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Abstract
Access to large volumes of so-called whole-slide images—high-resolution scans of com-

plete pathological slides—has become a cornerstone of the development of novel artificial
intelligence methods in pathology for diagnostic use, education/training of pathologists,
and research. Nevertheless, a methodology based on risk analysis for evaluating the pri-
vacy risks associated with sharing such imaging data and applying the principle “as open
as possible and as closed as necessary” is still lacking. In this article, we develop a model
for privacy risk analysis for whole-slide images which focuses primarily on identity disclo-
sure attacks, as these are the most important from a regulatory perspective. We introduce
a mathematical model for risk assessment and design a taxonomy of whole-slide images
with respect to privacy risks. Based on this risk assessment model and the taxonomy, we
conduct a series of experiments to demonstrate the risks using real-world imaging data.
Finally, we develop guidelines for risk assessment and recommendations for low-risk shar-
ing of whole-slide image data.

1 Introduction and Motivation

The last decade has seen tremendous advances in the methods available to pathologists for
computer-assisted diagnosis, particularly thanks to the rapid developments in digitalmicroscopy,
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which has reached high interchangeability levels with optical microscopy [1]; the whole field
has become known as digital pathology [2]. The availability of large volumes of imaging and
other types of clinically relevant data, as well as the availability of large-scale compute capac-
ities has resulted in the massive development of Artificial Intelligence (AI) methods aiming to
support pathologists in the diagnostic process [3].

The fundamental data used in this domain are whole-slide images (WSIs): high-resolution
optical microscopy scans of the whole slide of biological material, resulting in image data typ-
ically in the order of gigapixels or even tens of gigapixels, as shown in Figure 1. WSIs are
widely used for purposes ranging from routine diagnostics to development and application of
AI models. The images are commonly stored in databases linked to other types of the data—
e.g., as a part of hospital information systems—and they are sometimes shared under tight
confidentiality agreements (e.g., ADOPT CRC-Cohort1) or as open data under the assumption
of inherent anonymity (e.g., CAMELYON competition [4, 5] or TCGA Digital Slide Archive2
(TCGADSA) [6]). WSIs from the same patients can also appear in different data sets associated
with different data, and these can be potentially linked.

The process of creating a WSI begins with the acquisition of the biological material from a
patient in a surgery or a biopsy. The material is then cut into blocks that are formalin-fixed and
paraffin-embedded (hence the FFPE abbreviation), which are then sectioned and mounted onto
glass slides and stained (colored) based on the type of the material and diagnostic methods to
be applied—most common stainings being hematoxylin-eosin, van Gieson or various modern
immunochemical staining methods. The material is then digitized using a slide scanner in
the visible or fluorescence spectrum using a small pixel size such as 0.250 µm/px (generally
designated as 20× magnification) or even 0.125 µm/px (usually denoted 40× magnification).
The resulting images show the detailed cellular structure of the tissue, as illustrated in Figure 1,
and their high resolution results in an image size typically in the order of gigapixels or tens
of gigapixels. In some cases, the scan can also include a visible patient identifier in the slide
label—e.g., a bar code that could be a patient-related ID or a pseudonym (a code of the patient
used for a particular research purpose). Metadata in the image file(s) usually also includes
details about the scanner and the settings used for the acquisition.

Sharing WSI data. Given the large amounts of data required for the development of AI
models, developing AI models for digital pathology requires access to large WSI collections,
or even assembling collections by pooling data from different sources. However, the privacy
risks related to WSI sharing have not yet been systematically explored and the practice of
sharing is extremely heterogeneous: from the above-mentioned approaches considering WSIs
low-risk data and sharing them as open data sets, to the opposite extreme considering them
as sensitive as other clinical data and sharing them only as a part of pseudonymized data sets
under contracts compliant with the applicable data protection laws, such as the General Data
Protection Regulation (GDPR) in European countries.

Hence, the pivotal question is: what are the privacy risks related to sharing WSIs and are
there any circumstances under which the risks can be considered low enough to treat the data as

1 https://www.bbmri-eric.eu/scientific-collaboration/colorectal-cancer-cohort/
2 https://cancer.digitalslidearchive.org/
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(a)

(b)

Figure 1: Examples ofWSIs and details at highmagnification. (a) Prostate cancer biopsy image
has been stained with hematoxylin-eosin staining and scanned at 20×, resulting in
resolution of approximately 100,000 px × 200,000 px. (b) Various types of less com-
mon staining methods, left to right: Giemsa, Gram, Alcian Blue Stain, and Warthin–
Starry (silver) stain.
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anonymous? At a first glance, it would appear unfeasible to identify the source individual from
a WSI alone, which uniquely refers to the biological material that has already been removed
from the patient’s body and therefore histological slides and WSIs produced from this tissue
cannot be directly reproduced from the patient. On the other hand, the WSIs are very large
with relatively characteristic tissue structure, making each image very unique and potentially
enabling the extraction of identifying information. There are also potential artifacts, such as
slide preparation characteristics, associated data and metadata and various other factors that
can significantly increase the likelihood with which a WSI can be traced back to its original
FFPE slide and associated data.

Problem statement. We consider the following problem, illustrated in Figure 2. Assume
that an attacker possesses a background knowledge consisting of a data set of patients indexed by
a PatientID (for simplicity, we assume that PatientID is unique) and including WSI data linked
to the patients. Now the attacker is given another WSI, called a probe, possibly associated with
additional data. We assume that the probe belongs to one of the patients in the data set, but the
probe itself does not necessarily appear in the data set (for instance, with respect to a WSI in
the background, the probe may be aWSI of a different slice cut from the same block of material
obtained from the patient). The aim of the attacker is to link the probe to the correct donor
patient by matching it with a WSI from the same donor in the background knowledge.

Figure 2: Assumed model for data structure—tabular data with patients in rows and different
data types in columns, demonstrating that different data sets can be linked by aWSI.

