 21 to August 1, 2021, and a 130 

fourth state of emergency was declared from August 2 to September 30, 2021. While vaccination for healthcare workers 131 

began in February 2021 [2], vaccination for older people and adults in Ibaraki City began in May 2021. This study focuses 132 

on the period between April 2020 and July 2021, prior to the fourth emergency declaration, shortly after the beginning of 133 

the vaccination campaign. 134 

Home range length 135 

This study followed the method of the authors’ previous study [10]. Home range length was analyzed using the MCP 136 

method, which analyzes zones that connect the outermost observation points [30]. The advantage of this method is its 137 

simplicity and intuitive use.  138 

Using the MCP method, this study analyzed two types of home range lengths (HR-lengths): HR-length (Farthest 139 

Distance) and HR-length (Total Travel Distance). HR-length (Farthest Distance) is the distance to the farthest point moved 140 

from the home. The HR-length (Farthest Distance) allows us to understand the extent of the area traveled. HR-length (Total 141 

Travel Distance) is the total distance covered every day in the time period under consideration. Since the data are acquired 142 

every 15 min, the actual HR-length (Total Travel Distance) cannot be calculated. However, the HR-length (Total Travel 143 

Distance) allows us to estimate the total travel distance. The HR-length (Total Travel Distance) was used as an indicator in 144 

a previous study [20]. 145 

The analysis process is summarized in Fig 2. Changes in HR-length (Farthest Distance) and HR-length (Total Travel 146 

Distance) during the COVID-19 pandemic were analyzed. In addition, these two HR-lengths were analyzed the cross-147 

correlation with the number of people infected. 148 

The study analyzed LH data in Ibaraki City. However, this data included the logs of people who only passed through 149 

Ibaraki City, such as people commuting from Tokyo to Osaka by express. Therefore, to isolate the data of people living in 150 

Ibaraki City, the study extracted user IDs of the first log located in Ibaraki City after 0:00 h of every day. The study then 151 

analyzed the user ID data that appeared for more than two days in the analyzed period. The intent of the study was to 152 
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analyze the user IDs of individuals living in Ibaraki City, not those just passing through it. With respect to the LH data of 153 

the user ID, this study analyzed the home range from 0:00 to 23:59 h. 154 

This study used LH data from every Wednesday and analyzed the change in home range based on this data from every 155 

Wednesday, considering the home range changes that occurred between weekdays and holidays [10]. On weekdays, people 156 

are involved in steady-state activities such as work, which is suitable for analyzing the impact of the COVID-19 pandemic. 157 

Wednesday was chosen as the most appropriate day of the week to analyze the impact of the COVID-19 pandemic for a 158 

number of reasons. Wednesday is the weekday with the fewest holidays from April 2020 to July 2020: only May 6, 2020, 159 

and May 5, 2021, were holidays. Furthermore, December 30, 2020, marked the beginning of the year-end vacation. 160 

Moreover, on December 30, many people tend to be off work and school during the year-end vacations. 161 

 162 

Fig 2. Analysis process to analyze the home range. The upper figure is a 3D spatiotemporal map, and the lower figure is 163 

2D. In process 1, the personal space-time paths between 0:00 to 23:59 h were drawn. In process 2, the home range distance 164 

for each mobile phone user is calculated from the latitude and longitude difference between the starting home point and 165 

the farthest point moved from the home after 0:00 h. In process 3, the distance of the mobile phone user is averaged to 166 

calculate the HR-length (Farthest Distance) and HR-length (Total Travel Distance) of every day. The space-time paths are 167 

the imaginary paths of 50 people. 168 

 169 

Number of infected people 170 

This study analyzed the number of people infected with SARS-CoV-2 in Ibaraki City. Data published on the webpage 171 

of the Ibaraki City Government was used for the purpose of the study [31]. The number of people infected was calculated 172 

as the total number of people infected each week from Monday to Sunday. Since many hospitals are closed on Sundays, 173 

this calculation method was deemed appropriate for use in the Japanese context. 174 

 175 

Results 176 

Change of home range length 177 

In Section 3.1, Fig 3 shows the box-plot diagrams of weekly changes in HR-length (Farthest Distance) and HR-length 178 

