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Abstract

INTRODUCTION: The pathophysiological processes of neurodegenerative diseases begin

years before diagnosis. However, pre-diagnostic changes in cognition and physical function

are poorly understood, especially in sporadic neurodegenerative disease.

METHODS: UK Biobank data was extracted. Cognitive and functional measures in in-

dividuals who subsequently developed Alzheimer’s Disease, Parkinson’s Disease, Frontotem-

poral Dementia, Progressive Supranuclear Palsy, Dementia with Lewy Bodies, or Multiple

System Atrophy, were compared against those without neurodegenerative diagnoses. The

same measures were regressed against time to diagnosis, after adjusting for the effects of

age.

RESULTS: There was evidence for pre-diagnostic cognitive impairment and decline with

time, particularly in Alzheimer’s. Pre-diagnostic functional impairment and decline was

observed in multiple diseases.

DISCUSSION: The scale and longitudinal follow-up of UK Biobank participants pro-

vides evidence for cognitive and functional decline years before symptoms become obvious

in multiple neurodegenerative diseases. Identifying pre-diagnostic functional and cognitive

changes could improve selection for preventive and early disease-modifying treatment trials.
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function, Alzheimer’s Disease, Parkinson’s Disease, Frontotemporal Dementia, Progressive
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Research in Context

Systematic review: Studies of genetic dementia cohorts provide evidence for pre-

diagnostic changes in disease biomarkers and cognitive function in several genetic neurode-

generative diseases. The pre-diagnostic phase of sporadic neurodegenerative disease has been

less well-studied. It is unclear whether early functional or cognitive changes are detectable

in sporadic neurodegenerative disease.

Interpretation: We have established an approach to identify cognitive and functional pre-

diagnostic markers of neurodegenerative disease years before diagnosis. We found disease-

relevant patterns of pre-diagnostic cognitive and functional impairment, and observed a

pre-diagnostic linear decline in a number of cognitive and functional measures.

Future Directions: Our approach can form the basis for pre-diagnostic cognitive and

functional screening to recruit into trials of disease prevention and disease modifying ther-

apies for neurodegenerative diseases. A screening panel based on cognition and function

could be followed by disease-specific biomarkers to further improve risk stratification.
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1. Introduction

Neurodegenerative diseases are associated with significant health, emotional and eco-

nomic burden on individuals and society. Disease modifying therapies and effective pre-

ventive strategies are lacking [1]. However, treatment trials are typically conducted after

symptoms have emerged, which may be too late in the disease process to alter its course

[2, 3]. Understanding the earliest, pre-diagnostic, phase in neurodegenerative disease could

provide a window of opportunity for more effective preventive and disease modifying treat-

ment trials.

Studies of genetic dementia cohorts suggest that key disease biomarkers change in neu-

rodegenerative diseases many years before symptoms are obvious and a diagnosis is made.

In genetic frontotemporal dementia (FTD), structural brain changes are detectable 10 years

before symptom onset [4–6], with pre-symptomatic alterations in functional brain network

organisation [7] and microRNA expression [8]. In genetic Alzheimer’s disease (AD), cere-

brospinal fluid and neuroimaging changes may be seen 15-25 years before symptom onset

[9–11].

The pre-diagnostic phase of sporadic neurodegenerative disease is more challenging to

assess. There is indirect evidence that amyloid-β neuropathology is present several years

before symptom onset in sporadic AD and is associated with cognitive decline [12]. There

is also evidence for a pre-symptomatic reduction in monoaminergic nuclei MRI signal [13].

These studies suggest early pathological changes, but it remains less certain whether this

translates into cognitive change or impaired day-to-day function. There is evidence for pre-

diagnostic accelerated forgetting in familial AD mutation carriers [14], whilst apathy and

executive dysfunction appear early in those carrying mutations for FTD [5, 15]. However,

global cognitive and behavioural function remain near normal if supported by reorganisation

of the brain’s functional network [7, 16, 17]. It remains unclear whether similar cognitive

changes in sporadic dementias are detectable before symptom onset, and how long before a

diagnosis they are identifiable.

The UK Biobank [18] offers a rare opportunity to analyse pre-diagnostic changes across

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2022. ; https://doi.org/10.1101/2022.04.05.22273468doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.05.22273468
http://creativecommons.org/licenses/by/4.0/


a wide range of sporadic neurodegenerative diseases. It includes over 500,000 individuals

aged 40-69 recruited between 2006-2010 from the general population, from whom health-

related data were collected during one to four assessment visits. This offers a rich dataset

of prospective cognitive and functional data from a large pool of individuals, some of whom

have gone on to develop a neurodegenerative disease. As a proof-of-concept, we recently

published an analysis of pre-diagnostic data on the cohort of people in the UK Biobank who

went on to develop Progressive Supranuclear Palsy [19].