Privacy risks are then given by the additional data associated with the probes; this additional
data can be either derived from the WSIs or they can be merely associated with the WSIs. If
the linking attack is successful, the attacker can link this additional data to the correct patient,
thus expanding his knowledge about the individual. As a practical example of how this situ-
ation might emerge, consider a researcher who would like to train an AI model using digital
pathology data to predict the prognosis of treatment result for melanocytic tumors with and
without BAP1 mutation [7]. For this purpose, the researcher obtains a pseudonymized data
set from Hospital X consisting of WSIs and the associated diagnosis, information about other
cancers, patient outcome, and BAP1 mutation status. Suppose then that the researcher learns
from a colleague at Hospital X that the institute is contributing data to a public archive, such
as TCGA DSA, where they publish data sets consisting of WSIs and associated rich genetic
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data describing at least the status of several different mutations. Now, suppose that the re-
searcher’s data set and the contributions to the public archive’s collection contain data from
the same patients—regardless of whether the sameWSIs are in both sets. The researcher might
then be able to enrich his knowledge about the patients in the data set he received from Hospi-
tal X by matching the WSIs with the public data set and linking rich genetic data to the clinical
data he received. Depending on the extent of the information in researcher’s background, it
might be possible to make a good guess about whether the patient has been included in the
public data set. The researcher knows that: the patients in the AI data set have consented
for research, they fall within recent year range when the mutations were already tested, the
number of patients with this cancer and mutation status is low. This information as well as
the BAP1 status can be used to facilitate an attack by more effectively targeting patients that
the attacker is reasonably sure to find in the public data set. Moreover, this type of scenario
is an example where stratification of patients in personalized medicine leads to creating very
small populations—so small that even specialized regional cancer centers can have as few as 5
cases in a year and research is done on individual cases [8]. Therefore, the risk of having the
researcher access more data than authorized and approved can become a plausible scenario.

The privacy risks associated with sharing this type of data can be seen as composed of two
orthogonal dimensions: the likelihood of a successful attack and the harm resulting from a suc-
cessful attack. As stated in the problem statement in the previous paragraph, this work focuses
on the analysis of the likelihood dimension for linking disclosure attacks, where the WSIs can
act as a key for linking different data sets—i.e., linking the WSIs in background knowledge to
the set of WSI probes, possibly associated with additional data. On the other hand, the harm
dimension represents a generic problem and depends on the type and total amount of informa-
tion that the attacker is able to link to the same PatientID, drawing from both probes and their
associated data as well as the attacker’s background knowledge. While the harm aspect is not
part of our attack model and experimental evaluation, it is still considered in the guidelines
developed in the last part of this manuscript (Section 4.1).

In this work, we consider the following crucial questions.

1. How to quantitatively measure likelihood of an attacker’s success? We introduce a met-
ric, which measures the probability of successful identification for deterministic attacks
and which can be easily extended to randomized attacks.

2. Which WSI can be used by the attacker as a potentially effective probe? We introduce
a hierarchical taxonomy capturing “closeness” of different WSIs with respect to their
linking potential, starting with identical WSIs, progressing through different scans of
the same slide andWSIs coming from tissues with different degree of spatial or temporal
closeness.

Based on the metric and the slide hierarchy, we perform a series of experimental evaluations
using state-of-the-art image similarity techniques, to demonstrate that the attacker’s likelihood
of success depends on the slide’s location in the taxonomy. The experimental evaluation utilizes
the extensiveWSI collections of theMedical University Graz and theMasarykMemorial Cancer
Institute to evaluate likelihood of a successful attack in real-world settings.
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We outline guidelines for the conscientious sharing of WSI data, encouraging the advance-
ment of data-driven research while protecting the identity of the individuals from whom the
tissue was originally obtained. Our risk assessment methodology also provides practical ap-
proaches for data controllers to perform related analyses for their own data sets.

The paper is structured as follows. Section 2 describes the privacy risk analysis approach
adopted in the paper, rigorously defines the attack model so that it can be measured in ex-
periments, defines the taxonomy of the WSI with respect to privacy risks, and provides an
overview of the attack experiments and data sets used for them. Results of the experiments
are summarized and discussed in Section 3. Based on these results, we propose guidelines to
support sharing of WSI data in Section 4 and also discuss possible future privacy attack aspects
that can be further explored.

2 Methods

2.1 Characterization of privacy risks considered

In our model we consider privacy risks caused byWSIs acting as accurate or approximate links
across data sets. The attack model assumes that an attacker that has a background knowledge,
including WSI data, receives a WSI probe with associated additional data. The attacker tries to
correctly assign this probe to the patients in the background knowledge. This operation can
be performed deterministically—e.g., based on image similarity. Note that the deterministic
assignment is a special case of the randomized one where each probe is assigned to a single
patient with probability one. We demonstrate how the deterministic model can be extended to
a randomized one, but this is not necessary for the experimental evaluation used in the paper.

The intuition behind the metric. We define the attack success rate to be the proportion of
the patients in the attacker’s background knowledge that are correctly guessed from available
probes. This means the fraction of patients correctly assigned by an attack f to at least one of
their probes and thus potentially compromised.

Definition of the metric for deterministic attacks. Consider a set ℋ of patients and a set
𝒫 of data probes that the attacker is trying to map to the patients in ℋ . Given a patient h ∈ ℋ ,
the attacker may acquire a probe belonging to the patient. We define the probe ground truth
G as a function which assigns a set of possible probes G(h) to every patient h. Formally G is
defined as G ∶ ℋ → 2𝒫 , where 2𝒫 is the set of all subsets, so called powerset, of 𝒫 . In our
case G(h) consists of all publicly available WSIs of the patient h. The probe ground truth is not
known to the attacker.

Consider an attack f ∶ 𝒫 → ℋ on the identity of the patient h using the probe p. That is,
given a probe p, the attack f assigns a patient f(p) ∈ ℋ to the probe p. We say that a given
patient h ∈ ℋ is f-vulnerable if there is a probe p ∈ G(h) such that h = f(p); that is, if at least
one of the probes of the patient h is correctly assigned to h by the attack.

We define worst-case probe attack success rate by

Rs(f) = number of f-vulnerable patients
|ℋ|
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Figure 3: Illustration of the probe ground truth function G, which defines which probes be-
long to which patients according to the “ground truth” (not known to the attacker):
G(h1) = {ia, ib, ic} and G(h2) = {id}.

i.e., ratio of number of f-vulnerable patients to total number of patients. This equivalent to the
common definition of success rate as defined in [9].

Observe that there is always a perfect attack f under which all patients are f-vulnerable: a
perfect attack simply assigns correctly a patient to at least one of his/her probes. However, such
an attack cannot be practically implemented as attackers typically have limited background
knowledge. So we consider families of possible attacks, an attack domain ℱ , based on the type
of the background knowledge and algorithms used for the probe-patient assignment. In this
work we consider attack domain ℱ , in which attacks map probes to patients according to the
WSI similarity. However, the above defined metric can be understood in a more general sense
as a method of measuring an attack on partially anonymized data sets using publicly available
data.

Application to WSI linkability risks. In this paper we apply the metric to the analysis
of linking risks related to WSI data. The attacks f ∈ ℱ are implemented by various types of
algorithms that are able to deterministically assign WSI probes to patients with WSIs in the
attacker’s background knowledge utilizing image similarity (attack domain ℱ ). The analysis
assumes the attacker does not have any explicit information about the mapping of the probes
𝒫 to patients in ℋ . The resulting Rs is a proportion of patients for which given attack f is able
to link WSI from the probes to the WSI from background knowledge.