(Total Travel Distance) from April 2020 to July 2021; Fig 4 shows the bar-graphs of monthly changes in HR-length 179 
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(Farthest Distance) and HR-length (Total Travel Distance) from April 2020 to July 2021. In both figures, weekly and 180 

monthly data followed similar trends. In particular, the home range showed a significant decrease every week from April 181 

to May 2020, when the first state of emergency was declared. This result was verified by previous research [10–12]. 182 

However, since June 2020, the home range has gradually increased. It was found that the HR-length decreased significantly 183 

only from April to May 2020, when the first emergency declaration was issued, but thereafter, travel to Ibaraki City and 184 

Osaka City did not change significantly. 185 

Figs 3 and 4 depict that there are no significant changes except on December 31, 2020, and May 5, 2021, which were 186 

national holidays, and July 21, 2021, right before the Tokyo Olympics 2020 were held. The home range was found to have 187 

decreased during those periods when priority preventive measures were in effect, while the home range tended to increase 188 

during emergency periods. The results also suggest that citizens had changed their mobility behavior before the government 189 

declared a state of emergency.  190 

 191 

 192 

Fig 3. Weekly change of HR-length. The upper graph shows the weekly changes in HR-length (Farthest Distance). The 193 

lower graph shows the weekly changes in HR-length (Total Travel Distance). Green periods are during the state of 194 

emergency, and yellow-green periods are during the priority prevention measures. The box-plot diagrams do not depict the 195 

outliers. 196 

 197 

 198 

Fig 4. Monthly Change of HR-length. The upper graph shows the monthly changes in HR-length (Farthest Distance). 199 

The lower graph shows the HR-length (Total Travel Distance). The figures shows the average and 95% intervals of the 200 

HR-length in a time series. Besides, the Wilcoxon rank-sum test indicates significant differences in the average values for 201 

each month. Green periods are during the state of emergency, and yellow-green periods are during the priority prevention 202 

measures. 203 

 204 

Change in the number of infected people 205 

Fig 5 illustrates a bar graph of weekly changes in the number of people infected with SARS-CoV-2 in Ibaraki City 206 

between March 29, 2020, and July 31, 2021. Fig 5 shows that Ibaraki City has experienced four increases and decreases in 207 

the number of infected people. The first wave lasted from April to May 2020, the second from July to September 2020, the 208 
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third from December 2020 to February 2021, and the fourth from March to June 2021. The fifth wave began in July 2021. 209 

Each wave lasted progressively longer than the preceding one. 210 

States of emergency were declared for the first, third, and fourth waves. Following each declaration of emergency, 211 

the number of infected people decreased significantly. In particular, the number of infected people decreased to zero from 212 

May 17–23, 2020, at which time the first emergency declaration was lifted; to five people from February 21–27, 2021, 213 

when the second emergency declaration was lifted; and to 13 people from June 13–19, 2021, when the third emergency 214 

declaration was lifted. This suggests that the declaration of a state of emergency effectively led to a decrease in the number 215 

of infected people.  216 

 217 

Fig 5. Weekly change of the number of infected people between March 29, 2020, and July 31, 2021. Osaka Prefecture 218 

experienced four waves during this time. Green periods are during the state of emergency, and yellow-green periods are 219 

during the priority prevention measures. 220 

 221 

Cross-correlation of home range length and infected people 222 

Fig 6 presents the time series cross-correlation of home range length and number of infected people. It was found that 223 

the number of infected people was slightly more correlated with HR-length (Total Travel Distance) than HR-length 224 

(Farthest Distance). In addition, over the lag level of zero weeks, HR-length and the number of infected people are 225 

positively correlated. The results indicate that a decrease in HR-length leads to a decline in the number of infected people. 226 

However, there was only a slightly positive cross-correlation between HR-length and the number of infected people. 227 

Specifically, the cross-correlation coefficient (CCC) of HR-length (Total Travel Distance) (CCC Total Travel Distance) is 0.1546 228 

at the lag level of zero weeks. As the lag increases, CCC Total Travel Distance also increases, and CCC Total Travel Distance exceeds 0.2 229 

after a lag level of one week. However, even at the lag level of six weeks, the largest CCC, the CCC Total Travel Distance is 230 