In this study, we present an analysis of the data extracted from the UK Biobank, testing

whether cognitive and functional changes are detectable in individuals who later went on to

develop a neurodegenerative disease, the majority of which are sporadic. This provides a

broad overview of the early manifestations of multiple rare and common neurodegenerative

diseases.

2. Methods

2.1. Data Extraction from UK Biobank

Data extracted from the UK Biobank included participant demographics, diagnoses of

neurodegenerative diseases (Table 1), and a set of cognitive and functional measures (Table

2). Where applicable for demographic data, pairwise comparisons were performed between

each diagnostic group and controls using linear or multinomial logistic regression, with p-

values adjusted for multiple comparison using the Benjamini-Hochberg procedure [20, 21]

within each diagnosis.

2.1.1. Extraction of Diagnosis

The diagnoses and dates of diagnosis were compiled from hospital inpatient data, primary

care data, death certificate data, and self-reported diagnoses. This data was extracted on

23 May 2021. Primary care data were available for approximately 45% of the UK Biobank

cohort and covered up to the year 2017. Codes associated with the following diagnoses were

searched for: Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), Parkinson’s Dis-

ease (PD), Progressive Supranuclear Palsy (PSP), Dementia with Lewy Bodies (DLB) and
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Ctrl AD FTD PD PSP DLB MSA

Number 493,735 2778 211 2370 133 40 73
Years to diagnosis
from baseline

- 8.3
(3.0)

7.7
(3.0)

7.4
(3.2)

7.6
(3.0)

4.7
(2.1)

6.5
(3.3)

Age 56.4
(8.1)

64.7*
(4.2)

61.2*
(5.9)

62.8*
(5.4)

63.6*
(5.3)

65.4*
(3.7)

60.8*
(6.3)

BMI 27.4
(4.8)

27.4
(4.8)

27.2
(5.0)

27.8*
(4.5)

29*
(4.8)

27.5
(4.4)

26.6
(4.2)

Sex
Male 44.3% 45.3% 49.8% 60.3%* 60.9%* 67.5%* 39.7%
Female 52.9% 50.7% 47.4% 36.1%* 35.3%* 30%* 58.9%
Handedness
Right 88.7% 89.3% 91.5% 88.4% 90.2% 92.5% 90.4%
Left 9.3% 8.2% 6.2% 9.3% 6% 7.5% 6.8%
Ambidextrous 1.7% 2.1% 2.4% 1.9% 3% 0% 2.7%
Ethnicity
White 93.9% 95.5%* 96.7% 95.8%* 96.2%* 100%* 93.2%*
Afro-Caribbean 1.6% 1.4% 0.9% 0.8%* 0% 0%* 2.7%
Asian 2.3% 1.4%* 0.9% 1.8% 1.5% 0%* 1.4%
Mixed 0.5% 0.3% 0% 0.3% 0%* 0% 2.7%
Others 0.9% 0.4%* 0.5% 0.5%* 0%* 0%* 0%*
Smoking Status
Never 40% 37%* 34.1% 39.3%* 34.6%* 32.5% 46.6%
Previous 34.3% 41.9%* 40.3% 39.9%* 48.1%* 47.5% 27.4%
Current 10.6% 9% 11.4% 6.7%* 8.3% 2.5% 8.2%

Table 1: Demographics of individuals included from the UK Biobank from each diagnostic group. Partic-

ipants with a diagnosis at baseline were excluded, so the groups here are those who converted during the

study. Where appropriate the mean is shown with standard deviation in parentheses. Where the values

differ from controls with an adjusted p-value <0.05, they are marked with an asterisk. Ctrl = Controls, AD

= Alzheimer’s Disease, FTD = Frontotemporal Dementia, PD = Parkinson’s Disease, PSP = Progressive

Supranuclear Palsy, DLB = Dementia with Lewy Bodies, MSA = Multiple System Atrophy.

Multiple System Atrophy (MSA). Codes associated non-specifically with neurodegenerative

disease or other named neurodegenerative diseases affecting cognition were also searched for

and labelled as ‘Others’. The most recent diagnosis was used. Where multiple diagnoses

were present on the most recent date, the rarer diagnosis was used as the most likely diag-

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2022. ; https://doi.org/10.1101/2022.04.05.22273468doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.05.22273468
http://creativecommons.org/licenses/by/4.0/


nosis (for example, it is common for people with PSP to first receive a diagnosis of PD).

Where ambiguity remained the label “Multiple” was used. The earliest date the diagnosis

was recorded was used as a proxy for the actual date of diagnosis.