Note that an attack f ∶ 𝒫 → ℋ is determined by three components: set of patients in
attacker’s background knowledge ℋ , set of probes 𝒫 , and set of algorithms implementing the
assignment of probes to patients. From a practical perspective, in order to analyze the risks we
need to establish relationship between WSIs which might appear in the attacker’s background
knowledge and in set of probes.

Now note given the large size and detailed tissue structure of WSIs, it is reasonable to expect
that if an identical WSI appears in both sets, a trivial bit-by-bit comparison algorithm would
be able to assign this probe to the correct patient deterministically and unambiguously. Com-
paring larger data sets can be made more efficient by using cryptographic hash functions on
each WSI and comparing resulting hashes. But to what extent does this apply also to other
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WSIs related by spatial or temporal relation to a single patient? In order to have basis for such
analysis, we develop a taxonomy of WSI relations in Section 2.2.

Possible model extensions. The above metric can also be generalized in several ways.
(a) One may consider randomized attacks, where the attacker no longer deterministically as-
signs probes to patients but may instead employ randomness in the choice: from random or
fixed assignments of probes to patientswithout considering the content of each probe (probably
not really useful except very small data sets with very privacy-threatening background knowl-
edge) to any type of randomized algorithm. In such a case we would measure the worst-case
probability (i.e., highest possible probability) of hitting the right patient. (b) Patients may be
assigned prior probabilities (weights) based on their priority/availability (e.g., more vulnerable
patients might be prioritized by the attack model designer, such as persons of public interest,
for whom the attack is causing more harm); that is, define πh ∈ [0, 1] for each patient h ∈ ℋ
so that ∑h∈ℋ πh = 1, and then define Rs(f) to be the sum of probabilities of all f-vulnerable
patients. In our basic definition above, the probabilities are uniform—that is, πh = 1/|ℋ| for
every h ∈ ℋ . (c) Probes inG(h) may be assigned probabilities of being revealed to the attacker.
Our basic definition of Rs(f) would then be the expected number of f-vulnerable patients when
a probe is chosen randomly for each patient. Presence of patient prior πh allows us to express
additional knowledge about the patients. For instance if the attacker can improve patient es-
timates based on their geographical location: e.g., due to source hospital being in attacker’s
background knowledge and the probes coming from a known hospital, we can introduce pa-
tient prior based on the match of source hospitals to model increased vulnerability of patients
with matching hospital.

This extension maps to the formal frameworks of Quantitative Information Flow [10, 11],
where the secret is 𝒳 = {(h1, pa), (h2, pb), … } with the prior distributions, the communication
channel C is the release of a probe p ∈ 𝒫 , i.e., C(h, p) = p, and the attacker is trying to guess
the secret (h, p) using a possibly randomized algorithm, which may utilize his background
knowledge.

The analysis can be extended to other types of data. The background information as well as
the probes can contain additional data types—e.g., phenotypic, clinical, omics, or other types
of imaging. The attack model allows describing this as the attack domain ℱ can contain at-
tack algorithms utilizing these additional data types. However, these attacks have been studied
elsewhere in the literature and are not subject of this paper, which focuses on developing rec-
ommendations for WSI data.

2.2 WSI hierarchy

To analyzeWSI linking attacks, we need to examine the factors in the image generation process
that can make two WSIs—i.e., one in the attacker’s background knowledge and one a probe—
more or less easily linked to each other. The first factor is when and from where the tissue on
the slide was extracted. We introduce the following spatiotemporal hierarchy of cases, ordered
by decreasing potential image similarity:
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(H-1) WSIs of the same slide scanned with different parameters (including age of the slide at time
of scanning, scanning parameters such as resolution, type of scanner, etc.; see Figure 4);

(H-2) WSIs from the same tissue block—which can be further divided into consecutive (adjacent,
see Figure 5) vs. distant slides;

(H-3) WSIs from the same primary sample3; the same primary sample can be divided into
multiple different blocks;

(H-4) WSIs from different primary samples (such as the primary tumor site, the lymph node,
the metastasis) from the same patient taken at the same time;

(H-5) WSIs from different primary samples from the same patient taken at different times,
which can also relate different diagnoses of the same patient.

Figure 4: Example of the same colon tissue fromMIDI and FLASH scanners (scanners specified
in detail in Section 2.3.2).

The second factor in the image generation process affecting image similarity is the staining
applied in slide preparation. We introduce the following hierarchy of staining cases, ordered
by decreasing potential image similarity, which can be combined with the spatiotemporal hi-
erarchy to reason about risks:

(H-a) WSI slides from the same staining batch;

(H-b) WSIs from different staining batches using the same staining method;

(H-c) WSIs from slides stained using different staining methods (e.g., H&E vs. DAB-based im-
munohistochemistry vs. van Gieson).

3 Primary sample is defined in ISO/DIS 20658(en), Definition 3.17, as a discrete portion of material, intended for
examination, study or analysis of one or more quantities or properties. It is retrieved during an acquisition
procedure such as a surgery or a biopsy.
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Figure 5: Example of the consecutive slides

Furthermore, when considering WSIs from the privacy risk perspective, it is useful to con-
sider them in terms of the conditions required for any variable to be considered an identi-
fier [12]: distinguishability, replicability, and availability.

Distinguishability refers to the ability of the data to act as a fingerprint distinguishing the
donor. One WSI is always distinguishing using direct bit-by-bit comparison; hence when the
same WSI appears in two data sets, they are directly linkable. For different WSIs with increas-
ing distance in the hierarchy (H-1)→(H-5) and to lesser extent also (H-a)→(H-c), each one of
them is still individually distinguishing, but their linkability may decrease. The decrease in
linkability between the (H-1) and (H-2) classes is demonstrated in the experimental part of this
paper.

Replicability refers to what extent one can reproduce the data—either in succession or, more
importantly, in more distant points in time. For WSIs the replicability is likely to decrease
rapidly with increasing distance in spatio-temporal hierarchy. If the same slide is physically
available (H-1), it can be scanned again, resulting in a WSI very similar to the previously ob-
tained WSI from the same slide, with small differences related to aging of the slide (fading of
staining), differences in physical preparation for scanning (e.g., dust particles), and properties
of the scanner. Other means to replicability imply producing multiple very similar slides from
different biological material. If different slides from the same block of tissue are used (H-2), the
biological structures are not identical and the near perfect replicability is impossible. However,
even imperfect replicability can still lead to linkability, as demonstrated later in this paper. For
more distant temporal relation (H-5), replicability is unlikely due to the previous material being
fixated in the slide preparation process, while new biological material remaining in the patient’s
body is subject to further biological development (e.g., natural growth, shrinkage/dying as re-
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action to treatment), making new samples diverge from previous ones. In addition, regarding
tumor tissue, this is intentionally removed during surgery, hence new relevant material is no
longer available in the patient’s body subsequent slide replication.

