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The vertebrate immune system is capable of strong, focused adaptive responses that depend on
T-cell specificity in recognizing antigenic sequences of a pathogen. Recognition tolerance and anti-
genic convergence cause cross-immune reactions that extend prompt, specific responses to rather
similar pathogens. This suggests that reaching herd-immunity might be facilitated during suc-
cessive epidemic outbreaks (e.g., SARS-CoV-2 waves with different variants). Qualitative studies
play down this possibility because cross-immune protection is seldom sterilizing. We use minimal
quantitative models to study how cross-immunity affects epidemic dynamics over short and long
timescales. In the short scale, we investigate models of sterilizing and attenuating immunity, find-
ing equivalences between both mechanisms—thus suggesting a key role of attenuating protection
in achieving herd immunity. Our models render maps in epidemic-parameter space that discern
threatening variants depending on acquired cross-immunity levels. We illustrate this application
with SARS-CoV-2 data, including protection due to vaccination rates across countries. In the
long-time scale, we model sterilizing cross-immunity between rolling pathogens to characterize
statistical properties of successful strains. We find that sustained cross-immune protection alters
the regions of epidemic-parameter space where large outbreaks happen. Our results suggest an
optimistic revision concerning prospects for herd protection based on cross-immunity, including
for the SARS-CoV-2 pandemics.
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I. INTRODUCTION

Responding to threats, the immune system triggers de-
fenses of different specificity, over different time scales [1].
An innate immunity prompts a quick, general response
against any invading pathogen. It performs non-specific
tasks such as recruiting immune cells to the infection site,
identifying and removing foreign substances, and initiat-
ing adaptive immunity by presenting antigens to T-cells.
This adaptive immunity, in turn, is much more specific
and long-lasting. T-cells learn to identify the presented
pathogen, which will henceforth be neutralized when en-
countered. Memory gained by T-cells can last a life-time
and is rather specific.

As a pathogen mutates, its antigenic sequences change.
If this happens too quickly, strains generated within an
infected host can shortly become unrecognizable by T-
cells. During acute HIV infection, systemic failure occurs
when too many variants overwhelm the immune system
[2, 3]. A similar drifting mechanism accounts for new,
yearly strains of flu virus—but its slower evolutionary
pace results in new variants over the extended host pop-
ulation, not within each infected individual. Some cross-
immunity remains depending on how much each strain
has diverged from its ancestor. Historic trends of deaths
due to influenza show this mechanism at work [4]: This
virus evolves within a cluster of fairly similar strains for
years. During such periods, the immunity gained against
the cluster founder offers partial protection—decreased
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mortality is observed. Sporadically, the dominant strain
differs enough and cross-immunity dwindles. This new,
distant variant causes much larger mortality, then starts
a new cluster that dominates for the next cycles.

Cross-immunity impacts epidemic dynamics at many
levels. Can we describe mathematically how it alters the
unfolding of two consecutive, related outbreaks? Can
these effects help a population achieve herd immunity
faster? Cross-reactive protection can also happen be-
yond immediately related strains—even across different
viruses, if they share or converge upon domains of anti-
genic sequences [5–8]. At larger scales, how does cross-
immunity change overall statistical properties of recur-
ring epidemics? How much drift can we expect between
strains that cause large pandemics? And between vari-
ants causing smaller outbreaks? How are these properties
affected by a population’s lasting immune memory?

We tackle these questions using compartmental epi-
demiological models. The first, simplest such model, SIR,
was introduced by Kermack and McKendrick in 1927 [9].
They divided a host population into: S, for susceptible;
I, for infected; and R, for removed. Infected individuals
recover spontaneously (I → R) at a rate γ. Suscep-
tible hosts become infected (S → I) at a rate β, the
pathogen’s infectivity. This model initially portrays ei-
ther a decaying or rising number of infections, depend-
ing on whether the susceptible population is below or
above a threshold. In the second case, as the susceptible
compartment is consumed, a spontaneous decay ensues
after the model’s threshold is reached—resulting in the
characteristic SIR peak. In this model, individuals that
moved into the recovered compartment become immu-
nized. This is the origin of herd immunity—protected
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FIG. 1 Seeking simplest models of cross-immunity. We depart from the SIR equations and attempt to modify them as
little as possible to study cross-immunity between successive variants of a pathogen. a Model with sterilizing immunity. A strain
Σ1 provides, with a probability φ = φ2