To identify pre-diagnostic individuals only, any individuals with a diagnosis date pre-

dating the baseline assessment visit were excluded. Individuals with a self-reported diagnosis

of neurodegenerative disease at any time but without a formal diagnosis, and those whose

diagnoses were labelled as “Multiple” or “Others” were excluded. The remaining individuals

without a labelled diagnosis during follow-up were designated as controls.

.

2.2. Analysis of Baseline Assessment Data

A set of cognitive and functional outcome measures (Table 2) recorded at baseline as-

sessment performed between 2006-2010, were compared between pre-diagnostic individuals

and controls using Bayesian regression analysis.

2.2.1. Multiple Imputation

We used multiple imputation, splitting the data into five sub-datasets to account for the

5% of cases with incomplete data among the imputed categories. [22, 23].

Imputation was carried out using the mice package in R (version 4.0.3) [24]. “Prospec-

tive memory”, “fluid intelligence score”, “numeric memory” and “smoking pack-years” were

not imputed and excluded as predictors for imputation as a large proportion of data was

missing. All other data fields including demographic data were used as predictor variables

and imputed according to the default method for the respective data type as defined in mice

(Table 2).

2.2.2. Bayesian Regression Modelling

We chose Bayesian regression modelling to assess differences between diagnostic groups

given the marked differences in group sizes, the ability to accept or reject the null and model

hypothesis based on data precision (cf. ‘power’ for classical inference), and the ability to

assess difference between groups based on effect size.
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Cognitive/
Functional
Measure

Data-
Field
No.

Type of
Data

Imputation
Method

Model
Family

Regression
Coefficient

Prior

Fluid intelligence
score

20016 Numeric N/A Gaussian cauchy(0,13)

Reaction time
(mean time to
correctly identify
matches)

20023 Numeric Predictive
Mean

Matching

Shifted
log

normal

cauchy(0,5)

Numeric memory
(max no. of digits
remembered)

4282 Numeric N/A Gaussian cauchy(0,10)

Prospective
memory

20018 Ordinal N/A Cumulative
ordinal

cauchy(0,5)

Pairs Matching
(no.of incorrect
matches in rounds
1 and 2)

399 Numeric Predictive
Mean

Matching

Negative
Binomial

cauchy(0,5)

Overall health
rating

2178 Ordinal Proportional
Odds Model

Cumulative
ordinal

cauchy(0,5)

Falls in last year 2296 Ordinal Proportional
Odds Model

Cumulative
Ordinal

cauchy(0,5)

Left/Right hand
grip strength

46, 47 Numeric Predictive
Mean

Matching

Skewed
normal

cauchy(0,90)

Weight change
compared to 1 year
ago

2306 Categorical Polytomous
logistic

regression

Categorical cauchy(0,5)

Table 2: The cognitive and functional outcome measures used in this study and information relevant to

the statistical analysis. Full descriptions are available by keying in the corresponding data-field number

at biobank.ndph.ox.ac.uk/showcase/search.cgi. Where missing data was imputed we report the imputation

method used. We also report the BRMS family used to specify the Bayesian model, and the prior specified

for the regression coefficient.

We used the brms package in R [25, 26]. Each cognitive or functional outcome measure

was fitted to a model with diagnosis category and age as predictors, and also to a null model

with age as the sole predictor. Handedness was included as an additional predictor when
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analysing hand grip strength. Model families were selected based on the characteristics of

the data, and weakly informative Cauchy priors centered at zero were used for the regression

coefficients (see Table 2). For each outcome measure, the regression model was initially fit

separately to each of the five imputed sub-datasets. The posterior draws from the resulting

sub-models were then aggregated to obtain a combined model with 50,000 post-warm-up

iterations.

2.2.3. Model Validation and Interpretation

All models converged with no divergent transitions or other diagnostic warnings. Diag-

nostic traceplots showed good mixing of sampling chains. R̂ values were all approximately

1.00, and less than 1.05. Graphical posterior predictive checks demonstrated that simu-

lated data drawn from each model’s posterior predictive distributions agreed well with the

observed data across the diagnostic categories analysed (see supplementary material).

To assess the evidence for group differences, we obtained the 95% Credible Interval (CI)

of the posterior distribution for the regression coefficient of each diagnostic group relative

to controls, and compared it to a pre-defined Region Of Practical Equivalence (ROPE).

For numerical data, the ROPE was defined as the values ranging between ±0.1 of the

standard deviation around the control mean, which has been suggested as a default [27].