Availability (also sometimes denoted as “knowability” in European Medical Agency guide-
lines4) describes the extent to which the data is accessible to potential attackers. Availability of
WSI data has been evolving recently: a decade ago, the WSI was mostly limited to diagnostic
purposes, if available as digital imaging at all. Some digital imaging has been used for education
and training of medical professionals [13–15], but not to the extent of substantially increasing
likelihood of identification except for diseases that are so rare that they already identify the
patient. The above mentioned CAMELYON competitions demonstrated, however, how the sit-
uation is changing due to the demands and hopes put into development of novel AI methods
to support cancer diagnosis and treatment; data are becoming rapidly available either under
contracts or even as open data sets, thus substantially increasing availability. More recently,
some publicly available data sets, such as PCam [16], have been made available as (labeled)
tiles, instead of full WSI. This was done primarily to simplify training in tile-based AI models,
but as a side effect it can also decrease linking risks if only limited number of tiles is released
from each contributing WSI. Tile-based approaches are also considered in the experimental
evaluation below.

2.3 Design of Experimental Evaluation of WSIs Linking Risks

2.3.1 The attacker model implementation

We consider attackers assigning WSI probes to a patient’s WSIs using similarity measures on
features extracted from WSIs using common deep learning methods. Specifically, we assume
that the attacker is given a WSI probe p (i.e., probes consisting of WSI data only) and a back-
ground knowledge of WSIs b1, … , bn ∈ ℬ associated to the patients h1, … , hn, respectively.
Then the attacker proceeds as follows:

• Apply feature extractor to all WSIs, obtaining feature vectors w[p],w[b1], … ,w[bn] ∈
ℝk corresponding to the WSIs. Here k is the number of features extracted from each
WSI and is typically in the thousands.

• Apply similaritymeasureM to all pairs of vectorsw[p] andw[bi], obtainingM(w[p],w[bi])
for all 1 ≤ i ≤ n.

• Assign theWSI probe p to the patient with theWSI bi with the maximumM(w[p],w[bj])
among all b1, … , bn, i.e., such that

i ∈ argmax
j

{M(w[p],w[bj]) ∣ j = 1, … , n}

In case that argmax contains more than one index, we select the smallest one.

The implementation of the attack model is based on the “prosecutor model” [17, 18]—i.e.,
attacker knowing or assuming that the patient is in the background.
4 https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/external-guidance-implementation-europea
n-medicines-agency-policy-publication-clinical-data_en-1.pdf
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Feature extraction. Thepurpose of the feature extraction is to squeeze the high-dimensional
WSIs into numerical vectors of smaller dimension. A conventional approach is to use a trained
deep neural network model which takes images as inputs and outputs their vector represen-
tations, while preserving important features of the WSIs. To implement the feature extraction
and to demonstrate variability in efficacy between different extractors we consider the follow-
ing neural network models pre-trained on the ImageNet data set [19]:

• ResNet [20] – output dimension 2,048 features;

• VGG16 [21] – output dimension 25,088 features;

• Inception – output dimension 51,200 features;

• Img2vec5 – a Python package that uses a pre-trained ResNet [22] network to extract
features of the dimension 512;

• SimCLRv2 [23] – fine-tuned model on 100% of labels with output dimension of 8,192
features;

In addition, we have also included a specialized VGG16 feature extractor (denoted VGG16histo)
that has been trained specifically for prostate cancer diagnosis [24] and achieves state-of-the-
art diagnostic performance; this allows comparison of the generic ImageNet-trained VGG16
extractor with a very specialized extractor focused on detailed tissue structures to detect cancer
patterns. These models from computer vision demonstrate their ability to relate slides which
are nearby in the hierarchy, namely classes (H-1) and (H-2). In each of these cases, we remove
the top layers of these networks, that originally solve image recognition problems, and use their
internal representations of the input WSIs as feature vectors. Note that each WSI needs to be
either downscaled or cropped to fit as an input of these networks, which is 224 px × 224 px.
In our analysis we consider both alternatives and compare attacks using complete downscaled
WSIs with attacks using WSIs cropped to their central parts. Also note that full resolution
has not been used as the detailed structures are only similar on consecutive slides, i.e., (H-
1) and consecutive slides of (H-2) using our hierarchy, for which the presented methods on
down-scaled images are already very effective, as shown in Figures 9 and 12.

Similarity measures. To measure similarity of feature vectors we use Cosine similarity

Mcos(v,w) =
∑n

i=1 viwi

√∑n
i=1 v

2
i √∑n

i=1 w
2
i

which is normalized in the range [−1; 1]. We have also implemented Euclideanmetric (Meuc(v,w) =
1/(1+∑n

i=1(vi−wi)2)) but the trends are generally the same and the Cosine similarity achieved
slightly higher Rs scores. Thus, in the evaluation we use Cosine similarity exclusively, as it pro-
vides the upper bound on vulnerability.

5 https://pypi.org/project/img2vec-pytorch/
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Code availability. Code is available on GitHub.6

2.3.2 Data sets

Slides for the (H-1) hierarchy analysis were provided by Masaryk Memorial Cancer Institute
(MMCI) and contained colorectal cancerWSIs, breast cancerWSIs, and prostate biopsies. Slides
for all the other hierarchy analyses were prostate biopsies provided by Medical University
Graz (MUG). All images were stained using hematoxyline & eosin staining in a single batch;
therefore, the experimental analyses are restricted to the (H-a) step from the WSI staining
hierarchy. Access to the pseudonymized image data set can be requested via BBMRI-ERIC, a
European Research Infrastructure, from MMCI7 and MUG8 by filing a request into BBMRI-
ERIC Negotiator.

WSI linking attacks. The attack analyses focused primarily on linking complete WSIs and
we performed experiments with the following data sets based on the WSI spatiotemporal hi-
erarchy.

(E-1) [Based on (H-1)] Consists of 28 slides from different patients with prostate, breast, or
colorectal cancer provided by MMCI, which were scanned on Pannoramic® MIDI and
Pannoramic® 250 Flash III scanners by 3DHistech (Budapest, Hungary) at a resolution
of 0.172 µm/px (WSI sizes: 18.3Gpx for Flash scanner and 23.3Gpx for MIDI scanner).
Of each pair, one WSI is randomly assigned to the probe set 𝒫 and the other is assigned
to ℬ of background knowledge.