1, full cross-immunization against a strain Σ2. b Model with attenuating immunity. All
individuals who underwent infection by Σ1 are partly protected against Σ2, such that their infection rate is reduced. c Rolling
strains with sterilizing cross-immunity. Several variants of a same pathogen hit a population after each-other, each providing
cross-immunity against future strains with probabilities φti<t. Immunity accumulates depending on rates of population renewal.
d Levels of cross-immunity are modeled as a random walks. Two strains that arrive close in time are more likely to offer more
protection against each-other. Variants that fail to cause an outbreak (e.g. because widespread sterilizing immunity prevents
it) do not generate immunity responses against future strains.

individuals are so abundant that the pathogen cannot
find enough susceptible hosts.

This simple model illuminates the basics of epidemic
dynamics, but it cannot capture the full range of phe-
nomena showcased by infectious outbreaks (e.g. cyclic
behaviors, the relevance of social structure, etc.). The
SARS-CoV-2 pandemic also exposed the limitations of
compartmental models to make helpful predictions [10].
Numerous alternatives are being developed to mitigate
these shortages [11–18]. Several models have incorpo-
rated cross-immunity as well [5, 19–21], often mixed
with additional ingredients (e.g. age structure, reinfec-
tion, seasonal forcing, etc.). These models are often used
to study the dynamical coexistence of viral strains. Here,
we attempt to tackle simpler questions in the most min-
imal models possible, with the hope of understanding
cross-immunity on its own. With this, we sketch limit
cases that must be recovered by more elaborate models
as additional ingredients are tuned down.

In section III.A we study two consecutive SIR-like

outbreaks. The first pathogen elicits a cross-immune
response during the second outbreak. We study two
distinct mechanisms, sterilizing and attenuating cross-
immunity, finding a mathematical correspondence be-
tween them. Either mechanism alters the SIR thresh-
old for herd immunity. We plot resulting thresholds as a
function of SIR parameters and cross-immunity levels—
thus visualizing conditions that prevent the second out-
break. It does not matter whether immunity is reached
artificially, hence we also chart protection offered at dif-
ferent vaccination rates and as a function of vaccine effi-
cacy. We showcase this useful analysis with empirical
measurements form SARS-CoV-2 variants. In section
III.B we study statistical properties of epidemics with
sterilizing cross-immunity over longer time periods. We
consider multiple SIR outbreaks, each caused by a new
strain parsimoniously evolved from previous ones. To
simulate this descent, we perform random walks over SIR
parameter space and over the range of cross-immunity.
We find that cross-immunity alters the combination of
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SIR parameters resulting in the largest outbreaks. We
study how our results depend on population renewal,
which measures immunity memory over the population.

II. METHODS

A. Models of two consecutive strains

Let there be an outbreak of a first epidemic strain, Σ1,
governed by SIR equations:

ds1
dt

= −β1i1s1,

di1
dt

= β1i1s1 − γ1i1,

dr1
dt

= γ1i1. (1)

Here, s1(t), i1(t), and r1(t) are the fractions of sus-
ceptible, infected, and recovered individuals over time.
They are normalized such that s1(t) + i1(t) + r1(t) =
1, thus only two of the equations above are needed
to keep track of the epidemics. Occasionally, we will
refer to non-susceptible individuals: n1(t) ≡ i1(t) +
r1(t). The parameters (β1, γ1) and the initial frac-
tions of population in each compartment, (s01, i

0
1, r

0
1) ≡

(s1(t = 0), i1(t = 0), r1(t = 0)), fully determine the un-
folding of the outbreak.

We can extract some valuable information from these
equations without solving them fully. For example, we
can define the strain’s basic reproduction number:

R0
1 ≡

β1
γ1
, (2)

which corresponds to the spread of Σ1 in a fully suscep-
tible population. We can also find out when the number
of new infections stops growing:

di1
dt

= 0⇔ β1i1s1 − γ1i1 = 0

⇒ s∗1 ≡
γ1
β1

=
1

R0
1

. (3)

When the number of susceptible individuals is above the
threshold defined by s∗1, the infection grows. If the sus-
ceptible population is below this threshold, individuals
already infected or recovered are so abundant that, in
average, the virus cannot find new hosts to spread onto.
Then, herd immunity has been reached and the outbreak
remits spontaneously.