0.4030. Similarly, the cross-correlation coefficient of HR-length (Farthest Distance) (CCC Farthest Distance) is 0.1345 at the lag 231 

level of zero weeks, and 0.3950 at the lag level of six weeks, which has the largest CCC. 232 

To summarize these results, home range was found to be slightly positively correlated with the number of infected 233 

people after six weeks, with the highest correlation coefficient being 0.40. This means that changing the home range 234 

contributes to a decrease in the number infected people, but it is not a strong effect. 235 

 236 
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Fig 6. Cross-correlation of home range lengths and the number of infected people. CCC Total Travel Distance is HR-length 237 

(Total Travel Distance). CCC Farthest Distance is HR-length (Farthest Distance). In cross-correlation, the lag was set to eight 238 

weeks. 239 

 240 

Discussion and conclusion 241 

This study clarifies a slight positive correlation between home range and the number of infected people after one week 242 

during the medium-term of the COVID-19 pandemic in Ibaraki City. The positive correlations validated the results of 243 

previous studies [18,19]. In addition, prior research that analyzed the short-term period clarified a strong correlation [17,20]. 244 

In contrast to these studies, the novelty of the present study is that it clarifies the slight positive correlation between home 245 

range and the number of infected people in the medium-term period following the onset of the COVID-19 pandemic. 246 

It was found that the number of infected people was slightly more correlated with HR-length (Total Travel Distance) 247 

than HR-length (Farthest Distance). Controlling travel distance is more effective than controlling the tendency to go out 248 

farther. With regard to HR-length (Total Travel Distance), the CCC was found to be 0.4030 even at a lag level of six weeks, 249 

which had the most significant coefficient. However, it was inexplicable at a lag level of six weeks. The reason for this is 250 

the length of the incubation period of SARS-CoV-2; it takes approximately one–two weeks from the date of infection for 251 

the first symptoms to appear [27]. Specifically, after the emergency declaration was issued, the number of infected people 252 

decreased significantly in approximately one–two weeks. However, the home range had decreased even before the 253 

emergency declaration was issued, and the decrease was not significant. This might be the reason for the low correlation 254 

coefficient. It may be concluded that a decrease in home range is only one of the indirect factors contributing toward a 255 

reduction in the number of infected people. 256 

The conclusions suggest that factors other than the home range might contribute to a decrease in the number of 257 

infected people; for instance, restrictions imposed under the state of emergency in the Osaka Prefecture, which applied to 258 

the residents of Ibaraki City during this period. Citizens were required to refrain from not only non-urgent outings but also 259 

from drinking alcohol in a group on the street or in a park; the operation of restaurants after 8:00 p.m. was also suspended, 260 

and large-scale events were prohibited [32]. Restrictions with regard to wearing face masks might also have had an impact 261 

on the rate of infection. For example, as the home range expands, one factor influencing the spread of infection might be 262 

an increase in the number of situations in which people remove their masks, such as while eating lunch and smoking [33]. 263 

In addition, during the third emergency declaration, household infections had become a significant problem, which was 264 

associated with sharing a bedroom and speaking with an index case individual for 30 min or longer [34]. 265 
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Based on these results, it is possible to improve current measures for an emergency declaration. For instance, instead 266 

of controlling human mobility, the number of infected people could be effectively reduced by the imposition of mask 267 

mandates, reducing the opening hours of restaurants, and increasing the use of hotel facilities for medical treatment. These 268 

measures would also make it possible for people to fulfill their work and study commitments while taking steps to protect 269 

themselves from infection. 270 

The limitation of this study is that we analyzed only the indicator of home range in Ibaraki City. It is necessary to 271 

analyze not only the distance traveled using LH data, but also the place of stay using area-based data. The analysis might 272 

provide a higher correlation coefficient. Further, due to privacy issues, the discrepancies between samples of the number 273 

of infected people and human mobility pose a research challenge. Therefore, it is also necessary to analyze the actual 274 

number of infected people and the distance they travel. Moreover, we analyzed data from Ibaraki City, a suburban city, but 275 

human mobility in central cities should also be considered in determining the significant factors influencing infection 276 

spread. In the future, it is necessary to study different types of cities to examine the correlation between home range and 277 

the number of infected people in a Japanese context, such as Osaka City, the more metropolitan capital of the Osaka 278 

Prefecture. 279 

 280 
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