(E-2) [Based on (H-2)] Consists ofWSIs from consecutive and non-consecutive prostate biopsy
slides provided by MUG, which were scanned on Aperio AT2 scanner at a resolution of
0.25 µm/px (WSI size of 9 Gpx). Note that in the following text we use the term “slides”
for better readability, but precisely speaking the sets ℬ and 𝒫 are populated by theWSIs
from the discussed slides.

(E-2a) Consecutive slides. The whole data set consists of 151 pairs of (directly) consecutive
WSIs from 151 different patients (see Figure 5). Pairs are visually similar, but there
are also visible differences. One randomly selected slide from each pair goes into
ℬ—the attacker’s background knowledge—and the other into the probe set 𝒫 .

(E-2b) Non-consecutive slides. Consists of 558 slides from 80 patients (average 6.975 slides
per patient). Metadata on these slides contained information on order of cuts and
approximate distance from the previous one (ranging 3mm to 5mm). We used
this information to compose various data subsets to study the influence of the dis-
tance between slides in background knowledge and probes (see Figure 6). For each
threshold distance l and each patient, the sets ℬ and 𝒫 were populated as follows:

6 https://github.com/RationAI/WSI-anonymity
7 https://directory.bbmri-eric.eu/menu/main/app-molgenis-app-biobank-explorer#/collection/bbmri-eric:ID:CZ_MMCI:
collection:LTS

8 https://directory.bbmri-eric.eu/menu/main/app-molgenis-app-biobank-explorer#/collection/bbmri-eric:ID:AT_MUG:
collection:FFPEblocksCollection
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a pivot slide is selected randomly from the patient and is inserted into ℬ ; then, all
the patient’s slides that are at a distance greater than l from the pivot are added to
the 𝒫 . Note that the set of slides added to 𝒫 may be empty for some patients, if
there are no slides available in distance greater than l; this practically happens for
larger threshold distances. In such a case, the pivot slide in ℬ for the given patient
has no corresponding slides in 𝒫 .

Figure 6: Example of probe selection for Item E-2b with minimum distance threshold l =
4mm. A pivot slide (in the centre) is selected as background knowledge. Addi-
tional slides from the same tissue block at a distance of 3mm from the pivot are
removed as they are not further than the threshold l, while other slides at 6mm (i.e.,
3mm + 3mm) are included in 𝒫 .

Hierarchy elements (H-3), (H-4), and (H-5) were not experimentally evaluated as the meth-
ods tested already showed a dramatic decrease in Rs even in (H-2), with increasing spatial
distance of slides from the same primary sample.

Cropped WSI linking attacks. We also study the ability to attack the data set when the
overall shape of the tissue cannot contribute to the extracted features and hence to similar-
ity. We cropped the WSIs so that the resulting image contained internal parts of the tissue
only (further denoted as cropped WSIs). Registration (alignment) of the WSIs was done be-
fore the cropping, to model worst case scenario that the attacker can get access to spatially
corresponding cropped WSIs (see Figure 7a). We studied the influence of decreasing overlap
of these cropping regions on Rs too, by shifting the crop regions by fixed amounts in random
direction for each WSI pair (see Figure 7b). These experiments were done for both consecutive
slides (cE-2a) and non-consecutive slides (cE-2b) .

3 Results and Discussion

In this section we present the evaluation of the Rs value for the various WSI linking attacks
described in Section 2.3.2. We have tested attacks using all the deep learning models listed
in Section 2.3.1 to extract feature vectors from the images. Moreover, two similarity metrics
were tested to compare the extracted feature vectors: cosine and Euclidean. However, the
trends produced by the two metrics are generally the same and the cosine similarity achieved

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2022.04.06.22273523doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22273523
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a)

(b)

Figure 7: Examples of consecutive slides used for croppedWSI linking attacks (a) without shift
and (b) with a shift of 50 px. The overlapping area of the images with a 50 px shift
is 71% to 78%, depending on the shift direction. Note that the images shown are
already downscaled to fit the input of the network, as described in Section 2.3.1.
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slightly higher Rs scores; therefore, we only present results using cosine similarity. The ex-
periments (E-1) and (E-2a) were repeated 40 times. On the other hand, experiment (E-2b) was
repeated 20 times, as this experiment has much higher computational requirements and 20 rep-
etitions were sufficient to characterize the sample distribution of the observations for this case.
All data sets described in Section 2.3.2 are regenerated randomly from the available data for
each run. Naturally, at each run we measure a different Rs value, and the results presented in
the graphs below show the characteristics of the obtained sample distributions of Rs (avoiding
distribution normality assumptions): median, quartiles, and min-max range using box plots,
overlaid with bootstrap-based 95% confidence intervals (dashed tabs) and with jittered plots of
actual data points, unless explicitly stated otherwise. Note that the box plots are modified so
that the whiskers visualize min-max range without eliminating outliers.

3.1 Results on WSI linking attacks

Figure 8 presents the histogram of Rs values measured in experiment (E-1), which measures
the effect of the different slide scanning conditions on Rs. The results show that WSIs of the
same tissue acquired using different scanners are very similar and can be used in a successful
WSI linking attack.

Figure 8: Rs on tissue slides scanned on different scanners. In this experiment the Rs has a
low number of distinct values and hence we are providing full results visualized as
a bar plot with the number with counts of misclassified results. The Rs is on the
horizontal axis; the bold numbers under the bars indicate number of misclassified
patients (i.e., 1 − number of f-vulnerable patients); the vertical axis and the small
number above the bar indicates the number of occurrences out of total 40 repetitions.
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Figure 9 presents the box plots of the Rs values measured in experiment (E-2a), which tests
WSI linking attacks using WSIs of consecutive slides scanned under the same conditions. The
high feature similarity of consecutive slides also leads to successful WSI linking attacks in
this case—if using the right neural network as a feature extractor. So, in this case as in (E-1),
different WSIs can be easily linked to violate privacy of the patient.

Figure 9: Rs on consecutive slides, with different feature extraction models and cosine
distance—as measured in (E-2a). Except for when using the Inception model as a fea-
ture extractor, the attacks were almost always able to successfully link probe slides
to the correct donor patient.

Finally, Figure 10 presents the box plots of the Rs values measured in experiment (E-2b),
which tests WSI linking attacks using WSIs of non-consecutive slides. We have measured the
effect of the spatial distance between the probe WSIs and the patient’s “pivot” WSI on the Rs
value by varying the minimum distance threshold l from 3mm to 18mm. Note that the larger
the distance between cuts, the fewerWSIs are available as probes; hence the plot also shows the
average number of probes per patient. As expected, the attack success value Rs decreases with
the increasing physical distance of cuts, as can be seen from drop in Rs shown in the figure.

