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Abstract  

 

Introduction: Privacy protection is a core principle of genomic research but needs further 

refinement for high-throughput proteomic platforms.  

 

Methods: We identified independent single nucleotide polymorphism (SNP) quantitative trait 

loci (pQTL) from COPDGene and Jackson Heart Study (JHS) and then calculated genotype 

probabilities by protein level for each protein-genotype combination (training). Using the most 

significant 100 proteins, we applied a naïve Bayesian approach to match proteomes to 

genomes for 2,812 independent subjects from COPDGene, JHS, SubPopulations and 

InteRmediate Outcome Measures In COPD Study (SPIROMICS) and Multi-Ethnic Study of 

Atherosclerosis (MESA) with SomaScan 1.3K proteomes and also 2,646 COPDGene 

subjects with SomaScan 5K proteomes (testing). We tested whether subtracting mean 

genotype effect for each pQTL SNP would obscure genetic identity.  

 

Results: In the four testing cohorts, we were able to correctly match 90%-95% their 

proteomes to their correct genome and for 95%-99% we could match the proteome to the 1% 

most likely genome.  With larger profiling (SomaScan 5K), correct identification was > 99%. 

The accuracy of matching in subjects with African ancestry was lower (~60%) unless training 

included diverse subjects.  Mean genotype effect adjustment reduced identification accuracy 

nearly to random guess. 

 

Conclusion: Large proteomic datasets (> 1,000 proteins) can be accurately linked to a 

specific genome through pQTL knowledge and should not be considered deidentified.  These 

findings suggest that large scale proteomic data be given privacy protections of genomic data, 
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or that bioinformatic transformations (such as adjustment for genotype effect) should be 

applied to obfuscate identity. 
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Introduction 

Nearly four decades ago Jeffreys et al [1] recognized that patterns of simple tandem-

repetitive regions of DNA were specific for individuals and could be used for identifying 

specific individuals or close relatives. Although initially controversial, the DNA-fingerprinting 

technique was rapidly and widely adapted by forensic scientists and within a decade was in 

the public’s vernacular. Soon thereafter the results of the Human Genome Project were 

published [2, 3] and it is now recognized that there are millions of single nucleotide 

polymorphisms (SNP) which can distinguish individuals within large populations. Identifying 

individuals by genomics is a rising concern in research because advances in genotyping and 

sequencing have resulted in large genetic databases (dbGaP; GEO; EMBL-EBI) for both 

research and commercial use. The existence of newer genotyping technologies and large 

genomic databases has created concerns among policy makers regarding discrimination in 

health insurance and employment and resulted in new laws that address genetic information 

(e.g., the Genetic Information Non-discrimination Act of 2008) as well as privacy protection 

efforts such as the Global Alliance for Genomics and Health, which has created frameworks 

to ensure responsible and secure sharing of genomic and health-related data.  A key feature 

of these policies in the United States is that they explicitly addressed genomic (single 

nucleotide, sequence, transcriptome, epigenomic, and gene expression) data only. Despite 

these policies, there have been multiple instances of “deidentified” personal information linked 

back to individual genetic profiles  [4], including well publicized individuals such as Henrietta 

Lacks [5]. There have also been methods proposed which can link expression data to 

genotype through eQTLs [6]. 

 Although lagging behind genotype and sequencing advances by 5-10 years, 

exponential technological advances in high throughput proteomics are leading to the creation 

of similar large databases with sensitive personal information. Concurrently there are studies 
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which demonstrate that many proteins [7, 8] have genetic quantitative trait loci (QTLs), but 

current practice is to consider these datasets as deidentified data. In this manuscript we show 

that even limited proteome profiles without peptide sequencing can be linked to specific 

individuals by using prior independent knowledge of these QTLs and we provide a 

bioinformatic solution which obfuscates reidentification, yet still preserves at least some 

biomarker-phenotype relationships. These findings suggest an immediate need to change 

policy regarding non-genomic data used for research or commercial use.  
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Methods  

Study Populations 

All study participants provided written informed consent approved by institutional 

review boards (IRBs). COPDGene and Jackson Heart Study (JHS) cohorts were randomly 

split into training and testing datasets and training subjects were not included in the testing 

cohort. Other independent cohorts used for testing included Subpopulations and Intermediate 

Outcome Measures in COPD Study (SPIROMICS) and Multi-Ethnic Study of Atherosclerosis 

(MESA). Race was self-reported. Characteristics of subjects used for training and test are 

shown below with summary demographics in Table 1. 

 

COPDGene. The NIH-sponsored multicenter Genetic Epidemiology of COPD (COPDGene 

(ClinicalTrials.gov Identifier: NCT01969344)) enrolled 10,263 non-Hispanic white (NHW) and 

Black (AA) individuals from January 2008 until April 2011 (Phase 1) who were aged 45-80 

with ≥10 pack-year smoking history and no exacerbations for >30 days and 457 age and 

gender matched healthy individuals with no history of smoking were enrolled as controls [9].  

Subjects were genotyped using an Illumina HumanOmni Express [10]. 1,184 subjects from the 

enrollment visit (P1) participated in an ancillary study in which they provided p100 (BD) fresh 

frozen plasma used for SomaScan 1.3K proteomic profiling which measured 1,305 proteins. 

An additional 547 independent subjects, who only had SomaScan profiling at a 5-year follow 

up visit (P2) and not used in the training dataset, were used as an independent testing cohort. 

