Therapeutic efficacy of four antiviral drugs in treatment of COVID-19: A protocol for systematic review and Network Meta-analysis ================================================================================================================================= * Liang-kun Zhang * Wen-chao Gu * Ling Li * Chen Jian ## Abstract **Introduction** The COVID-19 pandemic has resulted in a global crisis in public health, however, there are still no safe and effective drugs to resist COVID-19 until now. We will use network meta-analysis to analysis available evidence from RCTs to compare the safety and efficacy of four antiviral drugs (including Ribavirin, Arbidol, Chloroquine Phosphate and Interferon) alone or in combination, in patients with COVID-19 on the basis of standard treatment, to reveal the robustness and strength of evidence for relative efficacy against COVID-19, which will provide better evidence for future clinical decision-making. **Methods** Using English and Chinese search strategies to search 8 databases including PubMed, Web of Science, Embase, the Cochrane Library, CNKI, CBM, WANFANG Database and VIP. In addition, manual search for references in publications has been supplemented by electronic search. To enhance the effectiveness of this study, only randomized controlled trials of four antiviral drugs (Ribavirin, Arbidol, Chloroquine Phosphate, Interferon) used alone or in combination with the primary therapy shall be included. **Analysis** The nucleic acid turning negative, complete absorption of lung inflammation, adverse reactions, aggravation and death shall be the primary outcome measures; whereas temperature return to normal, hospitalization, and positive rate after discharge will be the secondary outcomes. To ensure the quality of the systematic evaluation of this study, study screening, data extraction and quality evaluation will be carried out independently by two reviewers, and any differences will be resolved through consultation between them or by a third reviewer. **Ethics and dissemination** This systematic review will evaluate the efficacy of four antiviral drugs (Ribavirin, Arbidol, Chloroquine Phosphate and Interferon) for Covid-19 in adults. Since all included data will be obtained from published articles, it does not require ethical approval and will be published in a peer-reviewed journal. **PROSPERO registration number** CRD42022300104. ## Introduction Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), which manifestations include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure [1-3]. SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact[4]. Pathogenesis of COVID-19 may be included coagulopathy, endothelial dysfunction, and excessive release of pro-inflammatory cytokines[5]. COVID-19 involved multiple systems such as respiratory system, reproductive system and digestive systems[6-10], which could rapidly develop into acute respiratory distress syndrome, septic shock or multiple organ failure in severe cases[11, 12]. As of 27 February 2022, over 433 million confirmed cases and over 5.9 million deaths have been reported globally, according to date released by the WHO[13]. In the face of this pandemic, the Chinese government has provided valuable lessons for other countries in the treatment of COVID-19, and issued the latest edition of Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial 8th revised edition)[14] on April 14, 2021. Its main efficacy intervention including antiviral therapy, immunotherapy, glucocorticoid therapy, traditional Chinese medicine therapy and so on. Among which, antiviral drugs mainly include interferon (IFN), ribavirin, chloroquine phosphate and arbidol. Ribavirin (a nucleoside analog) is a broad-spectrum antiviral drug, which is mainly used in the treatment of respiratory syncytial virus (RSV), influenza virus and adenovirus infection[15, 16]. The U.S. Food and Drug Administration and part international guidelines recommend ribavirin in combination with interferon to treat chronic hepatitis C[17-19], however, hemolytic anemia is one of the most serious adverse reactions to long-term and high-dose use of ribavirin[20, 21]. As the global COVID-19 pandemic continues, studies have shown that early use of ribavirin antiviral regimen may lead to increased efficacy[22]. Chloroquine phosphate is a derivative of chloroquine, which has particulars such as quick absorption of drug, fewer adverse reactions. The mechanism may be to interfere with endosome acidification, protect low pH-dependent targets in vivo, block angiotensin converting enzyme 2 (ACE2) glycosylation, and prevent cells from binding to viral receptors to achieving the purpose of antiviral[23-25]. In addition, it can also inhibit the production and release of inflammatory cytokine in the middle and late period of viral infection[26]. At present, there are a number of existing studies on chloroquine phosphate which could suppress severe acute respiratory syndrome virus (SARS-CoV)[27, 28], influenza virus[29], Dengue virus[30], human immune deficiency virus (HIV)[31]. Since outbreak of COVID-19, both Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial 8th revised edition)[14] and the Chinese expert consensus[32] have recommended chloroquine phosphate for treatment of COVID-19. Arbidol is a small indole derivative with immune-enhancement and broad-spectrum antiviral effects[33, 34]. As the only hemozoin inhibitor at present, it is mainly used to prevent and treat upper respiratory tract infections caused by influenza A/B viruses[35]. Studies have found that arbidol could not only kill virus directly, inhibit virus proliferation and antigen