We can rewrite this condition as:

n∗1 ≡ 1− γ1
β1

= 1− 1

R0
1

, (4)

such that the outbreak starts remitting when n1(t) > n∗1.
While n∗1 marks the peak of Σ1 infections, more inciden-
tal transmission is possible until it wanes off completely.

It is possible to compute the total population fraction,
r∞1 , that will eventually undergo infection if the outbreak
plays out naturally [25]:

r∞1 = 1 +
1

R0
1

W
(
−s01R0

1 exp
(
−R0

1(1− r01)
))
, (5)

where W (·) is Lambert’s W function and s01 and r01 are
initial conditions as introduced above (for Σ0: s01 ' 1,
r01 = 0).

Let us assume that, well after the first outbreak has
played out, a second strain, Σ2, arrives which follows
similar equations but with parameters (β2, γ2). This
strain will be subjected to similar dynamics depending
on whether the corresponding threshold (s∗2 ≡ γ2/β2,
n∗2 ≡ 1 − γ2/β2) has been reached. How might cross-
immunity provided by Σ1 alter this condition?

We introduce this effect in two different ways. The
first one assumes that Σ1 provides sterilizing immunity
with a probability φ (Fig. 1a). This means that, out
of all the individuals who underwent infection with Σ1,
a fraction φ of them cannot become infected by (and,
accordingly, cannot propagate) Σ2. The second kind of
cross-immunity (Fig. 1b) assumes that those who under-
went infection with Σ1 can become infected by Σ2, but
they do so at a reduced rate, β2/σ (with σ > 1). If they
become infected, they are as contagious as usual. We
refer to this as attenuating immunity.

We will use estimates of parameters from actual SARS-
CoV-2 strains to illustrate relevant information that can
be extracted from our model. Let us notate the original
SARS-CoV-2 strain as Σ0 and some of its variants of con-
cern as Σα, Σβ , Σδ, and Σo (with the subscripts carrying
the standard names). We will use the same Greek-letter
underscripts (and 0) to label model parameters when re-
ferring to SARS-CoV-2 strains, while we will use numbers
1 and 2 when referring to variants in the model.

B. Model of rolling strains

To study longer-term effects of cross-immunity, we
wish to learn how strains more distant in time might
affect statistical features of outbreaks—such as their av-
erage size (measured as the population fraction they in-
fect), typical SIR parameters of successful strains, or time
between successive outbreaks of a given magnitude. We
want to investigate how these properties are changed by
the extent of immunizing memory across the population
or by evolutionary mechanisms that might favor more
dissimilar variants. We try to do so with the simplest
model that builds upon insights from the previous sec-
tion.

We will model sterilizing immunity only. To do so,
we just need to keep track of individuals recovered from
each strain—as will become clear later. To build a similar
model for attenuating immunity we would need to keep
track of individuals that might undergo infection with
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FIG. 2 Sterilizing cross-immunity between two successive strains. a Minimum cross-immunity needed for Σ1 to prevent
Σ2 outbreaks as a function of Σ1-recovered individuals, r∞1 , and Σ2-herd-immunity threshold, n∗2. The white line marks when
outbreaks become unavoidable (Σ1 cannot generate enough protection). b Same, as a function of basic reproduction numbers,
R0

1 and R0
2. The white curve (mapped non-linearly into this representation) again bounds unavoidable outbreaks. A vertical

blue line marks R0 = 3.15, a robust estimate of R0 for the original SARS-CoV-2 virus [22, 23]. c Same, as a function of
Σ2 model parameters, β2 and γ2; assuming R0

1 = 3.15. Unavoidable outbreaks appear confined to a small region (lower-right
corner). d-f Cross-immunity in SARS-CoV-2. d Protection if the original virus, Σ0, had played out its natural SIR cycle.
The black curve (cross-section of panel b with R0 = 3.15) separates all variants that would have been avoided in this scenario
(white region). The horizontal red line marks an estimated level of Σ0-elicited protection against Σβ [24]. If Σ0 had played out
naturally before Σβ hit, Σβ outbreaks would have been halted unless R0