5,292 also had SomaScan 5k (v4.0) proteomes using plasma from a P2 visit and were 

randomly split into training and testing to assess whether scaling improved identification 

accuracy. Data sets and availability. Genotype data and SomaScan can be found on dbGaP 

for COPDGene  (phs000179.v6.p2) and include 
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"CG10k_NHW_hg19_Oct2017{.bed,.bim,.fam}" for NHW Subjects and 

"CG10k_AA_hg19_Oct2017{.bed,.bim,.fam}" for AA Subjects [7].  

 

Jackson Heart Study (JHS).  The NIH-sponsored (ClinicalTrials.gov Identifier: NCT00005485) 

enrolled 5,306 African American residents living in the Jackson, MS, metropolitan statistical 

area (MSA) of Hinds, Madison, and Rankin Counties. 2,055 gave consent for genetic 

research and also had SomaScan 1.3K proteomic profiling. Genotypes were extracted using 

TOPMed whole genome sequencing Freeze 8 to create a synthetic Illumina 

HumanOmniExpress genotype panel. Data sets and availability. Genotype data can be 

requested through TOPMed and SomaScan can be found on dbGaP (phs000964).  

 

SPIROMICS. The NIH-sponsored Subpopulations and Intermediate Outcome Measures in 

COPD study (SPIROMICS) study (ClinicalTrials.gov Identifier: NCT01969344) [11] enrolled 

2,984 subjects who were genotyped using the Illumina HumanOmniExpress genotyping 

platform [12] of which 258 subjects underwent SomaScan 1.3K proteomic profiling using Visit 

1 plasma. Data sets and availability. SPIROMICS dataset used include 

“SPIRO_SUBJID_2638{.bed,.bim,.fam}. Genotype data and SomaScan can be found on 

dbGaP (phs18817).  

 

MESA.  The NIH-sponsored Multi-Ethnic Study of Atherosclerosis (MESA) study 

(ClinicalTrials.gov Identifier: NCT00005487) recruited 6,418 participants from four race/ethnic 

groups: Caucasian, African American, Hispanic, and Chinese. Whole genome sequencing 

(WGS) was performed at the Broad Institute of MIT and Harvard.  SomaScan proteomics 

1.3K profiling was performed at the Broad Institute and Beth Israel Proteomics Platform 
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(HHSN268201600034I). Data sets and availability. Genotype and SomaScan data can be 

requested through TOPMed and dbGaP (phs001416.v1.p1).  

 

Proteome Profiling 

Proteomic profiles for 1,305 proteins were generated using SomaScan v 1.3K 

(SomaLogic, Boulder, Colorado). Description of the SomaScan 1.3k assay is further 

described in [13]. Normalization follow SomaLogic’s guidelines for data processing 

encompass three sequential levels of normalization, namely Hybridization Control 

Normalization (Hyb) followed by Median Signal Normalization (Hyb.MedNorm) and Interplate 

Calibration (Hyb.MedNorm.Cal). There are no missing data on the platform. SomaScan 5K 

v4.0 (4,776 proteins) was performed by SomaLogic and we used Adaptive Normalization by 

Maximum Likelihood (anmlSMP). For pQTL discovery, we used a rank-based inverse normal 

transformation to align protein levels to a normal distribution; however, for estimating 

genotype probabilities and associations with smoking, we used log transformed protein 

values.  

 

Statistical analyses  

pQTL discovery by protein wide association study (pWAS). COPDGene had genotyping for 

691,764 SNPs without imputation.  Genotype for these SNPs in JHS were called using 

TOPMed whole genome sequence.   Only SNPs with minor allele frequencies (MAF) greater 

than 5% in the sample population were included for analysis. Both datasets were aligned to 

GRCh38.  SNP-by-proteins associations were assessed in separately in both the COPDGene 

and JHS discovery cohorts using linear regression assuming an additive model by genotype. 

Analysis was performed using the R package ‘MatrixEQTL’ (version 2.2) [14].  Each model 
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assessed direct association between protein level and genotype, with no adjustment for 

covariates. Protein quantitative trait loci (pQTLs) were considered significant at FDR 

corrected p-value < 0.05. The pQTL assessments in JHS and COPDGene were performed 

independently. After merging the two sets of pQTLs from the two training cohorts, we reduc

the set to obtain a list of uniquely associated protein and SNP combinations. For each uniqu

protein in the pQTL set, we kept only the highest significance SNP pQTL as determined by 

the p-value for the training cohorts (Figure 1). When the two training cohorts had different to

SNPs (often in linkage disequilibrium), we chose the SNP from the cohort with the lowest p

value. This first-level reduction produces a set of unique proteins, but in some cases, multip

proteins may be associated with the same SNP. If a SNP was associated with multiple 

proteins, we used only the protein with the highest protein association for that SNP. This 

process ensured that each protein and each SNP appear only once in our pQTL sets.   