expression, but also activate 2, 5-oligosadenylate synthase, which could specifically inhibit fusion of the virus membrane with the host cell membrane to block virus entry target cell and inhibit the replication of the virus to achieve the antiviral effect[36-38]. In addition, it could enhance humoral immunity and cellular immunity function, induce cells to produce interferon, regulate release of inflammatory cytokines and activate phagocytes, regulate CD4, CD8 levels to play an antiviral role[39, 40]. Arbidol has been shown to be effective against COVID-19 in clinical studies[41, 42], and six clinical trials have been registered. IFN was discovered by Issacs and Lindenmann in 1957 during their study on phenomenon of virus interference[43], which are classified by type 1, type 2 and type 3. Type 1 IFN is secreted by cells infected with virus and has strong antiviral, antitumor, immunomodulatory properties; Type 2 IFN, secreted by activated T cells, is mainly involved in the immune regulation; Most cells could secrete type 3 IFN, which generate beneficial mucosal immunomodulatory effects[44-46]. Among them, type 1 and type 3 IFN are classical antiviral interferons. At present, IFN has achieved remarkable results in the treatment of COVID-19[47, 48]. The mechanism may be that the increase in post-infection of SARS-CoV-2 results in an imbalance of IFN response, leading to excessive inflammatory response and even cytokine release syndrome, inducing to multiorgan failure[49, 50]. However, most of researches only reported clinical efficacy of the four drugs in treatment of COVID-19 alone or in combination, which were single center studies with a small sample size, different degrees of blinding, and lack of comparison of clinical efficacy and safety evaluation of the four drugs. Therefore, the aim of this study is to analyze the results of randomised controlled trials (RCTs) to ascertain the efficacy and safety of the four antiviral drugs (α-IFN, ribavirin, chloroquine and arbidol) used alone or in combination for the treatment of COVID-19, which will provide reliable evidence-based clarification of the efficacy for the treatment of COVID-19 in adults. The proposed date for the completion of this study is June 15, 2022. ## Materials and methods The protocol of this systematic review and network meta-analysis will be reported in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta Analyses for Network Meta-Analyses (PRISMA-NMA) extension statement[51]. In January 2022, we have obtained the registration number (CRD42022300104) of this review on the platform of PROSPERO ([https://www.crd.york.ac.uk/PROSPERO/#myprospero](https://www.crd.york.ac.uk/PROSPERO/#myprospero)). ### Inclusion and exclusion criteria Detailed Inclusion and exclusion criteria were developed following 5 main principles of PICOS (Participants, Interventions, Comparators, Outcomes, and Study design)[52], which were summarised in Table 1. View this table: [Table 1.](http://medrxiv.org/content/early/2022/04/10/2022.04.05.22273473/T1) Table 1. Eligibility criteria of included studies Participants must be aged over 18 years and have a positive novel coronavirus nucleic acid test (RT-PCR reaction) who had been clearly diagnosed with COVID-19. there were no strict restrictions on gender, racial group, or any non-specified baseline characteristics. Eligible interventions in the RCTs that include at least one of the four antivirals (α-IFN, ribavirin, chloroquine and arbidol) in addition to fundamental treatment including general treatments, immunotherapy, glucocorticoid therapy, traditional Chinese medicine therapy, and so on against controls only with fundamental treatment. There are no clear restrictions on the dosage and administration of therapeutic drugs. The main primary outcome measures included nucleic acid turning negative, complete absorption of lung inflammation, adverse reactions, aggravation or death; Secondary outcomes include temperature return to normal, hospitalization, and positive rate after discharge etc. In addition to the above criteria, eligible study designs must be RCTs with English or Chinese on language. Non-RCTs, case reports, clinical experience summary, reviews, animal studies, and repeatedly publications will be excluded. Meanwhile, literatures with unclear research results and incomplete data will be also excluded. ### Data sources Two investigators will search eight electronic databases (PubMed, Web of Science, Embase, the Cochrane Library, CNKI, CBM, WANFANG database and VIP) for RCTs of four antiviral drugs for COVID-19, starting from the inception dates of databases. References cited in the included publications will be manually searched to check for additional relevant randomised controlled trial reports. Search terms include: Ribavirin, Arbidol, Chloroquine Phosphate, Interferon, COVID-19, 2019-NCOV, SARS-COV-2. Different databases choose the corresponding combination of subject words, free words and keywords. Table 2 takes the initial retrieval strategy of PubMed database as an example, which will be adjust search keywords according to the needs of other databases. ### Selection of studies All retrieved records will be imported into EndNote (X9) to establish an information database and duplicate references will be deleted. Data will be extracted and cross-examined independently by two investigators based on pre-established forms. View this table: [Table 2.](http://medrxiv.org/content/early/2022/04/10/2022.04.05.22273473/T2) Table 2. PubMed search strategies Disagreements between investigators will be resolved by discussion with the principal investigator. The process of study selection