Influence of the number of patients and probes on Rs. As the efficiency of our similarity-
based linking method apparently depends on the number of patients and the number of probes
for each patient, we have evaluated the effect of these parameters on the Rs value in the case
of non-consecutive slides—i.e., in experiment (E-2b).

For evaluating the dependency on number of patients, we select a random subset of n patients
and, for each patient, we randomly select one slide and insert it into ℬ , while we insert the rest
of their slides in 𝒫 ; we thenmeasure the corresponding Rs value. We performed this process 40
times for every number of patients n between 1 and 80. The resulting Rs statistics are presented
in Figure 11a. Given the prosecutor attack model, the Rs ≈ 1 for small number of patients (< 5)
and drops to still significant Rs ≈ 0.5 for the maximum of 80 patients in our data set.

For evaluating the dependency on the number of probes per patient, we tested attacks vary-
ing the number of probes per patient from 1 to 6. For this experiment, from our data set we
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Figure 10: Effect of distance between probe and target slides on Rs measured in experiment (E-
2b) on attacks using non-consecutive slides. The labels on the vertical axis denote
the minimum distance threshold l (in mm) and, in parentheses, the average number
of probes available per patient (p/p), which decreases with increasing threshold l.

selected the set of patients with at least 7 slides, leaving us with 43 patients (hence the maxi-
mum of 6 probes per patient tested, as increasing this upper limit further would dramatically
decrease number of patients available for the experiment). For a given number of probes to be
tested p, for each patient we randomly selected a subset of p+1 slides; of these, a random slide is
placed in ℬ , while the rest are placed in 𝒫 . We then proceed with the measurement of Rs. The
experiment was repeated 40 times for each number of probes p. The resulting Rs statistics are
shown in Figure 11b. One can observe that Rs increases substantially with the number of avail-
able probe slides p. This effect is explained by the random slide selection process—increasing p
increases the probability of including a “strong” probe slide that falls in the hierarchy case (H-
2) with low distance, for which the attack implementation has shown to be most effective (see
Figure 10). This effect implies an increasing residual risk as more WSIs from the same block of
tissue are released, even if they are sampled far from each other.
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(a)

(b)

Figure 11: Effect of (a) the number of patients and (b) number of slides (probes) on Rs. Fig-
ure (a) shows the Rs measured in attacks on data sets including data from 1 to 80
patients. On the other hand, Figure (b) shows the observed growth in Rs as the
number of available probes increases—from 1 to 6 in these experiments. These two
experiments use non-consecutive slides from (H-2) in the hierarchy and they are
described in Section 3.1 under the paragraph “Influence of the number of patients
and probes on Rs”. Note that, as in the other figures in this article, these modified
box plots show median, quartiles, and min/max.
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3.2 Results on cropped WSI linking attacks

Figure 12 summarizes our results on cropped WSI linking attacks measured on consecutive
slides in experiment (cE-2a). Rs decreases only slightly when compared to the results of exper-
iment (E-2a) in Figure 9 (i.e., WSIs of consecutive slides scanned under the same conditions).
When comparing results of Inception, we can see that cropping tissue actually significantly
increases Rs; we assume this is caused by the changes in shape/border of the tissue on con-
secutive slides, to which this feature extractor seem to be more sensitive compared to other
extractors.

Figure 12: Effect of the crop area shift on Rs for croppedWSI of consecutive slides. We observe
that attacks are relatively insensitive to small shifts in the crop area; only after
shifting by 50 px (area overlap 71% to 78% depending on the shift direction) or
more, the Rs value deteriorates significantly.

Similarly, we have also tested attacks on cropped WSIs of non-consecutive slides in experi-
ment (cE-2b); results are summarized in Figure 13. Compared with results of experiment (E-2b)
in Figure 10 onwhole non-consecutive images, there is again a slight decrease in Rs. Crop shifts
have not been evaluated for non-consecutive slides, as the slide distance on cropped slides al-
ready drives Rs down to minimal levels and shifting has marginal room for effect.

We can summarize that the success of a (full) WSI linking attack using the presented meth-
ods does not depend significantly on the availability of the border and on the overall shape
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Figure 13: Effect of distance between cropped, non-consecutive probe and target slides on Rs,
measured in experiment (cE-2b). The labels on the vertical axis denote theminimum
distance threshold l (in mm) and, in parentheses, the average number of probes
available per patient (p/p), which decreases with increasing threshold l.

of the tissue, but the internal structure of the tissue is sufficient. The used attack model im-
plementation is also relatively insensitive to small shifts in the crop area. Only after shifting
by 50 pixels (area overlap 71% to 78% depending on the shift direction) or more, the Rs value
deteriorates below 0.8 for all extractors except SimCLRv2, where the significant drop starts
only at 75 px (area overlap 58% to 67%). This is expected behavior as SimCLR/SimCLRv2 are
trained using random image cropping as a part of stochastic data augmentation.

4 Conclusions and Recommendations

WSI are a specific category of data from the privacy risk perspective. In this paper, we have
primarily focused on linkage attacks, which may lead to unintentional identity disclosure or
enable inferring additional information about the data subjects. As demonstrated by our ex-
perimental results, with a relatively straightforward attack model, the potential for identical
WSIs to act as links across different data sets is substantial; likewise for WSIs generated from
the same or from closely spatially related physical slides. Additional insight into risks could be
obtained by organizing an international competition, where different teams could propose and
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compare potentially stronger attack methods. The authors propose to organize such a com-
petition using the attack model presented in this paper to develop and test proper technical
safeguards for protecting WSI data donor privacy.

Moreover, an aspect which has not been a specific focus of this paper, apart from generic
feature extraction, is how much information can be inferred directly from WSI data—i.e., what
additional information can be inferred from the “fingerprint” itself. Many AI models have been
developed to infer diagnoses (see survey by Pocevičiūtė et al. [25]) and disease-specific scores
such as a UICC stage for colorectal cancer or a Gleason score for prostate cancer [26, 27].
But AI models have been shown to also recognize less apparent features, such as information
on particular mutations [28–31] or even yet unknown morphological features of prognostic
significance [26]. Inferring such information might be used to further improve linkage attacks
(e.g., if mutation information is known to the attacker) or to infer additional information about
the data subjects, such as clinical or genomic data. When releasingWSI data as a part of bigger
data sets, the likelihood of inferring sensitive data should be taken into account; this aspect
is considered in the proposed guidelines presented in the following Section. This is relevant
primarily when releasing the data as de facto anonymous data sets, where it can be correlated
with other data sets in the future (e.g., genomic data).