Bayesian modeling. For predicting the probability of a genome matching, we use a Naïve 

Bayesian method (Figure 2) which estimates the probability of observing genotype vector g

using the genotype specific mean (µ) and standard deviation (σ) estimated from training dat

This is similar to an approach used in genotype estimation from eQTLs [6]. To combine the 

training estimates from COPDGene and JHS we used the GaussianNB model from scikit-

learn (version 0.23.2) for this estimation [6]. During training, we use the partial_fit method to

calculate µ and σ parameters on a single dataset. The same method can be used to update

parameters µ and σ, allowing us to train a model on multiple datasets by sharing the trained

model. Since each SNP is biallelic, we calculate three probabilities corresponding to the thre

possible genotypes. 
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using a Gaussian naïve Bayes framework, where we define three normal probabi

distribution functions 

 

which describe the distribution of protein levels for each of the three genotypes (Figure 3

where μg and σg are the estimated mean and variance respectively of the protein levels x 

subjects with genotype g. Under the naïve Bayes framework, we estimate the probability

the subject possessing each of the three genotype classes, given an observed protein le

(Figure 3b). By repeating this process for each of the  protein/SNP pairs, we obtain t

probability of each genotype class for the top 100 SNPs. We calculate the odds of ea

genotype being the true genotype, and then using the known genotype values  

each subject, we can compute the odds of observing the correct or “true” genotype vec

for a subject as the product of the odds of observing the individual true genotype value

 

For each subject with proteome data, we calculate the odds of the genotype vector of eve

genotyped subject in the dataset. Assuming one of the genotyped subjects within the datas

is the true identity  with observed protein levels  we take the genotype with t

highest odds given the observed protein values as the “match” for this subject. If the genoty

with the highest odds of match (top 1) belongs to the subject whose protein levels we

observed, we consider this a match. We also tested whether the true match was among t

three highest odds (top 3) and 1% highest odds (in top 1%). 

Associations with smoking. A T-test was used to assess whether proteins (log transformed)

were associated with current smoking (smoking cigarettes in the past 30 days).  
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Software and packages. All analyses were run in R (version 3.6.11) and Python (version 3.7)  

Results  

 

Model training and parameter optimization 

Our first training attempts at model training used only COPDGene subjects, which 

were mostly subjects with predominant European ancestry. This analysis identified 778 

proteins with at least one pQTL SNP.  To test the accuracy of protein measurements to 

predict genotypes, every proteome was assigned a probability of proteome matching genome 

(Figure 4). The accuracy of the method was determined by how many times a subject with a 

proteome had the true genome assigned the highest probability of a match as the first choice, 

top three choices, or top 1% of the dataset. This method demonstrated excellent testing 

accuracy in identifying independent subjects of European ancestry in COPDGene, MESA, 

and SPIROMICS (83-92%); however, testing accuracy in subjects with predominantly African 

ancestry was significantly lower (61%-76%) (Table 2). Therefore, we retrained our models 

using additional African-Ancestry subjects from JHS subjects. In the JHS training data set we 

identified 372 proteins with at least one pQTL SNP. We then combined the COPDGene and 

JHS training pQTLs for a total of 591 proteins with at least one pQTL SNP (Supplemental 

File 1).  Using these combined COPDGene and JHS training set we significantly improved 

the matching accuracy in African American subjects (Figure 5) which improved accuracy to 

~90%, which is similar to accuracy in European ancestry subjects. 

Next, we sought to determine the minimum number of protein-pQTL pairs that were 

necessary to match a proteome to a genome. First, we ranked protein-pQTL pairs by p-value 

and then retested using only smaller subsets of the strongest protein-pQTL pairs 

(Supplemental Table 1). In general, overall accuracy plateaued at around 100 protein-
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pQTLs, suggesting that this was the minimum number of proteins measurements that were 

needed to confidently identify a subject’s genotype using only protein data.   

 

 

Testing accuracy of matching proteome to genome across diverse, independent cohorts 

Using the top 100 protein-pQTL SNPs from the training data using (COPDGene and 

JHS training subjects), we then tested prediction accuracies in 4 cohorts (SPIROMICS, 

MESA, JHS, COPDGene) using independent subjects that had not been used for training, 

including accuracies based on race and ethnicity (Table 2).  The true match was among the 

highest odds for most subjects (>85%) in the cohorts and populations, except for COPDGene 

and Black Americans in MESA. If we took the top 1% of highest odds, the true match was 

among the highest odds for most subjects (>85%) in all cohorts and populations. 

To determine whether newer and larger proteome assays were more or less accurate 

at identifying genetic profiles, we randomly split 5,292 COPDGene subjects who had 

SomaScan v4.0 5k data (4,776 proteins) into training and testing groups using a 50/50 train-

test split (Supplemental Table 2) to generate a new list of protein-pQTL pairs 

(Supplemental File 2).  With as few as 100 proteins, identification accuracy improved to 

>99% (Table 4) and accuracy in subjects with African ancestry was similar to those with 

predominantly European ancestry (Supplemental Table 3). 

 

Genome privacy protection through proteome transformation 

 Since we have shown that measurement of selected proteins with strong pQTLs 

represent genetic equivalents, we reasoned that removing the pQTL effects on the proteome 

would inhibit the ability to reidentify a subject. One method that accomplishes this is to adjust 

each protein measurement by subtracting the population mean for that genotype (Figure 6). 
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This method has the advantage in that if the subject’s genotype and the correction factors are 

known, it is simple to recapitulate the actual protein measurements.  In both testing cohorts, 

subtracting the genotype effect abolished the ability to identify subjects (Figure 7).  

 

Can genotype adjustment preserve biomarker-phenotype associations? 

To test if adjusting for genotype affects associations between biomarkers and 

phenotypes, we first identified two proteins, sICAM-5 and DERM, which were significantly 

associated with smoking status in both the COPDGene and SPIROMICS testing cohorts. 