will be summarized in the PRISMA[53, 54] flowchart in Figure 1. ![Fig 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/04/10/2022.04.05.22273473/F1.medium.gif) [Fig 1.](http://medrxiv.org/content/early/2022/04/10/2022.04.05.22273473/F1) Fig 1. PRISMA flow diagram of study and exclusion. ### Data extraction and management Following specific information will be extracted: 1. study characteristics include title, author names, journal of publication, year, follow-up durations, etc. 2. participant/population characteristics including sample sizes, proportions of males, age, etc. 3. comparative intervention measures including administration regimens, drug names, doses and administration time etc. 4. comparative outcomes including nucleic acid turning negative, complete absorption of inflammation, temperature recovery, rate of repositive after discharge, significant improvement of clinical symptoms, adverse reactions, and deaths etc. 5. Design types and quality evaluation information of the included literature. The above information is ultimately cross-checked by two reviewers, and any differences may be resolved by consensus or arbitration by a third reviewer. ### Risk of bias assessment Two investigators will independently assess all included studies according to the Cochrane tool for assessing risk of bias[55] in randomised trials described in the Cochrane Handbook for Systematic Reviews of Interventions. The risk table will assess 6 items, including selection of reported result, measurement of outcome, missing outcome data, deviations from intended interventions, randomization process and overall bias. Each item will be judged as “high risk of bias,” “some concerns,” or “low risk of bias” by the answers to the respective questions. Differences between investigators will be resolved through discussion with each other or consultation with the principal investigator. ### Meta-analysis We will use Stata version 17 (StataCorp, College Station, TX) to select appropriate models for network meta-analysis of each outcome indicator according to its heterogeneity. Continuous outcomes will be expressed by mean difference (MD) and 95% confidence interval (CIs), while dichotomous outcomes will be expressed by ratio ratio (RR) and 95% Cis. Therapeutic measures were ranked according to SUCRA results. We will assess heterogeneity by I2 index[56]. If there is no significant heterogeneity (I2<50%) between paired studies, the fixed-effect model will be used for meta-analysis; otherwise, the random effect model will be used for evaluation. If the clinical trial data provided is quite heterogeneous, but we do not perform a meta-analysis but a descriptive analysis. At the same time, if possible, we shall perform subgroup analyses based on study characteristics, such as duration of treatment and disease stage, to interpret heterogeneity. Sensitivity analyses will also be conducted to screen for studies with poor quality or high risk of bias and to test the stability of the results of analyses. In addition, we will conduct cluster analysis of each outcome index to screen antiviral drugs with excellent efficacy and low side effects in the treatment of COVID-19. ### Publication bias If more than 10 eligible studies are included, funnel plots[57] will be drawn and analyzed using State version 17 to visualize potential publication bias. If the points represented by included studies all clustered at the top of funnel plot and symmetrical, it indicates there is less possibility of publication bias. Moreover, we will use Begg’s and Egger’s methods[58, 59] to quantify potential publication bias and data statistics. ### Strength of evidence The quality of evidence in studies shall be independently evaluated by two investigators based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system[60], and the evidence strength will be shown as high, moderate, low or very low. ### Discussion The COVID-19 pandemic has resulted in a global crisis in public health[61, 62], however, there are still no safe and effective drugs to resist COVID-19 until now. We will use network meta-analysis to analysis available evidence from RCTs to compare the safety and efficacy of four antiviral drugs (including Ribavirin, Arbidol, Chloroquine Phosphate and Interferon) alone or in combination, in patients with COVID-19 on the basis of standard treatment. At the same time, subgroup analysis and sensitivity analysis will be performed on the included studies to reveal the potential impact of RCTs quality on overall results. In addition, we shall use the GRADE method to evaluate the strength of studies evidence. This study is expected to provide high quality network meta-analysis, together with subgroup analysis, sensitivity analysis and publication bias analysis, to reveal four antiviral drugs alone or in combination to reveal the robustness and strength of evidence for relative efficacy against COVID-19, which will provide better evidence for future clinical decision-making. ### Limitations Effective regimens for intervention of COVID-19 involves a combination of multiple departments and treatment protocols. In addition, the treatment options will vary among patients because of differences in patients’ basic characteristics as well as in adherence to treatment. The purpose of our study is mainly to evaluate efficacy and safety of four antiviral drugs against COVID-19 in guidelines, so the differences of other treatments on results will be not considered in study and not involve the difference of therapeutic effect caused by different doses of drugs, which will be an active area of investigation for our research group. Second, the