Where logistic regression was used the ROPE was defined as ±0.18, which is suggested as

an equivalent default [28]. For pairs matching data, which was modelled using a negative

binomial distribution, the ROPE was defined as a multiplicative effect 0.9-1.1 on the number

of incorrect matches. It has been suggested that if the CI falls entirely outside the ROPE,

there is strong evidence to reject the null hypothesis; if the CI falls entirely within the ROPE

there is strong evidence for accepting the null hypothesis [27].

2.3. Regression Analysis Over Time Prior to Diagnosis

To look for linear changes in the years prior to diagnosis, we used classical linear regres-

sion. This analysis included a set of cognitive and functional measures (table 2) recorded

during baseline assessment and any subsequent visits pre-dating diagnosis.

9
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For numerical data, we first regressed out the data on age, then within each diagnosis

regressed the residuals against years to diagnosis. In cases where more than five individuals

had multiple data points, we used a linear mixed effects model with the individual as a

random effect (using the lmer function). Otherwise, simple linear regression was used.

For categorical and ordinal data, we were unable to generate a valid random effects model

which took into account individual variation due to the paucity of data points repeated from

the same individual. Ordinal logistic regression was performed using the polr function from

the MASS library. Data were first regressed on age, then within each diagnosis data were

regressed against years to diagnosis, with age multiplied by the coefficient determined from

the first regression model as an offset term. P-values were approximated by comparing the

generated t-values against the standard normal distribution.

Multinomial logistic regression for categorical data was performed using the multinom

function from the nnet library. Data were first regressed on age, then within each diagnosis

data were regressed against years to diagnosis, with age multiplied by the coefficient de-

termined from the first regression model as an offset term. P-values were calculated using

two-tailed Wald z-tests.

P-values were grouped by diagnosis and further separated into those that applied to

functional and cognitive measures. Within each of these twelve groups, the p-values were

adjusted using the Benjamini-Hochberg method [20, 21]. We report both uncorrected and

adjusted p-values.

2.4. Code Availability

Search queries and processing scripts are available on Gitlab gitlab.developers.cam.ac.

uk/ns651/neurodegeneration.

3. Results

3.1. Baseline cognition in pre-diagnostic neurodegenerative disease

We assessed whether people who developed a range of neurodegenerative diagnoses

demonstrated reduced cognitive function at their baseline assessment. The time between
10
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Figure 1: Baseline cognitive measures in UK Biobank participants who go on to develop neurodegenerative

disease. The Bayesian posterior probability distributions of the difference relative to controls are plotted,

with the mean the shaded circle, 50% credible interval the thicker black line and 95% credible interval

the thinner black line. The yellow rectangle represents the region of practical equivalence (ROPE), with a

vertical black line denoting the point of zero difference from the control mean or odds depending on the

data type, as indicated on the x-axis. Sample sizes shown indicate the number of available raw data points

prior to imputation.
11
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baseline assessment and diagnosis varied between 4.7 years for DLB to 8.3 years for AD (see

Table 1). There was strong evidence of decreased fluid intelligence in the pre-AD (raw score

difference = -0.96, 95% Credible Interval -0.80 to -1.13), FTD (-1.12, CI -0.53 to -1.71) and

PSP groups (-1.17, CI -0.56 to -1.78); in these groups the credible interval lay outside the

ROPE (Fig 1A). There was weaker evidence of a difference in DLB (-1.87, CI -3.75 to 0.00)

where the mean lay outside the ROPE, but with an overlapping credible interval. There was

strong evidence against reduced fluid intelligence in PD (-0.13, CI -0.29 to 0.03) and MSA

(-0.06, CI -0.88 to 0.75), with the mean and majority of the credible interval overlapping

the ROPE in both cases.

There was strong evidence of slower reaction time in pre-AD (difference on log-

transformed scale = 0.046, CI 0.038 to 0.054) and FTD individuals (0.070, CI 0.041 to

0.098) (Fig 1B). There was moderate evidence for slower reaction time in PSP (0.054, CI

0.018 to 0.091) and MSA (0.039, CI -0.009 to 0.086). There was strong evidence of no

difference in reaction time in PD (0.011, CI 0.002 to 0.019), and indeterminate evidence in

DLB (0.019, CI -0.045 to 0.084).

Poorer numeric memory was observed in pre-AD individuals (difference in digits remem-

bered = -0.67, CI -0.84 to -0.51) and MSA (-1.36, CI -2.28 to -0.43) (Fig 1C), with some

evidence of a difference in FTD (-0.66, CI -1.25 to -0.06). The evidence in PD (-0.14, CI -0.32

to 0.04), PSP (-0.45, CI -1.13 to 0.22) and DLB (-0.50, CI -1.81 to 0.80) was indeterminate.