Next, we assessed the association before and after adjustment for genotype. In both cohorts, 

associations with smoking status did not change significantly after genotype adjustment 

(Supplemental Table 4). 

 
 

 

 

Discussion  

  
De-identification of data is a key concept for shared research and privacy protection 

but is not yet used in large scale proteomic studies. While proof of concept studies have 

suggested that specific amino acid peptides with missense variants (minor allelic peptides) 

can identify genotype variants in some subjects [15],  this approach requires mass 

spectrometry and has not yet been used across large scale cohort studies with proteomic 

data. This study is the first to demonstrate on a large scale that proteomic data are not 

privacy protected because an individual proteome can be matched to a specific genome with 

high accuracy even without protein sequence information. The key identifying features in the 

proteome are the effects of common pQTLs, which link a measured protein level to a specific 
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genotype. Furthermore, we show that identification only requires a small number of proteins 

(as few as 60-100 selected proteins) to link an individual protein profile to a single genetic 

profile among thousands of subjects. Additionally, our results suggest that using diverse 

subjects for selecting the most influential proteins improves overall accuracy, particularly 

among those with African ancestry and underscores the importance of including diverse 

subjects in Omics research. Finally we show that proteomic data can identify behavioral 

features (e.g., smoking). The ability to accurately infer genetic ancestry and also characterize 

behavioral features implies that proteomic data should have the at least the same (if not more 

rigorous) privacy protections as genomic datasets.   

The two main technological breakthroughs that have facilitated accurately matching an 

individual proteome to a specific genome are improvement in high throughput proteomic 

technologies and large scale pQTL studies.  Until the last few years, there were no proteomic 

platforms that could simultaneously and accurately measure more than 100 proteins and 

there was little known about which of those proteins had strong pQTLs. While our study used 

two different SomaScan platforms, lack of privacy (de-identification) should be implied for any 

platform that can simultaneously measure thousands of proteins even when mass 

spectrometry is not used. The logical continuation of this principle is that proteomic data could 

be used to discriminate based on identifying the sex of a subject, ancestry, or paternity.  A 

protein profile could even be used to identify close relatives for forensic purposes.  

De-identification and privacy protection by informatics is a growing field. While we 

demonstrate that the simple method of removing the pQTL effect of proteins can significantly 

degrade the ability to link a proteome to a genome, we recognize the large body of emerging 

literature on alternative data obfuscation methods to protect privacy of many types of data 

[16]. These methods range from industry level data obfuscation/masking and secure data 
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outsourcing techniques such as substitution, shuffling, numeric variance and null-out/mask-

out, to more rigorous statistical data obfuscation methodologies used in Hippocratic 

Databases [17], and privacy-preserving data mining [18] such as k-anonymization [19], l-

diversity [20] , t-Closeness [21], differential-privacy [22] based methods. Machine learning 

[Barla, 2008 #44] and deep learning [Wen, 2020 #45] are also being used in proteomic 

feature identification and we may be able to leverage these same methods to isolate and 

"cloak" identifiable omics features while maintaining desirable statistical properties of the data 

for downstream application. 

Bioethicists had anticipated that other omics data such as proteomic data might one 

day be identifiable and create privacy concerns [23] and our work demonstrates that this day 

has come even for proteomic technologies that do not rely on peptide sequencing. 

Unfortunately, most governmental policies do not yet apply to newer omics data such as 

proteomics (one exception may be the General Data Protection Regulation in the European 

Union, which protects biological equivalents of genotypes). We suggest biomedical research 

policies be clarified or amended to include any omics data (e.g., measurement of proteins or 

other molecules, such as metabolites) in which genotype can be ascertained [24], but also 

that there be consideration beyond genotype equivalents to include all features of omics (e.g. 

behavioral information such as smoking). Because data protection is imperfect and frequently 

breached, a complementary solution to maintaining privacy might include bioinformatic and 

cryptographic adjustments to proteomic data. We demonstrated that adjusting out the genetic 

effects on protein measurements protects privacy by obfuscating the genetic effects, but it still 

does not change non-genetic associations (such as smoking). This strategy is simple and can 

be reversed if necessary, when a researcher has the accompanying genetic information. A 

disadvantage to removing genetic coding of the proteome is that it could remove associations 
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in which genotype mediates protein affect. Another caveat from our work is that if training the 

method does not include diverse populations, the methods may not be generalizable outside 

European ancestry. Thus, it is important that future genomic and proteomic work include more 

underrepresented populations.  

 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


  
 

16 

 

Author Contributions: 
 Conceived and designed manuscript: RPB AH 

 Performed the Experiments: RPB CCQ NR DJ KU GM 

  Analyzed the Data: AH, EML 

 Contributed reagents/materials/analysis tools: AH, EML 

 Wrote the Paper: RPB KK LG AH  

 Critically reviewed the Paper: all authors 

 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


  
 

17 

Funding Support and Acknowledgements:  
 