To summarize, given the experimental findings and the additional considerations presented
in this text, when WSI data is to be released across different public data sets—i.e., without
controlled access and additional contractual responsibilities—caution needs to be exercised to
mitigate privacy risks. At the same time, we acknowledge the need to maximize openness of
data and to make large volumes of data available for the development of AI models and other
research that have the potential to significantly improve health care. Hence, we propose the
risk assessment models and data release guidelines forWSIs presented in the following Section.

4.1 Proposed Risk Assessment and Data Release Guidelines for WSIs

When releasing data sets containing WSIs, it is desired to publish them as openly as possible to
support their reuse, but also to keep the data as closed as necessary. In the following subsections
we define the relevant terminology, discuss risk assessment aspects, and propose two sets of
guidelines: the first for releasing WSI as de facto anonymous data sets, and the second for
releasing pseudonymized (or even identified) data set under a contract defining appropriate
technical and organizational safeguards. Note that the privacy risk analysis in this paper is
independent of any particular jurisdiction. We do, however, anchor the guidelines developed
below to the terminology established by the GDPR.

Definition of de facto anonymity. The notion of de facto anonymity captures the idea that
it is reasonably unlikely that the person subject of the data could be identified. We can examine
the notion in more detail by reading the GDPR. In recital 26 it defines anonymous information
as:

…information which does not relate to an identified or identifiable natural person
or to personal data rendered anonymous in such a manner that the data subject is
not or no longer identifiable.
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To understand this definition, we need to understand what constitutes personal data and what
makes a person identifiable. The GDPR defines personal data in Art. 4 (1) as:

“‘personal data’ means any information relating to an identified or identifiable
natural person (‘data subject’); an identifiable natural person is one who can be
identified, directly or indirectly, in particular by reference to an identifier such
as a name, an identification number, location data, an online identifier or to one
or more factors specific to the physical, physiological, genetic, mental, economic,
cultural or social identity of that natural person”.

Finally, recital 26 of the GDPR also provides important information on how to decide whether
a natural person is identifiable:

“To determine whether a natural person is identifiable, account should be taken of
all the means reasonably likely to be used… To ascertain whether means are rea-
sonably likely to be used to identify the natural person, account should be taken
of all objective factors, such as the costs and time required for identification, tak-
ing into consideration the available technology at the time of the processing and
technological developments.”

Further, according to the Art. 29 Working Party (predecessor of European Data Protection
Board under the GDPR) even organisational measures can influence the status of anonymity,9
since identifiability depends on the background knowledge of potential attackers: the same
data might be anonymous in one setting and personal data in another. Examples of such or-
ganizational measures include: access control and contractual obligation to not re-identify
research participants, to not share the data with third parties, and to make them internally ac-
cessible only under confidentiality obligations, provided that the contractual party is reliable
and able to fulfill those obligations.

To summarize, the stance taken by the GDPR is that anonymity is not an absolute value; it
follows that absolute anonymity once and forever with zero risk of re-identification is not re-
quired by the GDPR. Instead, certain residual risks are acceptable and can be calibrated against
the sensitivity of the data in respect to the impact of privacy breaches for the data subjects.
This is captured by the notion of de facto anonymity.

Personal data processing. Please note that our guidelines only consider aspects specific to
WSI data, and they need to be complemented by relevant common best practices for processing
personal data. Under GDPR this entails that there has to be a legal basis for processing personal
data, such as consent or performance of a contract10 and the data subject needs to be able to
exercise their rights (e.g., right to be informed, rights of access, rectification, erasure, restricting
processing). Moreover, though anonymized data is not personal and processing it does not
require a legal basis, the anonymization process itself—i.e., generation of anonymized data
from personal data—is just a specific form of personal data processing and, if done, there needs
to be a legal basis for it, too. The details of the process are dependent on the relevant jurisdiction
and are outside of the scope this article.
9 Art. 29 WP opinion 136, concept of personal data, p. 17
10List of possible legal bases is specified in Art. 6 of GDPR.
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4.1.1 Guidelines for releasing WSI as de facto anonymous data.

The following technical and organizational measures shall be considered before releasing WSI
data in de facto anonymous data sets.

A1. Minimize metadata. Each WSI shall be stripped of any patient-identifying metadata.
Technical metadata related to scanning processes should be reviewed and minimized for
the given purpose (e.g., removing location identifiers if present, but retaining information
on scanning parameters).
Rationale. Patient-identifying metadata, such as health insurance identifiers, would be
a direct source of a patient’s identity. Similarly, hospitals often use unique identifiers for
the histopathological process, which is a unique patient identifier with one ormore levels
of indirection. Many relatively identifying technical metadata, such as serial number of
the WSI scanner and location metadata, are typically not strictly needed or used for
research activities with WSIs. This follows directly from the nature of the metadata and
needed not be considered in the experiments presented in this work. Note that removal of
patient-identifying metadata implies breaking provenance chain and hence traceability
of data, as discussed in the provenance information management paragraph below. It
also disables handling incidental findings.

A2. Dissociate frompatient records. Both theWSIs to be released in a de facto anonymous
data set and their originating slides must be dissociated from the patient records (except
for the data which is released in the same de facto anonymous data set and is also subject
to anonymization).
How the dissociation is done depends on the context of the de facto anonymization. It
can be done using a legally enforceable contract preventing the recipient of the data from
accessing the link. If this is not possible, the dissociation has to be done by removing
all references between the WSIs/originating slides and any patient records in the data
holder’s/controller’s information systems.
Rationale. Experiment (E-1) demonstrated that WSIs generated from identical physical
slides on different scanners (i.e., (H-1)) can be trivially linked. Hence, not only is the
dissociation of WSIs necessary, but the originating slides must also be dissociated, so
that it is no longer possible to release additional patient data that would be associated
with that anonymized slide or its WSIs.

A3. Consider combinations with other data sets.
a) If aWSI is released into more than one de facto anonymous data set, all correspond-

ing records (i.e., WSI and data linked to it) in these data sets shall be considered
linked.
Rationale. This follows from ability to do bit-by-bit match of identical WSIs or
more effectively by comparing hashes of WSIs as discussed in Section 2.1.

b) If the same WSI is released into a de facto anonymous data set and other non-open
data sets, gaining information from the de facto anonymous data set is technically
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trivial for the recipients of the non-open data set and must be considered from the
risk assessment perspective.
Rationale. This follows from ability to do bit-by-bit match of identical WSIs or
more effectively by comparing hashes of WSIs as discussed in Section 2.1.

Note that thismay be a complex taskwhen data releases can be done by different organizations—
e.g., when a chain of data controllers is set up, in which several controllers are allowed
to further release the data in whole or even just in part.