Poorer prospective memory was observed in pre-AD individuals (multiplicative effect

on odds of better recall = 0.35, CI 0.31 to 0.41) (Fig 1D). There was weaker evidence to

support differences in FTD (0.51, CI 0.29 to 0.85) and PSP (0.56, CI 0.32 to 0.93). There

was moderate evidence that prospective memory was not impaired in pre-PD individuals

(0.90, CI 0.76 to 1.06), and indeterminate evidence in the DLB (2.30, CI 0.32 to 9.74) and

MSA (1.35, CI 0.55 to 3.04) groups.

An increase in incorrectly matched pairs was observed in pre-AD individuals in rounds

1 (multiplicative effect = 1.42, CI 1.32 to 1.53) (Fig 1E) and 2 (1.14, CI 1.11 to 1.18) (Fig

1F). In FTD the evidence was indeterminate for round 1 (1.17, CI 0.88 to 1.53) but there

was some evidence of worse performance in round 2 (1.14, CI 1.03 to 1.25). In PD, there

12
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was weak evidence in round 1 (1.08, CI 0.99 to 1.18) and strong evidence in round 2 (1.01,

CI 0.98 to 1.04) that there was no difference in performance. In PSP, the evidence was

indeterminate for round 1 (1.13, CI 0.79 to 1.58) but there was some evidence in round

2 that there was no difference in performance (1.05, CI 0.92 to 1.19). The evidence was

indeterminate in DLB (round 1: 1.31, CI 0.68 to 2.35; round 2: 1.12, CI 0.89 to 1.41) and

MSA (round 1: 1.07, CI 0.65 to 1.70; round 2: 1.00, CI 0.84 to 1.19).

3.2. Functional impairment at baseline in pre-diagnostic idiopathic neurodegeneration

We went on to assess whether there was evidence of early impaired day-to-day function.

Worse overall health was reported relative to controls in pre-AD (multiplicative effect on

odds of better rating = 0.64, CI 0.59 to 0.69), FTD (0.65, CI 0.49 to 0.84), PD (0.71, CI

0.66 to 0.77) and PSP individuals (0.57, CI = 0.41 to 0.77) (Fig 2A). The evidence was

indeterminate for DLB (0.83, CI 0.45 to 1.42) and MSA (0.75, CI 0.46 to 1.13).

An increased number of falls was observed in pre-AD and (multiplicative effect on odds

of more falls = 1.45, CI 1.34 to 1.58) and PSP individuals (2.21, CI 1.52 to 3.09) (Fig 2B).

There was some evidence to suggest no difference in the risk of falls for FTD (1.14, CI 0.81

to 1.53) and PD (1.14, CI 1.04 to 1.25). The evidence was indeterminate for DLB (0.51, CI

0.16 to 1.10) and MSA (1.40, CI 0.77 to 2.29).

There was weak evidence for decreased grip strength in pre-AD (right hand -1.25kg, CI

-1.64 to -0.87; left hand -1.38kg, CI -1.76 to -1.00) and MSA individuals (right -1.78kg, CI

-4.18 to 0.55; left -2.66kg, CI -5.06 to -0.35) (Fig 2C,D). There was weak evidence to suggest

no difference in grip strength in FTD (right -0.62kg, CI -2.02 to 0.75; left -0.59kg, CI -1.97

to 0.78) and PD (right 0.87kg, CI 0.44 to 1.29; left 0.89kg, CI 0.47 to 1.31). The evidence

was indeterminate for PSP (right 1.28kg, CI -0.46 to 3.00; left 1.61kg, CI -0.16 to 3.35) and

DLB (right 1.90kg, CI -1.43 to 5.10; left 1.57kg, CI -1.70 to 4.73).

Differences in weight change over the past year are plotted as the multiplicative effect of

each diagnosis on the ratios P (lostweight)
P (similar weight)

and P (gainedweight)
P (similar weight)

. Pre-AD individuals exhibit

an increased tendency towards weight loss over the past year (multiplicative effect of 1.38,