COPDGene.  
The project described was supported by Award Number U01 HL089897 and Award Number 
U01 HL089856 from the National Heart, Lung, and Blood Institute. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the 
National Heart, Lung, and Blood Institute or the National Institutes of Health.  
COPD Foundation Funding  
COPDGene is also supported by the COPD Foundation through contributions made to an 
Industry Advisory Board comprised of AstraZeneca, Boehringer-Ingelheim, Genentech, 
GlaxoSmithKline, Novartis, Pfizer, Siemens, and Sunovion.  
COPDGene® Investigators – Core Units  
Administrative Center: James D. Crapo, MD (PI); Edwin K. Silverman, MD, PhD (PI); Barry J. 
Make, MD; Elizabeth A. Regan, MD, PhD  
Genetic Analysis Center: Terri Beaty, PhD; Ferdouse Begum, PhD; Peter J. Castaldi, MD, 
MSc; Michael Cho, MD; Dawn L. DeMeo, MD, MPH; Adel R. Boueiz, MD; Marilyn G. 
Foreman, MD, MS; Eitan Halper-Stromberg; Lystra P. Hayden, MD, MMSc; Craig P. Hersh, 
MD, MPH; Jacqueline Hetmanski, MS, MPH; Brian D. Hobbs, MD; John E. Hokanson, MPH, 
PhD; Nan Laird, PhD; Christoph Lange, PhD; Sharon M. Lutz, PhD; Merry-Lynn McDonald, 
PhD; Margaret M. Parker, PhD; Dmitry Prokopenko, Ph.D; Dandi Qiao, PhD; Elizabeth A. 
Regan, MD, PhD; Phuwanat Sakornsakolpat, MD; Edwin K. Silverman, MD, PhD; Emily S. 
Wan, MD; Sungho Won, PhD  
Imaging Center: Juan Pablo Centeno; Jean-Paul Charbonnier, PhD; Harvey O. Coxson, PhD; 
Craig J. Galban, PhD; MeiLan K. Han, MD, MS; Eric A. Hoffman, Stephen Humphries, PhD; 
Francine L. Jacobson, MD, MPH; Philip F. Judy, PhD; Ella A. Kazerooni, MD; Alex Kluiber; 
David A. Lynch, MB; Pietro Nardelli, PhD; John D. Newell, Jr., MD; Aleena Notary; Andrea 
Oh, MD; Elizabeth A. Regan, MD, PhD; James C. Ross, PhD; Raul San Jose Estepar, PhD; 
Joyce Schroeder, MD; Jered Sieren; Berend C. Stoel, PhD; Juerg Tschirren, PhD; Edwin Van 
Beek, MD, PhD; Bram van Ginneken, PhD; Eva van Rikxoort, PhD; Gonzalo Vegas Sanchez- 
Ferrero, PhD; Lucas Veitel; George R. Washko, MD; Carla G. Wilson, MS;  
PFT QA Center, Salt Lake City, UT: Robert Jensen, PhD 
Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO: Douglas  
Everett, PhD; Jim Crooks, PhD; Katherine Pratte, PhD; Matt Strand, PhD; Carla G. Wilson, 
MS  
Epidemiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO: John E. 
Hokanson, MPH, PhD; Gregory Kinney, MPH, PhD; Sharon M. Lutz, PhD; Kendra A. Young, 
PhD  
Mortality Adjudication Core: Surya P. Bhatt, MD; Jessica Bon, MD; Alejandro A. Diaz, MD, 
MPH; MeiLan K. Han, MD, MS; Barry Make, MD; Susan Murray, ScD; Elizabeth Regan, MD; 
Xavier Soler, MD; Carla G. Wilson, MS  
Biomarker Core: Russell P. Bowler, MD, PhD; Katerina Kechris, PhD; Farnoush Banaei- 
Kashani, Ph.D  
         
BDH is supported by NIH K08 HL136928, U01 HL089856, R01 HL135142, R01 HL139634, 
and R01 HL147148. 
 
 
 
SPIROMICS Acknowledgement and Funding Statement  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


  
 

18 

The authors thank the SPIROMICS participants and participating physicians, investigators 
and staff for making this research possible. More information about the study and how to 
access SPIROMICS data is available at www.spiromics.org. The authors would like to 
acknowledge the University of North Carolina at Chapel Hill BioSpecimen Processing Facility 
for sample processing, storage, and sample disbursements (http://bsp.web.unc.edu/).  
We would like to acknowledge the following current and former investigators of the 
SPIROMICS sites and reading centers: Neil E Alexis, MD; Wayne H Anderson, PhD; 
Mehrdad Arjomandi, MD; Igor Barjaktarevic, MD, PhD; R Graham Barr, MD, DrPH; Patricia 
Basta, PhD; Lori A Bateman, MSc; Surya P Bhatt, MD; Eugene R Bleecker, MD; Richard C 
Boucher, MD; Russell P Bowler, MD, PhD; Stephanie A Christenson, MD; Alejandro P 
Comellas, MD; Christopher B Cooper, MD, PhD; David J Couper, PhD; Gerard J Criner, MD; 
Ronald G Crystal, MD; Jeffrey L Curtis, MD; Claire M Doerschuk, MD; Mark T Dransfield, MD; 
Brad Drummond, MD; Christine M Freeman, PhD; Craig Galban, PhD; MeiLan K Han, MD, 
MS; Nadia N Hansel, MD, MPH; Annette T Hastie, PhD; Eric A Hoffman, PhD; Yvonne 
Huang, MD; Robert J Kaner, MD; Richard E Kanner, MD; Eric C Kleerup, MD; Jerry A 
Krishnan, MD, PhD; Lisa M LaVange, PhD; Stephen C Lazarus, MD; Fernando J Martinez, 
MD, MS; Deborah A Meyers, PhD; Wendy C Moore, MD; John D Newell Jr, MD; Robert 
Paine, III, MD; Laura Paulin, MD, MHS; Stephen P Peters, MD, PhD; Cheryl Pirozzi, MD; 
Nirupama Putcha, MD, MHS; Elizabeth C Oelsner, MD, MPH; Wanda K O’Neal, PhD; Victor E 
Ortega, MD, PhD; Sanjeev Raman, MBBS, MD; Stephen I. Rennard, MD; Donald P Tashkin, 
MD; J Michael Wells, MD; Robert A Wise, MD; and Prescott G Woodruff, MD, MPH. The 
project officers from the Lung Division of the National Heart, Lung, and Blood Institute were 
Lisa Postow, PhD, and Lisa Viviano, BSN; SPIROMICS was supported by contracts from the 
NIH/NHLBI (HHSN268200900013C, HHSN268200900014C, HHSN268200900015C, 
HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, 
HHSN268200900019C, HHSN268200900020C), grants from the NIH/NHLBI (U01 HL137880 
and U24 HL141762), and supplemented by contributions made through the Foundation for 
the NIH and the COPD Foundation from AstraZeneca/MedImmune; Bayer; Bellerophon 
Therapeutics; Boehringer-Ingelheim Pharmaceuticals, Inc.; Chiesi Farmaceutici S.p.A.; Forest 
Research Institute, Inc.; GlaxoSmithKline; Grifols Therapeutics, Inc.; Ikaria, Inc.; Novartis 
Pharmaceuticals Corporation; Nycomed GmbH; ProterixBio; Regeneron Pharmaceuticals, 
Inc.; Sanofi; Sunovion; Takeda Pharmaceutical Company; and Theravance Biopharma and 
Mylan.  
 
