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Abstract. Graph Neural Networks (GNN), a novel method to recognize features 

in heterogeneous information structures, have been recently used to model 

patients with similar diagnoses, extract relevant features and in this way predict 

for instance medical procedures and therapies. For applications in a medical field 

is relevant to leverage the interpretability of GNNs and evaluate which model 

inputs are involved in the computation of the model outputs, which is a useful 

information to analyze correlations between diagnoses and therapies from large 

datasets. We present in this work a method to sample the saliency scores of GNNs 

models computed with three different methods, gradient, integrated gradients, 

and DeepLIFT. The final sample of scores informs the customers if they are 

reliable if and only if all of them are convergent. This method will be relevant to 

inform customers which is the degree of confidence and interpretability of the 

computed predictions obtained with GNNs models. 
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1 Introduction 
The widespread introduction of deep learning methods as an efficient method for performing 

inductive model induction has meant the fast development and adoption of black box models in 

their own nature, which has led to a considerable number of tools to improve the interpretability of 

this modelling method. A substantial portion of attention is focused on the saliency concept for 

deep learning, which consists of finding unique features in the context of the results delivered by 

the models [1]. While the concept of saliency has been applied in medicine to improve the 

interpretability of deep learning methods in radiology [2], this same concept can also be used for 

the interpretation of deep-learning methods in other medical fields. Here we applied saliency 

methods not only to increase the interpretability of graph neural networks (GNNs) used to model 

patient populations in order to predict medical procedures from existing ICDs and patient 

information [3], but also as a method to establish useful correlations between the ICDs and the 

procedures, encoded as therapy keys (TKs). Although many saliency methods have been 

standardized for AI interpretability and transparence, rigorous investigation of the accuracy and 

reliability of these strategies is necessary before they are integrated into the clinical setting [2]. In 

general, saliency methods could be unreliable [4], delivering false interpretations as, for instance, 

false correlations between ICDs and TKs. 

 

This type of assessment is also helpful in assessing the uncertainty associated with certain 

predictions when salience methods are used, so that low uncertainty is achieved when all salience 

values calculated with the different methods converge to similar or equal values. This end result is 

relevant because we want to assess when a particular prediction and correlation is uncertain, i.e. is 

a method that is able to inform the customer when the assignment of ICDs to TKs is uncertain, and 

is an alternative to other methods aimed at improving the transparency of deep learning 

applications, for example medical recommendation systems. [5][6]. In addition, these results are 

helpful in evaluating the plausibility that the predicted TKs are really mapped to the input 

characteristics (in this case, ICDs). We are implementing our analysis in GNN models in synthetic 

patient populations with chronic disease, as Diaz Ochoa & Mustafa have reported [3].   
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2 Methods 
We evaluate the predictions of TKs obtained with GNNs for a network derived from a synthetic 

patient database, with each patient assigned a series of ICDs describing their behavior, resulting in 

a patient graph structure based on basic patient information such as age and gender, as well as the 

diagnoses and trained GNNs models, to guide the patient's therapies (see figure 1). The 

implementation as well as results are reported by Diaz Ochoa & Mustafa [3]. Despite this 

implementation demonstrated that the accuracy of GNNs is relatively high, in this implementation 

the correct relation between inputs (ICDs) and outputs (TKs) remains challenging.  

 

 
Fig 1. Intuitive interpretation of the meaning of the saliency score for a graph. The size of the elements in the 

ICD vector 𝑠𝑖 represent the saliency (importance) of the ICD for the prediction of the TKs,   

Since the outputs are lists of TKs assigned to each patient, in this implementation was possible to 

identify a full network as well as seven characteristic clusters of patients with both similar TKs and 

ICDs, after predicting these values using the trained GNN model on test data [3]. The score of the 

input ICDs involved in the prediction of the label, in this case each TK, defined as 𝑆𝑐𝑇𝐾, is in 

principle a non-linear function that can be approximated to a linear function, in this case the ICD 

vectors, such that 𝑆𝑐⃗⃗⃗⃗⃗
𝑇𝐾 = 𝑤 ∙ (∑ 𝑠𝑖𝑖 ) (intuitive interpretation in figure 1). This computation can be 

performed for the full graph, as well as for each one of the identified clusters 𝑛 = {0,1,2,3,4,5,6}. 
 