CI 1.25 to 1.53) (Fig 2E), but no difference in tendency towards weight gain (0.94, CI 0.85
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Figure 2: Physical measures in pre-diagnosis individuals. Posterior probability distributions of the difference

relative to controls are plotted, with the mean the shaded circle, 50% credible interval the thicker black line,

and 95% credible interval the thinner black line. The yellow rectangle represents the region of practical

equivalence (ROPE), with a vertical black line denoting the point of zero difference from the control mean

or odds depending on the data type, as indicated on the x-axis. Sample sizes shown indicate the number of

available raw data points prior to imputation.
14
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to 1.03) (Fig 2F). In FTD, there was weak evidence to suggest no difference in the tendency

towards weight loss (1.13, CI 0.75 to 1.60) or weight gain (1.00, CI 0.71 to 1.36). In PD,

there was weak evidence for no difference in weight loss (1.11, CI 0.98 to 1.24) and strong

evidence for no difference in weight gain (0.98, CI 0.89 to 1.08). There was some evidence

for no difference in weight loss in PSP (1.02, CI 0.57 to 1.63), and indeterminate evidence

for weight gain (1.35, CI 0.90 to 1.94). There evidence was indeterminate for DLB (weight

loss 0.82, CI 0.25 to 1.81) (weight gain 0.64, CI 0.24 to 1.30) and MSA (weight loss 1.26, CI

0.64 to 2.16) (weight gain 0.75, CI 0.39 to 1.26).

3.3. Progressive cognitive and functional decline leading up to diagnosis

A decline was observed for several cognitive and functional measures in the time leading

up to diagnosis (Table 3).

Pre-AD individuals demonstrated worsening fluid intelligence (-0.036/year, p = 5.6 ×

10−5) (Fig 3A), reaction time (2.9ms/year, p = 1.1 × 10−9) (Fig 3B), prospective mem-

ory (x1.1/year odds of worse recall, p = 4.7 × 10−5) (Fig 3D) and pairs matching results

(0.056 incorrect matches/year in round 2, p = 0.014) (Fig 3E). Reaction time also worsened

(7.4ms/year, p = 0.0011) in pre-PSP individuals (Fig 3C).

Pre-PD individuals exhibited weakening right (-0.089kg/year, p = 9.7 × 10−7) and left

(-0.086kg/year, p = 6.4 × 10−7) hand grip strength (Fig 3G,I) in the years leading up to

diagnosis. Pre-PSP individuals exhibited a decline in overall health self-rating (x1.2/year

odds of worse rating, p = 0.027) (Fig 3L), and an increased falls risk (x1.2/year odds of

increased falls, p = 0.027) (Fig 3J). Pre-AD individuals demonstrated a significant decrease

over time in right (-0.044kg/year, p = 0.021) and left (-0.045kg/year, p = 0.019) hand

grip strength (Fig 3F,H). Pre-MSA individuals demonstrated a worsening overall health

self-rating (x1.3/year odds of worse rating, p = 0.0017) (Fig 3M) and increased falls risk

(x1.3/year odds of increased falls, p = 0.029) (Fig 3K).
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Figure 3: Cognitive and functional measures regressed on years to diagnosis after removing the effect of

age. Blue lines indicate the estimated regression coefficient, the yellow shaded area represents the 95%

confidence interval. Adjusted p-values were calculated using the Benjamini-Hochberg method. n = number

of data points, CI = 95% confidence interval, AD = Alzheimer’s Disease, PD = Parkinson’s Disease, PSP

= Progressive Supranuclear Palsy, MSA = Multiple System Atrophy.
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Diag Measure n Coef SE P-Value Adj P

AD

Fluid Intelligence Score 729 -0.036 0.0086 2.8e-05 5.6e-05
Reaction Time (ms) 2766 2.9 0.45 1.8e-10 1.1e-09
Max No. of Digits Remembered 246 -0.00056 0.015 0.97 0.97
Prospective Memory 824 -0.1 0.024 1.6e-05 4.7e-05
Pairs Matching Round 1 Errors 2742 0.0056 0.0069 0.42 0.51
Pairs Matching Round 2 Errors 2791 0.056 0.022 0.0093 0.014
Overall Health Rating 2833 -0.014 0.012 0.24 0.48
Falls in Past Year 2830 0.012 0.013 0.36 0.51
Right Hand Grip Strength (kg) 2844 -0.044 0.016 0.0069 0.021
Left Hand Grip Strength (kg) 2837 -0.045 0.015 0.0032 0.019
Weight Loss over Past Year 2789 0.013 0.016 0.42 0.51
Weight Gain Over Past Year 2789 0.0075 0.015 0.63 0.63

FTD

Fluid Intelligence Score 56 -0.0079 0.035 0.82 0.82
Reaction Time (ms) 206 1 1.6 0.53 0.64
Max No. of Digits Remembered 21 0.056 0.049 0.27 0.64
Prospective Memory 60 -0.073 0.083 0.38 0.64
Pairs Matching Round 1 Errors 213 -0.019 0.019 0.32 0.64
Pairs Matching Round 2 Errors 212 0.052 0.07 0.45 0.64
Overall Health Rating 213 0.0099 0.043 0.82 0.92
Falls in Past Year 215 0.018 0.053 0.74 0.92
Right Hand Grip Strength (kg) 214 -0.059 0.062 0.34 0.92
Left Hand Grip Strength (kg) 210 -0.029 0.058 0.61 0.92
Weight Loss over Past Year 212 -0.14 0.07 0.04 0.24
Weight Gain Over Past Year 212 -0.0054 0.054 0.92 0.92