 
MESA acknowledgement. 
 
The MESA project is supported by the National Heart, Lung, and Blood Institute (NHLBI) in 
collaboration with MESA investigators. Support for MESA is provided by contracts 
75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-
95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 
75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, 
N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-
000040, UL1-TR-001079, and UL1-TR-001420.  Also  supported in part by the National 
Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National 
Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) 
grant DK063491 to the Southern California Diabetes Endocrinology Research Center. 
Infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung, 
and Blood Institute (NHLBI) grant R01HL105756. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


  
 

19 

 
Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program was supported 
by the National Heart, Lung and Blood Institute (NHLBI). SOMAscan proteomics for NHLBI 
TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” (phs001416.v1.p1) was performed 
at the Broad Institute and Beth Israel Proteomics Platform (HHSN268201600034I). Core 
support including centralized genomic read mapping and genotype calling, along with variant 
quality metrics and filtering were provided by the TOPMed Informatics Research Center 
(3R01HL-117626-02S1; contract HHSN268201800002I). Core support including phenotype 
harmonization, data management, sample-identity QC, and general program coordination 
were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; 
contract HHSN268201800001I). We gratefully acknowledge the studies and participants who 
provided biological samples and data for TOPMed. 

JHS acknowledgement. The Jackson Heart Study (JHS) is supported and conducted in 
collaboration with Jackson State University (HHSN268201800013I), Tougaloo College 
(HHSN268201800014I), the Mississippi State Department of Health (HHSN268201800015I) 
and the University of Mississippi Medical Center (HHSN268201800010I, 
HHSN268201800011I and HHSN268201800012I) contracts from the National Heart, Lung, 
and Blood Institute (NHLBI) and the National Institute for Minority Health and Health 
Disparities (NIMHD). The authors also wish to thank the staffs and participants of the JHS.  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


  
 

20 

Disclaimers. 

The views expressed in this manuscript are those of the authors and do not necessarily 
represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of 
Health; or the U.S. Department of Health and Human Services  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


  
 

21 

References: 

 
1. Jeffreys, A.J., V. Wilson, and S.L. Thein, Individual-specific 'fingerprints' of human DNA. 

Nature, 1985. 316(6023): p. 76-9. 
2. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 

409(6822): p. 860-921. 
3. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-51. 
4. Sweeney, L., A. Abu, and J. Winn, Identifying Participants in the Personal Genome Project by 

Name CoRR, 2013. 
5. Beskow, L.M., Lessons from HeLa Cells: The Ethics and Policy of Biospecimens. Annu Rev 

Genomics Hum Genet, 2016. 17: p. 395-417. 
6. Schadt, E.E., S. Woo, and K. Hao, Bayesian method to predict individual SNP genotypes from 

gene expression data. Nat Genet, 2012. 44(5): p. 603-8. 
7. Sun, W., et al., Common Genetic Polymorphisms Influence Blood Biomarker Measurements in 

COPD. PLoS Genet, 2016. 12(8): p. e1006011. 
8. Sun, B.B., et al., Genomic atlas of the human plasma proteome. Nature, 2018. 558(7708): p. 73-

79. 
9. Regan, E.A., et al., Genetic epidemiology of COPD (COPDGene) study design. COPD, 2010. 

7(1): p. 32-43. 
10. Cho, M.H., et al., Risk loci for chronic obstructive pulmonary disease: a genome-wide 

association study and meta-analysis. Lancet Respir Med, 2014. 2(3): p. 214-25. 
11. Couper, D., et al., Design of the Subpopulations and Intermediate Outcomes in COPD Study 

(SPIROMICS). Thorax, 2014. 69(5): p. 491-4. 
12. Li, X., et al., Genome-wide association study of lung function and clinical implication in heavy 

smokers. BMC Med Genet, 2018. 19(1): p. 134. 
13. Candia, J., et al., Assessment of Variability in the SOMAscan Assay. Sci Rep, 2017. 7(1): p. 