In a first instance the relation between input features and TKs has been approximated by a Taylor 

approximation with gradient methods.1 [7]. The score 𝑤 can then be computed by back 

propagation, i.e., the gradient of the model output (difference of number of times a single label is 

observed) respect to the input (different single combinations of ICDs) 𝑤𝑇𝐾𝑛 =  Δ(∑ 𝑇𝐾𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑖 )/

Δ(∑ 𝑠𝑖𝑖 ) (from equation 3), which depend on the vector 𝑠𝑖 for each node (patient) 𝑖 (see Fig. 1), 

where Δ is the difference between the number of predicted TKs and the difference of the number 

of ICDs in the graph. This difference is computed considering the frequency of ICDs in the sample. 

In this way we obtain an information about which ICDs are more important for the prediction of 

TKs. This score is computed either for the whole label-network as well as for each one of the 

identified sub-networks. 

 

Furthermore, since sensitivity and implementation invariance are non-preserved in conventional 

gradient methods, we also implemented integrated gradient methods2 defined as the path integral 

of the gradients along the straight-line path from the baseline x′ to the input x [8]. 

 

Despite these methods are helping to better understand what a deep-learning method is “currently 

 
1 https://captum.ai/api/saliency.html 
2 https://captum.ai/api/integrated_gradients.html 
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seeing”, several works have demonstrated that they are not reliable enough. For this reason, the 

DeepLIFT3 method has been obtained to leverage saliency analysis, which is a method that 

compares the activation of each neuron to its 'reference activation' and assigns contribution scores 

according to the difference [9]. This method has proven to be effective in cases when a neuron in 

the Neural Network, defined for instance by a ReLu activation function, carries information, 

despite it is not firing, such that the gradient in this case is equal zero.  

 

Since we are dealing with three different methods delivering different scores, we approximated the 

scores into a single ranking of five levels (ranking from a low, medium and high saliency), such 

that the score computed with each method is grouped into 5 bins based on equal sized quartiles, 

i.e., we mapped the scores 𝑤𝑇𝐾𝑛 ∈ ℝ, into a discrete scale 𝑤′𝑇𝐾𝑛 ∈ ℕ ranging from low (𝑤′𝑇𝐾𝑛 =
1) to high (𝑤′𝑇𝐾𝑛 = 5) saliency. After applying this transformation for the scores obtained with all 

the three different methods, we can then sample these scores to perform the final analysis.  

3 Results 
The computed samples of 𝑤′𝑇𝐾𝑛 were estimated for the full network as well as for each one of the 

identified clusters. We have discovered that 27.2% of the saliency scores are convergent, 

considering that in the database we have 250 different ICDs. Furthermore, a large fraction of the 

predicted 𝑤′𝑇𝐾𝑛  per ICD has a large skewness, i.e., in some cases one of the methods is delivering 

high divergent values respect the other two methods.  

 

 
Fig 2. Boxplot of the bin-sampled saliency scores (y axis) as a function of ICDs (a representative fraction 

from 250 ICDs) for the full ICD-patient graph, as reported in [3]  

In the analysis of the full graph, we also obtained that 20% of the median was related to a large 

saliency value (importance) (median value equal to or greater than 3) and mainly the convergent 

salience values for "less important" ICDs were obtained (see Table 1). The size of the saliency or 

importance is however not related to the ICD’s frequency, i.e., how often an ICD is used (reflecting 

the number of times that a morbidity and comorbidity is coded). Thus, the way how the GNN 

model recognizes features in the ICD distribution of the patient population is not necessarily related 

to the ICD frequency, but it can be generated by the interdependence of features on each other.   

 

Although the result in Figure 2 is a good proxy to understand how the saliency scores are working 

in the graph, this calculation is less informative, in part because the reliability is relatively low and 

because there is a strong salience divergence for each of the ICDs. Instead, a salience analysis of 

the identified clusters of patients with similar TKs could be much more informative and accurate, 

using the results of the sub-graph analysis as reported in Diaz Ochoa & Mustafa [3].  