A4. Slides from the same block. If the WSI is a part of a series of consecutive slides,
the same rules A1-A3 on dissociation apply to the whole consecutive WSIs stack and
corresponding original slides.
Rationale. Experiment (E-2a) linking consecutive slides using common feature extrac-
tors showed high risks of linkage; even crops from the consecutive slides in experi-
ment (cE-2a) were demonstrated to provide very good linkage if the overlap of areas
is higher than 70%. For non-consecutive slides in experiment (E-2b) and their crops (cE-
2b) the linking capability is much lower and decreases rapidly with the distance between
slides in the stack (Figures 10 and 13), with increasing number of patients, (Figure 11a)
andwith decreasing number of slides per patient (Figure 11b), thoughwe can realistically
anticipate improvements of the matching methods in the future. When only releasing
distant non-consecutive slides, precaution needs to be taken for future data releases, so
that intermediate slides are not released in other data sets. In the extreme case, this would
result in consecutive slides being found in different data sets and matched easily. As a
further consequence, FFPE tissue blocks from which multiple slides can be generated
also have to considered as a means for generating linking information.
Note: If effective methods for linking more distant elements in the slide similarity hi-
erarchies are developed in the future—i.e., for (H-3) to (H-5) or for different staining
relationships (H-a) to (H-c)—this recommendation will be affected and will need to be
expanded to cover new risks.

A5. Consider information inference risks. The probability of successfully inferring in-
formation from the WSIs shall be considered and in case that such information could
practically lead to singling out a patient, the WSIs shall not be released as anonymous
material. Examples include rare cancer diagnoses and rare mutations, where inferring
these and their combinations from a WSI might narrow down the number of possible
donor patients dramatically and even lead to singling out individuals. Qualified risk as-
sessments need to be carried out according to state-of-the-art methodologies (e.g., those
by Ohmann, et al. [32] or by El Emam [18]).
Rationale. As discussed above, there is increasing body of work on deriving information
fromWSIs. The state-of-the-art needs to bemonitored and information derivedwith high
reliability should be considered as if it is accompanying theWSI. Hence, a risk assessment
needs to be done for the compound of the WSI and the derivable information.
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A6. Consider small populations. When releasing slides from small (sub)populations, such
as in case of rare diseases or highly stratified major diseases, for which inclusion crite-
ria of the cohort may already indicate very low number of patients included, the risk
assessment must consider this aspect. A rare disease diagnosis itself, for example, may
already act as a partial identifier. A decision must be taken as to whether releasing the
data as a de facto anonymous data set is acceptable, considering that an attacker may
gain knowledge about members of the population from other sources, and what harm
can be caused by deriving information from the de facto anonymous data set.
Rationale. Results in Figure 11a show that with the prosecutor attack model, when the
attacker knows the patient is in the data, the success rate increases rapidly for small
populations. The prosecutor model implements the worst-case scenario for small pop-
ulations, where the attacker gains membership information elsewhere and has it in his
background knowledge.

A7. Contract setup. When releasing data as de facto anonymous, a legally enforceable con-
tract shall be in place between the data controller and the data recipient, which prohibits
re-identifying data subjects and/or inferring data about any specific individuals. This is
a legal measure to mitigate residual risks, such as risks arising from the development of
novel re-identification techniques for WSI data. Such legal measures may include limit-
ing the purpose of the data processing as well as setting time constraints for the process-
ing in order to manage risks related to the development of new methods in the future.
It is recommended that the contract anticipates reproducing research results: instead of
requiring the deletion of the data by the recipient after completing the research, it should
allow the data to be kept for archival and reproducibility analysis/testing purposes.
When releasingWSI data in an open data set (e.g., publicly downloadable on the internet),
at least a lightweight contract, such as a licence agreement for the data set, shall be
implemented to which the recipient of the data set must actively agree.

Note to A5 and A6: These guidelines should not be interpreted as preventing sharing of
WSIs from rare disease patients, but only relates to precautions to be taken for sharing data
as de facto anonymous. The rare disease patients are known to be highly interested in the
medical research that could help them and fellow patients and are generally positive to FAIR
data sharing or even open data sharing [33]. Such data should be shared as personal data with
the necessary awareness about the risks and adequate technical and organizational measures
(see below). For other vulnerable or low-incidence patient populations, the attitudes might
be less positive to data sharing and, hence, sharing the data as personal data with adequate
measures in place is even more important in order not to compromise the trust placed by them
on the researchers.

4.1.2 Guidelines for releasing WSIs as personal data.

When there is a legal basis for processing personal data for a particular purpose, it is recom-
mended to release the WSIs and any other necessary linked data as personal data that is not
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anonymized. Of note, releasing data as personal data (even if pseudonymized) has the advan-
tage of enabling research results to be fed back to the donors—for instance in the form of acting
on incidental findings to prevent the development of a disease not yet known to the donor. The
following technical and organizational measures shall be considered before releasing WSI data
as personal data.

P1. Regulate data transfer and/or processing with a legal contract. Use a legally en-
forceable contract to regulate the conditions under which access to the personal data is
granted. Under the GDPR, this can be a data transfer agreement (i.e., establishing con-
troller to controller data transfer) or a data processing agreement, regulating the data
processing activities that are to be performed on behalf of a data controller.

P2. Pseudonymize and minimize the data set. Direct patient identifiers should be re-
placed by pseudonyms. The data set should be minimized for the purpose for which it is
being shared.

P3. Safeguard data via technical and organizational measures. Processing of personal
data is typically safeguarded by a combination of technical measures (e.g., encryption
of transmission channels and storage, network protection mechanisms, mechanisms for
data destruction after termination of the contract) and organizational measures (e.g., or-
ganizational life cycle of the data, restriction of access to defined personnel and having
appropriate contracts setup with each person authorized to access the data), which are
defined in a contract between the provider and recipient(s) of the data. The contracts
also need to restrict the purpose of use and define requirements data processing.

P4. Consider information leakage from AI models. When AI models are developed
usingWSI data, it needs to be ensured that the model does not leak personal information
learned from training data (see, for instance, the work by Shokri et al. [34]). Methods
like PATE [35] can be used to mitigate these risks.

4.1.3 Provenance information management and release.

Provenance information is an important aspect of trustworthy data with defined and analyz-
able quality [36]. For personal/pseudonymous data sets, provenance information can lead back
to the originating biological material, but the link to the donating patient can typically only be
resolved by authorized personnel at the source organization. When releasing de facto anony-
mous data sets, provenance information can only start with the anonymization process and
cannot link to the originating data (this link must be intentionally and permanently destroyed).
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