14248. 
14. Shabalin, A.A., Matrix eQTL: ultra fast eQTL analysis via large matrix operations. 

Bioinformatics, 2012. 28(10): p. 1353-8. 
15. Li, S., et al., On the privacy risks of sharing clinical proteomics data. AMIA Jt Summits Transl 

Sci Proc, 2016. 2016: p. 122-31. 
16. Gertz, M. and S. Jajodia, Handbook of Database Security: Applications and Trends. 2007. 
17. Agrawal, R., et al., Hippocratic databases, in Proceedings of the 28th international conference 

on Very Large Data Bases. 2002, VLDB Endowment: Hong Kong, China. p. 143–154. 
18. Aggarwal, C.C. and P.S. Yu, Privacy-Preserving Data Mining: Models and Algorithms. 2008: 

Springer Publishing Company, Incorporated. 
19. Bayardo, R.J. and A. Rakesh. Data privacy through optimal k-anonymization. in 21st 

International Conference on Data Engineering (ICDE'05). 2005. 
20. Machanavajjhala, A., et al., L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. 

Discov. Data, 2007. 1(1): p. 3–es. 
21. Li, N., T. Li, and S. Venkatasubramanian. t-Closeness: Privacy Beyond k-Anonymity and l-

Diversity. in 2007 IEEE 23rd International Conference on Data Engineering. 2007. 
22. Ninghui, L., et al., Differential Privacy: From Theory to Practice. 2016: Morgan & Claypool. 1. 
23. Boonen, K., et al., Beyond Genes: Re-Identifiability of Proteomic Data and Its Implications for 

Personalized Medicine. Genes (Basel), 2019. 10(9). 
24. Clayton, E.W., et al., The law of genetic privacy: applications, implications, and limitations. J 

Law Biosci, 2019. 6(1): p. 1-36. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


Tables 

 

 

Table 1: Characteristics of training cohort and independent testing cohorts with SomaScan 1.3K 

 Training Testing 

Cohort COPDGene JHS SPIROMICS COPDGene JHS MESA 

Proteomes 
1,184 1,028 

258 547 1,027 948 

Genomes 2,638 9,970 3,406 5,308 

Gender 
(%female) 

50.1% 60.4% 46.5% 46.6% 61.6% 52.8% 

Age (± SD) 61.6 ± 9.1 56.0 ± 12.9 60.0 ± 9.2 67.9 ± 8.5 55.2 ± 12.6 60.7±9.7 

Race/ethnicity (self-reported) 

White, non-
Hispanic 

87% 
- 

71% 91% 
- 35% 

Black, non-
Hispanic 

13% 
100% 

23% 9% 
100% 34% 

Asian, non-
Hispanic 

- 
- 

5% - 
- 11% 

Hispanic - -  - - 19% 

SD – standard deviation; SPIROMICS - SubPopulations and InteRmediate Outcome Measures 
In COPD Study; JHS – Jackson Heart Study; MESA - Multi-Ethnic Study of Atherosclerosis 
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Supplemental File 1 – List of training proteins and SNPs  

 See online supplement 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


 

Supplemental Table 1: Optimizing of number of training proteins  

 COPDGene Training JHS Training 

 % correctly identified 
subjects 

% correctly identified 
subjects 

# 
proteins 

Top 1 In top 3 In top 
1%  

Top 1 In top 3 In top 
1%  

20 68.7% 79.8% 95.3% 53.8% 73.2% 93.6% 

40  82.5% 89.7% 96.8% 79.9% 89.0% 97.8% 

60 88.1% 93.2% 97.5% 85.7% 92.3% 98.4% 

100 92.1% 94.8% 97.7% 91.1% 95.1% 99.3% 

150 94.3% 96.5% 98.1% 93.2% 96.7% 99.6% 

250 93.0% 95.1% 97.8% 92.5% 96.8% 99.7% 

All 91.0% 93.3% 96.2% 92.3% 96.4% 99.6% 
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Table 2. Accuracy of matching proteome profiles to genetic profiles using 150 proteins 

  % correctly identified 

Testing Cohort Subgroup Top 1 In top 3 In Top 1 % 

COPDGene 

Overall 85.0% 89.0% 97.8% 

NHW 86.0% 89.6% 98.4% 

AFA 75.5% 83.7% 91.8% 

JHS AFA 85.8% 91.5% 98.1% 

MESA 

NHW 92.4% 96.1% 98.3% 

AFA 61.0% 73.6% 86.8% 

Chinese-American 85.5% 94.2% 100% 

Hispanic 88.9% 93.8% 96.9% 

SPIROMICS 

 

Overall 93.4% 98.5% 99.2% 

NHW 92.4% 97.8% 98.9% 

AFA 96.7% 100% 100% 

Other 92.9% 100% 100% 
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Supplemental Table 2: Characteristics of training cohort and independent testing cohorts with 
SomaScan 5k 

 Training Testing 

Cohort COPDGene 
(N = 2,646 with SomaScan 

N = 2,646 genotyped) 

COPDGene 
(N = 2,646 with SomaScan 

N = 9,970 genotyped) 