following shortcomings inevitable exist during literature collection: the quality of part studies not being high enough, A small number of patients being enrolled in part studies, literature excluded not published in English or Chinese, and the sample size of included not being large enough. ## Data Availability No datasets were generated or analysed during the current study. All relevant data from this study will be made available upon study completion. ## Supporting information S1 Checklist. PRISMA-P 2015 checklist. (DOCX) ## Competing interests The authors have declaredthat no competing interests exist. ## Author Contributions **Conceptualization:** Liang-kun Zhang, Wen-chao Gu, and Ling Li. **Methodology:** Liang-kun Zhang, Wen-chao Gu, Ling Li, and Jian Chen. **Supervision:** Jian Chen. **Software:** Liang-kun Zhang, Wen-chao Gu. **Project administration:** Jian Chen. **Writing - original draft:** Liang-kun Zhang, Wen-chao Gu. **Writing - review & editing:** Liang-kun Zhang, Wen-chao Gu and Ling Li. ## Funding This work was supported by Traditional Chinese Medicine Science and Technology Development Plan Project of Shandong Province (No. 2020M096), Qilu Health and Health Leading Talents Training Project in 2020 (Lu Wei Talent Zi [2020] No. 3) first batch of scientific research. * Received April 5, 2022. * Revision received April 5, 2022. * Accepted April 10, 2022. * © 2022, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## References 1. 1.Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. Jama. 2020;324(8):782–93. doi: 10.1001/jama.2020.12839. PubMed PMID: 32648899. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2020.12839&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32648899&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 2. 2.Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/s0140-6736(20)30183-5. PubMed PMID: 31986264. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)30183-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 3. 3.Mallapaty S. Why does the coronavirus spread so easily between people? Nature. 2020;579(7798):183. doi: 10.1038/d41586-020-00660-x. PubMed PMID: 32157230. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/d41586-020-00660-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32157230&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 4. 4.Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973–87. doi: 10.1016/s0140-6736(20)31142-9. PubMed PMID: 32497510. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)31142-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 5. 5.Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. 2021;35(3):1230–6. doi: 10.1002/ptr.6887. PubMed PMID: 33034398. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ptr.6887&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33034398&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 6. 6.Galanopoulos M, Gkeros F, Doukatas A, Karianakis G, Pontas C, Tsoukalas N, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579–88. doi: 10.3748/wjg.v26.i31.4579. PubMed PMID: 32884218. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3748/wjg.v26.i31.4579&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 7. 7.Ma C, Cong Y, Zhang H. COVID-19 and the Digestive System. Am J Gastroenterol. 2020;115(7):1003–6. doi: 10.14309/ajg.0000000000000691. PubMed PMID: 32618648. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.14309/ajg.0000000000000691&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 8. 8.Illiano E, Trama F, Costantini E. Could COVID-19 have an impact on male fertility? Andrologia. 2020;52(6):e13654. doi: 10.1111/and.13654. PubMed PMID: 32436229. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/and.13654&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32436229&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 9. 9.Wang S, Zhou X, Zhang T, Wang Z. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020;17(6):314–5. doi: 10.1038/s41585-020-0319-7. PubMed PMID: 32313110. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41585-020-0319-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32313110&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 10. 10.Botta M, Tsonas AM, Pillay J, Boers LS, Algera AG, Bos LDJ, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med. 2021;9(2):139–48. doi: 10.1016/s2213-2600(20)30459-8. PubMed PMID: 33169671. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s2213-2600(20)30459-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33169671&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 11. 11.Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517–20. doi: 10.1016/s0140-6736(20)30920-x. PubMed PMID: 32311318. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0140-6736(20)30920-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32311318&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 12. 12.Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2. doi: 10.1016/s2213-2600(20)30076-x. PubMed PMID: 32085846. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s2213-2600(20)30076-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32085846&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 13. 13.COVID-19 Weekly Epidemiological Update. World Health Organization. 2022. 14. 14.China NHCotPsRo. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial 8th revised edition). National Health Commission of the People’s Republic of China. 2021. 15. 15.Fernandez H, Banks G, Smith R. Ribavirin: a clinical overview. Eur J Epidemiol. 1986;2(1):1–14. doi: 10.1007/bf00152711. PubMed PMID: 3021519. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/BF00152711&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=3021519&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 16. 16.Sidwell RW, Robins RK, Hillyard IW. Ribavirin: an antiviral agent. Pharmacol Ther. 1979;6(1):123–46. doi: 10.1016/0163-7258(79)90058-5. PubMed PMID: 390559. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0163-7258(79)90058-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=390559&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1979HG06000004&link_type=ISI) 17. 17.Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis. 2013;56(2):258–66. doi: 10.1093/cid/cis844. PubMed PMID: 23024295. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/cis844&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23024295&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 18. 18.Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, et al. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol. 2016;173(3):380–93. doi: 10.1111/bjh.14027. PubMed PMID: 27060988. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bjh.14027&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27060988&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 19. 19.Panel AIHG. Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology. 2015;62(3):932–54. doi: 10.1002/hep.27950. PubMed PMID: 26111063. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/hep.27950&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26111063&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 20. 20.Brok J, Gluud LL, Gluud C. Ribavirin monotherapy for chronic hepatitis C. Cochrane Database Syst Rev. 2009;(4):Cd005527. doi: 10.1002/14651858.CD005527.pub2. PubMed PMID: 19821346. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/14651858.CD005527.pub2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19821346&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 21. 21.Itoh Y, Okanoue T. Ribavirin-induced hemolytic anemia in chronic hepatitis C patients. J Gastroenterol. 2004;39(7):704–5. doi: 10.1007/s00535-004-1391-0. PubMed PMID: 15293148. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00535-004-1391-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15293148&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 22. 22.Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol. 2020;92(7):740–6. doi: 10.1002/jmv.25798. PubMed PMID: 32227493. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.25798&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32227493&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 23. 23.Ippolito MM, Jacobson JM, Lederman MM, Winterberg M, Tarning J, Shapiro TA, et al. Effect of Antiretroviral Therapy on Plasma Concentrations of Chloroquine and Desethyl-chloroquine. Clin Infect Dis. 2018;67(10):1617–20. doi: 10.1093/cid/ciy405. PubMed PMID: 29771277. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciy405&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29771277&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 24. 24.Gonçalves RM, Agnes JP, Delgobo M, de Souza PO, Thomé MP, Heimfarth L, et al. Late autophagy inhibitor chloroquine improves efficacy of the histone deacetylase inhibitor SAHA and temozolomide in gliomas. Biochem Pharmacol. 2019;163:440–50. doi: 10.1016/j.bcp.2019.03.015. PubMed PMID: 30878553. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bcp.2019.03.015&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30878553&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 25. 25.Jacobson JM, Bosinger SE, Kang M, Belaunzaran-Zamudio P, Matining RM, Wilson CC, et al. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1. AIDS Res Hum Retroviruses. 2016;32(7):636–47. doi: 10.1089/aid.2015.0336. PubMed PMID: 26935044. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/aid.2015.0336&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26935044&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 26. 26.Xu R, Ji Z, Xu C, Zhu J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97(46):e12912. doi: 10.1097/md.0000000000012912. PubMed PMID: 30431566. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/md.0000000000012912&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30431566&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 27. 27.Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: 10.1186/1743-422x-2-69. PubMed PMID: 16115318. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1743-422X-2-69&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16115318&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 28. 28.De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther. 2006;4(2):291–302. doi: 10.1586/14787210.4.2.291. PubMed PMID: 16597209. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1586/14787210.4.2.291&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16597209&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 29. 29.Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, et al. Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis. 2011;11(9):677–83. doi: 10.1016/s1473-3099(11)70065-2. PubMed PMID: 21550310. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(11)70065-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21550310&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000295239300022&link_type=ISI) 30. 30.Borges MC, Castro LA, Fonseca BA. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz. 2013;108(5):596–9. doi: 10.1590/s0074-02762013000500010. PubMed PMID: 23903975. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/S0074-02762013000500010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23903975&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 31. 