Continued on next page
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Table 3 Continued from previous page

Diag Measure n Coef SE P-Value Adj P

PD

Fluid Intelligence Score 754 -0.003 0.0085 0.73 0.74
Reaction Time (ms) 2395 0.52 0.38 0.17 0.52
Max No. of Digits Remembered 220 -0.022 0.012 0.066 0.4
Prospective Memory 801 -0.02 0.026 0.44 0.74
Pairs Matching Round 1 Errors 2359 -0.0023 0.0057 0.7 0.74
Pairs Matching Round 2 Errors 2395 -0.0059 0.018 0.74 0.74
Overall Health Rating 2432 -0.024 0.012 0.046 0.068
Falls in Past Year 2439 0.03 0.015 0.043 0.068
Right Hand Grip Strength (kg) 2432 -0.089 0.017 3.2e-07 9.7e-07
Left Hand Grip Strength (kg) 2433 -0.086 0.016 1.1e-07 6.4e-07
Weight Loss over Past Year 2395 0.019 0.018 0.27 0.33
Weight Gain Over Past Year 2395 0.0058 0.015 0.7 0.7

PSP

Fluid Intelligence Score 49 -0.039 0.033 0.25 0.25
Reaction Time (ms) 132 7.4 1.9 0.00018 0.0011
Max No. of Digits Remembered 16 -0.085 0.048 0.1 0.2
Prospective Memory 54 -0.14 0.1 0.16 0.24
Pairs Matching Round 1 Errors 131 0.032 0.027 0.25 0.25
Pairs Matching Round 2 Errors 131 0.21 0.09 0.019 0.058
Overall Health Rating 135 -0.16 0.06 0.0089 0.027
Falls in Past Year 135 0.17 0.062 0.0063 0.027
Right Hand Grip Strength (kg) 137 0.037 0.08 0.64 0.94
Left Hand Grip Strength (kg) 137 -0.02 0.074 0.78 0.94
Weight Loss over Past Year 135 -0.0069 0.092 0.94 0.94
Weight Gain Over Past Year 135 0.14 0.065 0.034 0.069

Continued on next page
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Table 3 Continued from previous page

Diag Measure n Coef SE P-Value Adj P

DLB

Fluid Intelligence Score 5 -0.13 0.15 0.47 0.8
Reaction Time (ms) 39 -5.6 5.9 0.35 0.8
Max No. of Digits Remembered 4 -0.008 0.014 0.64 0.8
Prospective Memory 9 -0.15 0.35 0.67 0.8
Pairs Matching Round 1 Errors 40 0.0053 0.093 0.95 0.95
Pairs Matching Round 2 Errors 40 -0.2 0.25 0.42 0.8
Overall Health Rating 39 0.098 0.19 0.61 0.91
Falls in Past Year 40 -0.16 0.26 0.54 0.91
Right Hand Grip Strength (kg) 39 0.0077 0.18 0.97 0.97
Left Hand Grip Strength (kg) 39 -0.02 0.16 0.9 0.97
Weight Loss over Past Year 39 0.5 0.26 0.059 0.36
Weight Gain Over Past Year 39 -0.24 0.25 0.34 0.91

MSA

Fluid Intelligence Score 29 -0.042 0.037 0.26 0.59
Reaction Time (ms) 74 2.1 1.8 0.23 0.59
Max No. of Digits Remembered 8 -0.07 0.099 0.51 0.76
Prospective Memory 32 0.049 0.14 0.73 0.88
Pairs Matching Round 1 Errors 74 -0.00033 0.026 0.99 0.99
Pairs Matching Round 2 Errors 74 0.096 0.091 0.29 0.59
Overall Health Rating 74 -0.28 0.077 0.00028 0.0017
Falls in Past Year 75 0.24 0.091 0.0096 0.029
Right Hand Grip Strength (kg) 74 -0.17 0.089 0.061 0.091
Left Hand Grip Strength (kg) 74 -0.11 0.084 0.21 0.25
Weight Loss over Past Year 75 0.2 0.099 0.046 0.091
Weight Gain Over Past Year 75 0.071 0.093 0.44 0.44