Gender (%female) 50.6% 48.4% 

Age (± SD) 65.3 ± 8.5 65.7 ± 8.7 

Race/ethnicity (self-reported)   

White, non-Hispanic 70.9% 70.7% 

Black, non-Hispanic 29.1% 29.3% 

SD – standard deviation;   
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Table 4: Optimizing of number of training proteins for SomaScan 5K dataset 

 COPDGene Training COPDGene Testing 

 % correctly identified 
subjects 

% correctly identified 
subjects 

# proteins Top 1 In top 3 In top 
1%  

Top 1 In top 3 In top 
1%  

20 78.34% 88.55% 98.41% 76.91% 87.76% 98.34% 

40 97.85% 99.06% 99.77% 96.98% 98.56% 99.66% 

60 99.06% 99.51% 99.77% 98.30% 99.17% 99.66% 

100 99.51% 99.66% 99.77% 99.09% 99.43% 99.66% 

150 99.62% 99.70% 99.77% 99.28% 99.58% 99.70% 

250 99.70% 99.74% 99.77% 99.36% 99.62% 99.66% 

All 97.01% 97.54% 98.90% 92.44% 94.29% 97.43% 
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Supplemental Table 3. Accuracy of matching proteome profiles to genetic profiles using 
SomaScan 5k 

  % correctly identified 

Testing Cohort Subgroup Top 1 In top 3 In Top 1 % 

COPDGene 

Overall 99.28% 99.58% 99.70% 

NHW 99.47% 99.63% 99.63% 

AFA 98.84% 99.48% 99.87% 
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Supplemental Table 4:  Association with smoking status is preserved after adjusting for genetic effect. 

  No Genotype Adjustment Genotype Adjustment 

Dataset Protein 
t-

statistic 
smoking 

difference p 
t-

statistic 
smoking 

difference p 

SPIROMICS 
DERM 5.64 0.181 6.0E-08 5.54 0.176 9.4E-08 

sICAM-5 -3.31 -0.150 0.0012 -3.33 -0.137 0.0011 

COPDGene 
DERM 9.86 0.139 5.5E-22 9.63 0.133 4.7E-21 

sICAM-5 -4.70 -0.087 3.0E-06 -5.45 -0.092 6.5E-08 

DERM – dermatopontin; sICAM-5: soluble Intracellular adhesion molecule 5; smoking difference the 
mean of current smokers – mean never and former smokers 
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Supplemental File 2 –pQTL SNPs from SomaScan 5k Discovery  
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Figure 1. Strategy for identifying protein-QTL SNP combinations (training) and testing accuracy of 

proteins for identifying the subject by association with genotypes file. 

Training 

COPDGene P1 
1,184 subjects with proteomics 

JHS Split 1 
1,028 subjects with proteomics 

778 proteins with pQTL 

SNPs 

372 proteins with pQTL 

SNPs 

Supplemental Table 1:  

591 protein QTLs 

Discover by 

association using 

Matrix eQTL 

Merge 

and filter 

Supplemental Table 2: 

Rank and optimize 

number of protein QTLs 

Testing 

SPIROMICS V1 
258 subjects with proteomics 

2,638 subjects with genotype 

COPDGene P2 
547 subjects with proteomics 

9,970 subjects with genotype 

MESA 
948 subjects with proteomics 

5,308 subjects with genotype 

JHS Split 2 
1,027 subjects with proteomics 

3,406 subjects with genotype 

Table 2:  

Testing Accuracy 
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Figure 2. Naïve Bayes approach to estimate posterior probability of a subject matching genotype predicted by 
protein levels 
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Figure 3. (A). Beeswarm showing the protein distributions for sICAM-1, which have been log 
transformed and stratified by genotype in COPDGene and JHS training sets. In this example AA is the 
major genotype. (B). Probability function for genotype by protein value for sICAM-1. 
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Figure 4. Probability that a proteome matches a given genome in the test dataset. In this 
example, 100 proteins are used to identify probable genotype at 100 pQTL SNPs. The 
majority of proteome profiles were associated with the correct genotype profile (orange 
circle) with near 100% probability of being correct (Subject 1 and 2). The rest of the 
proteome profiles typically were represented in the top 1% of highest probability genotypes 
matches (top 26 of 2,698) as demonstrated by Subject 3. The blue circles probability of 
genotype profile matching from incorrect subjects. 
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Figure 5. Training with data from diverse populations improves testing accuracy in African Americans (AA). 
(A) First attempts at training with only 13% AA subjects in SPIROMICS resulted in lower testing accuracy in 
independent AA compared to non-Hispanic White (NHW) subjects. (B) After training with both COPDGene and 
JHS subjects, identification accuracy significantly improved in AA subjects, but was still slightly lower than 
NHW subjects.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.06.22269907doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.06.22269907


 

 

 

 

  

B) A) 

Figure 6. Poisoning data by adjusting protein values for genotype. (A). sICAM histograms 
showing normal probability distribution functions for sICAM-1, which have been log transformed. In this 
example AA is the major genotype. (B). Adjusting protein levels by recentering the mean on each 
genotype group abolishes the genotype effect on sICAM-1 measurements.  
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Figure 7. Removing the mean protein-pQTL effect abolishes the ability of matching a proteome 
to a genome. Shown are accuracy of matching algorithm with (red) and without (blue) removing mean 
pQTL effect as well as the probably of a random guess matching (grey). 
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