31.Savarino A, Gennero L, Chen HC, Serrano D, Malavasi F, Boelaert JR, et al. Anti-HIV effects of chloroquine: mechanisms of inhibition and spectrum of activity. Aids. 2001;15(17):2221–9. doi: 10.1097/00002030-200111230-00002. PubMed PMID: 11698694. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00002030-200111230-00002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11698694&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000175787200002&link_type=ISI) 32. 32.pneumonia mcgoDoSaToGPaHCoGPfcittonc. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(3):185–8. doi: 10.3760/cma.j.issn.1001-0939.2020.03.009. PubMed PMID: 32164085. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3760/cma.j.issn.1001-0939.2020.03.009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32164085&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 33. 33.Zhang N, Liu Z, Han Q, Chen J, Lv Y. Xanthohumol enhances antiviral effect of interferon alpha-2b against bovine viral diarrhea virus, a surrogate of hepatitis C virus. Phytomedicine. 2010;17(5):310–6. doi: 10.1016/j.phymed.2009.08.005. PubMed PMID: 19748253. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.phymed.2009.08.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19748253&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 34. 34.Coulombe F, Jaworska J, Verway M, Tzelepis F, Massoud A, Gillard J, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity. 2014;40(4):554–68. doi: 10.1016/j.immuni.2014.02.013. PubMed PMID: 24726877. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.immuni.2014.02.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24726877&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 35. 35.Leneva IA, Russell RJ, Boriskin YS, Hay AJ. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009;81(2):132–40. doi: 10.1016/j.antiviral.2008.10.009. PubMed PMID: 19028526. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.antiviral.2008.10.009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19028526&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 36. 36.Wang Y, Ding Y, Yang C, Li R, Du Q, Hao Y, et al. Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret). Biomed Pharmacother. 2017;91:393–401. doi: 10.1016/j.biopha.2017.04.091. PubMed PMID: 28475918. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopha.2017.04.091&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28475918&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 37. 37.Li MK, Liu YY, Wei F, Shen MX, Zhong Y, Li S, et al. Antiviral activity of arbidol hydrochloride against herpes simplex virus I in vitro and in vivo. Int J Antimicrob Agents. 2018;51(1):98–106. doi: 10.1016/j.ijantimicag.2017.09.001. PubMed PMID: 28890393. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijantimicag.2017.09.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28890393&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 38. 38.Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A. 2017;114(2):206–14. doi: 10.1073/pnas.1617020114. PubMed PMID: 28003465. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiIxMTQvMi8yMDYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wNC8xMC8yMDIyLjA0LjA1LjIyMjczNDczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 39. 39.Liu Q, Xiong HR, Lu L, Liu YY, Luo F, Hou W, et al. Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacol Sin. 2013;34(8):1075–83. doi: 10.1038/aps.2013.54. PubMed PMID: 23770981. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/aps.2013.54&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23770981&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 40. 40.Du Q, Gu Z, Leneva I, Jiang H, Li R, Deng L, et al. The antiviral activity of arbidol hydrochloride against herpes simplex virus type II (HSV-2) in a mouse model of vaginitis. Int Immunopharmacol. 2019;68:58–67. doi: 10.1016/j.intimp.2018.09.043. PubMed PMID: 30612085. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.intimp.2018.09.043&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30612085&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 41. 41.Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;81(1):e21–e3. doi: 10.1016/j.jinf.2020.03.060. PubMed PMID: 32283143. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2020.03.060&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32283143&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 42. 42.Nojomi M, Yassin Z, Keyvani H, Makiani MJ, Roham M, Laali A, et al. Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC Infect Dis. 2020;20(1):954. doi: 10.1186/s12879-020-05698-w. PubMed PMID: 33317461. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-020-05698-w&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33317461&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 43. 43.Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258–67. doi: 10.1098/rspb.1957.0048. PubMed PMID: 13465720. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1098/rspb.1957.0048&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=13465720&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 44. 44.Zhou JH, Wang YN, Chang QY, Ma P, Hu Y, Cao X. Type III Interferons in Viral Infection and Antiviral Immunity. Cell Physiol Biochem. 2018;51(1):173–85. doi: 10.1159/000495172. PubMed PMID: 30439714. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000495172&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30439714&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 45. 45.Lazear HM, Nice TJ, Diamond MS. Interferon-λ: Immune Functions at Barrier Surfaces and Beyond. Immunity. 2015;43(1):15–28. doi: 10.1016/j.immuni.2015.07.001. PubMed PMID: 26200010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.immuni.2015.07.