 

 
3 https://captum.ai/api/input_x_gradient.html 
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Fig. 3 Boxplot distribution of the computed saliency scores (y axis) after clustering similar TKs as a function 

of the ICDs (x axis, only a selected number) for different identified sub-graphs SG.  

In the next part we perform a similar saliency analysis for each one of the computed subclusters 𝑛. 

Interestingly, the convergence of scores in the subgraphs is better than for the full graph, with 56% 

of convergent scores for cluster number 3, i.e., as expected, it is much reliable to analyze the 

relationship between the model outputs and inputs for the subgraphs than for the full graph (see 

Fig. 3 as well as Table 1). Also observe that the saliency scores computed for the full graph might 

be different for the subgraphs (see for instance N18.83 in the full graph and in the subgraph 6). In 

general, with all three methods, we get a mean convergence of about 43%. This result is relevant 

because it implies that we are getting greater precision and interpretability for subgraph analysis 

in relation to full graph analysis. However, the reliability of the saliency is still too low, not only 

with respect to the whole ICD, but with respect to the total number of High and Low scores. In 

particular, due that the sample for high scores is smaller, we have obtained in this case for some 

subgraphs no convergence. 

Table 1. Accuracy of the saliency scores for each one of the obtained TK sub-graphs based on the GNN 

predicitons. 
 

𝑛 Percentage converging 

Saliency Scores (%) 

High Scores: Relative % 

convergence – median ≥ 3 

Low Scores: Relative % 

convergence – median 

< 3 

Full 27.20 20.00 28.00 

0 44.00 0.00 45.00 

1 40.80 40.00 41.00 

2 28.00 0.00 31.00 

3 56.00 0.00 60.00 

4 36.00 14.00 37.00 

5 52.40 17.00 53.00 

6 44.80 14.00 46.00 

 

These results have two implications: 

• First, the saliency analysis is much better in subgraphs identifying specific TK clusters, 

i.e., the saliency method has a good functionality when there is a guarantee that the GNNs 

has a given specificity. 

• Second, the obtained results imply that either all the three saliency methods are 
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unreliable, impairing the estimation of the correlations between ICDs and procedures, or 

that this estimation is essentially difficult to be performed due to the irregular and variable 

assignment of medical procedures (epistemic uncertainty).  

 

In this case this result can be used in two ways: one, to establish the saliency score and in this way 

estimate which ICD combination could be involved in the estimation of a procedure, and second 

use the degree of uncertainty in the scores (skewness and distribution) to inform the customer both 

if the prediction and ICD-OPS correlation computed with the model is robust or uncertain and 

how significative could be this uncertainty when the computed TKs are related to the inputs. Thus, 

this method is an alternative approach to inform customers about the effect of epistemic 

uncertainty in the original graph-database on the final model outputs.   

 

4 Conclusions 
In this work, we developed a method of analyzing different salience methods to evaluate their 

reliability when applied to GNNs that encode similar ICDs in a patient population with a chronic 

disease to predict their TKs. The salience method is important both to improve the interpretability 

of the implemented GNN and secondly to calculate the exact correlation between TKs and ICDs.  

 

First, the developed method is a proof of concept to take advantage of the reliability of the 

calculated saliency scores and simultaneously to inform the customers of the model about potential 

epistemic uncertainties and uncertain interpretability of point predictions, in this case the 

assignment of ICDs to TKs. 

 

Second, the calculated results show that using salience values in partial graphs is more effective 

than in full graphs. Since the combination of morbidities and comorbidities is better represented in 

the subgraphs and subclusters than in the complete graph, the calculation of the salience values can 

be more effective for these subgraphs. These results will guide the application of GNNs in the 

design of, for example, recommender systems in medicine, taking into account not only technical 

but also relevant ethical aspects that determine how model results, and corresponding inaccuracies 

and uncertainties, should be communicated to the customer [10].    
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