Table 3: Data from regression of cognitive and functional measures against years to diagnosis, after adjusting

for the effect of age. “Prospective memory” and “overall health rating” were analysed using ordinal regression,

and log-odds of better outcomes were regressed. “Falls in past year” was analysed with ordinal regression,

and log-odds of a greater number of falls were regressed. Weight loss was analysed as the log of the

ratio Probability(weight loss)/Probability(weight unchanged), and weight gain was similarly analysed. n =

number of data points, Coef = Regression coefficients, SE = standard error, Adj P = P-values adjusted

using the Benjamini-Hochberg procedure, AD = Alzheimer’s Disease, FTD = Frontotemporal Dementia,

PD = Parkinson’s Disease, PSP = Progressive Supranuclear Palsy, DLB = Dementia with Lewy Bodies,

MSA = Multiple System Atrophy.
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4. Discussion

We demonstrate cognitive and functional antecedents of several idiopathic neurodegen-

erative syndromes in the years prior to diagnosis. In line with findings of pre-symptomatic

cognitive decline in familial mutation carriers of AD and FTD [5, 14], these changes were

identified at a baseline assessment averaging 5-9 years before diagnosis, extending the ‘symp-

tomatic’ phase of sporadic neurodegenerative disease earlier than previously supposed. The

pre-diagnostic linear decline in a number of measures supports our supposition that these

changes represent early progressive neurodegeneration rather than a low cognitive or func-

tional baseline.

We found patterns of cognitive and functional change that were disease-specific. Ex-

tensive differences in all cognitive assessments and some physical measures were observed

in pre-AD individuals. This is consistent with: 1) genetic cohorts highlighting a long pro-

dromal phase of AD identified using neuroimaging [29], 2) the concept of Mild Cognitive

Impairment as a precursor to AD, and 3) the finding of early visual memory deficits 10 years

prior to AD symptoms [30].

We also identified syndrome-relevant changes in other diseases. Pre-PSP individuals

demonstrated an increased falls risk and reduced fluid intelligence score, reflecting the typical

Richardson syndrome of PSP of early falls and a dysexecutive cognitive impairment [31].

The poorer numeric memory in pre-MSA patients is noteworthy as cognitive impairment is

not a dominant symptom in MSA. Nevertheless, cognitive impairment has been consistently

identified in at least a portion of MSA patients [32, 33], with frontal-executive dysfunction

being the most common cognitive feature [34]. In addition, the pre-MSA and pre-PSP groups

exhibited a rapid functional decline in falls risk and overall health rating leading up to the

time of diagnosis.

Conversely, we were able to demonstrate that pre-PD individuals have preserved pre-

symptomatic cognition and good evidence of preserved outcomes on some functional mea-

sures; in particular, the data for reaction time, pairs matching round 2 and weight gain in

the past year demonstrate convincingly that there is no difference in these domains between
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pre-PD individuals and controls. Our study focused on cognition and function, so we did

not capture the well recognised early systemic features seen in a proportion of people with

PD [35].

Identifying early subtle changes in cognition and function could enable stratification into

prevention trials targeting known risk factors [36], or early disease modification. Studies

of prevention are ongoing with some evidence that treating blood pressure in middle age

reduces cerebral white matter disease [37, 38], and that a multidomain preventive approach

may reduce the risk of cognitive decline in a population aged 60-77 years of age [39]. However,

most lifestyle factors are targeted at the vascular risk factors associated with AD, whereas

other pathologies such as tau and α-synuclein are not associated with such risk.

In these other pathologies, early disease modifying treatments are being actively pursued.

Given the toxicity of many such treatments [40], one would need to be confident in identifying

specific pathologies, and initiating treatment at a time that maximises the risk-benefit ratio.

The most common changes we identified were in fluid intelligence, memory and reporting

of overall health. We speculate that screening of these domains could lead to additional

pathology-specific biomarker assessments such as PET scans, CSF or blood-based biomarkers

[41–48].

There are several limitations to our study. Analysis of the FTD (n=211), PSP (n=133),

DLB (n=40) and MSA (n=73) groups was limited by the smaller sample size available, which

resulted in wide uncertainty over the posterior distribution. In DLB this partly reflected the

recording of the diagnosis in the UK Biobank, as it was only possible to search for it within

the primary care dataset. Whilst the UK Biobank is a population-based study, it is biased

towards a population with a lower risk of disease in general [49], and is not representative

of ethnic and socioeconomic diversity in the UK. This may limit the generalizability of our

results. Furthermore, the study can only demonstrate correlation and elucidation of the

underlying pathophysiology is outside its scope.

In conclusion, our study identifies early functional and cognitive differences in the pre-

diagnostic stage of multiple neurodegenerative diseases. Better characterisation of the pre-

diagnostic stage will enable better risk stratification for prevention and disease-modifying
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studies[50].
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