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26200010&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 46. 46.Yu R, Zhu B, Chen D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol Life Sci. 2022;79(3):191. doi: 10.1007/s00018-022-04219-z. PubMed PMID: 35292881. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00018-022-04219-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35292881&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 47. 47.Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791. doi: 10.1016/j.antiviral.2020.104791. PubMed PMID: 32275914. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.antiviral.2020.104791&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 48. 48.Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397–8. doi: 10.1038/s41577-020-0346-x. PubMed PMID: 32457522. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41577-020-0346-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32457522&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 49. 49.Kim YM, Shin EC. Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med. 2021;53(5):750–60. doi: 10.1038/s12276-021-00592-0. PubMed PMID: 33953323. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s12276-021-00592-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33953323&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 50. 50.Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24. doi: 10.1126/science.abc6027. PubMed PMID: 32661059. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjkvNjUwNC83MTgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wNC8xMC8yMDIyLjA0LjA1LjIyMjczNDczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 51. 51.Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1. PubMed PMID: 25554246. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/2046-4053-4-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25554246&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 52. 52.Counsell C. Formulating questions and locating primary studies for inclusion in systematic reviews. Ann Intern Med. 1997;127(5):380–7. doi: 10.7326/0003-4819-127-5-199709010-00008. PubMed PMID: 9273830. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/0003-4819-127-5-199709010-00008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9273830&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997XU10000007&link_type=ISI) 53. 53.Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed PMID: 33782057. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE1OiIzNzIvbWFyMjlfMi9uNzEiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wNC8xMC8yMDIyLjA0LjA1LjIyMjczNDczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 54. 54.Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84. doi: 10.7326/m14-2385. PubMed PMID: 26030634. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/M14-2385&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26030634&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 55. 55.Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011;343:d5928. doi: 10.1136/bmj.d5928. PubMed PMID: 22008217. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNDMvb2N0MThfMi9kNTkyOCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzA0LzEwLzIwMjIuMDQuMDUuMjIyNzM0NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 56. 56.Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557–60. doi: 10.1136/bmj.327.7414.557. PubMed PMID: 12958120. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMjcvNzQxNC81NTciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wNC8xMC8yMDIyLjA0LjA1LjIyMjczNDczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 57. 57.Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–55. doi: 10.1016/s0895-4356(01)00377-8. PubMed PMID: 11576817. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0895-4356(01)00377-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11576817&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000171047800012&link_type=ISI) 58. 58.Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101. PubMed PMID: 7786990. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2307/2533446&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7786990&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1994QP05000016&link_type=ISI) 59. 59.Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629–34. doi: 10.1136/bmj.315.7109.629. PubMed PMID: 9310563. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMTUvNzEwOS82MjkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wNC8xMC8yMDIyLjA0LjA1LjIyMjczNDczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 60. 60.Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Bmj. 2008;336(7650):924–6. doi: 10.1136/bmj.39489.470347.AD. PubMed PMID: 18436948. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMzYvNzY1MC85MjQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wNC8xMC8yMDIyLjA0LjA1LjIyMjczNDczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 61. 61.Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. doi: 10.1038/s41586-020-2008-3. PubMed PMID: 32015508. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-020-2008-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32015508&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom) 62. 62.Serafeim G, Rischbieth AM, Koh HK. Sustainability, Business, and Health. Jama. 2020;324(2):147–8. doi: 10.1001/jama.2020.8714. PubMed PMID: 32629479. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2020.8714&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32629479&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F04%2F10%2F2022.04.05.22273473.atom)