β
>∼ 5. e Protection assuming 100% vaccination rate

(solid black curve), and assuming ‘just enough’ Σ0 infections before its remission (i.e. only n∗1 people got infected, dashed black
curve). Protection as in d (dashed gray curve) is shown as reference. Red lines mark Σ0-elicited cross-immunity estimated
against Σα (solid), Σδ (dashed), and Σo (dotted). Both Σα and the deadly Σδ would have been prevented in fully vaccinated
populations unless they had and impressive R0 >∼ 10. f Protection offered by vaccination rates (2 doses) in Portugal (Por),
Singapore (Sin), Spain (Sp), China (Ch), Italy (It), Japan (Jp), United Kingdom (UK), France (Fr), Germany (Ger), India (In),
United States (US), Brazil (Br), Russia (Ru), Cuba (Cu), South Africa (SA), and Nigeria (Ni) as of October 16, 2021. Note
the scale in the horizontal axis (different from d, e). Estimated cross-immunity from Σ0 is marked (red lines), but estimates of
vaccine efficiency could be used instead.

several strains and might acquire different levels of pro-
tection. Also, while we have a closed form for r∞ in the
SIR model (Eq. 5, which will become important), we do
not have a similar expression for the model that results
from attenuated immunity.

Let us assume a series of strains, [Σ1,Σ2, . . . ,Σt, . . . ],
rolling one after another (Fig. 1c). At any time, t, there
is only one active variant, Σt, such that two outbreaks
never overlap. We are hence assuming that the dura-
tion of an outbreak constitutes a unit of time. We also
assume that these rolling strains are variants of a same
pathogen—as it happens in COVID-19 waves. At a mi-
croscopic level, viral sequences mutate, resulting in new
strains that descend from each-other with slight pheno-

type variations. We model this relatedness by generating
SIR parameters of successive variants from an uncorre-
lated, unbiased random walk:

βt+1 = βt + ηβ ,

γt+1 = γt + ηγ . (6)

Here, ηβ and ηγ are stochastic variables drawn from
a Gaussian distribution with mean 0 and standard de-
viations σβ and σγ respectively (in most simulations,
σβ/γ = 0.1). Both β and γ are positive, thus the ran-
dom walk is bounded from below. We also set arbitrary
upper bounds at β+ = 10, γ+ = 10 to prevent unrealis-
tically high infectivity and recovery rates.
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FIG. 3 Effects of attenuating cross-immunity. a-c Same as in 2a-c. The cross-immunity parameter now spans σ ∈ [1,∞),
and has been cropped to aid the visualization (note differences in color bars, which were adjusted to enhance the displayed
gradients). Solid (black or white) curves indicate σ = 2. Dashed (black or white) curves indicate σ = 5. Dotted white curves
indicate σ = 10. Red curves indicate the boundary beyond which no level of cross-immunity can avoid new outbreaks. These
regions match those for sterilizing immunity in all parameter spaces, anticipating a mapping between both cross-immunity
mechanisms. d, e Same as in 2d, e. d The dashed vertical line marks the level of protection achieved by the original SARS-
CoV-2 virus against the β variant. To achieve the same level of protection with attenuating immunity, we seek the intersection
of this vertical line with the black curve (which is, in turn, a vertical cut of panel b with R0 = 3.15). f Eq. 17 (black
curve) formalizes the equivalence between both models. Levels of attenuating immunity needed to match estimated sterilizing
immunity of real SARS-CoV-2 variants can be read from the intersections of horizontal red lines and the corresponding vertical
marks.

Eq. 5 allows us to compute r∞t (the fraction of non-
susceptible population after Σt completed its natural
cycle). Since we consider rolling strains with cross-
immunity, a part of this fraction (r0t , which we calculate
below) consists of people immunized by earlier strains.
This r0t works as an initial condition. Another part of
r∞t consists of people who properly underwent infection
with Σt. Let us note this later fraction of the total pop-
ulation as r̃∞t . These are the people who might gain
cross-immunity thanks to Σt.

Let any earlier, successful strain, Σi, provide cross-
immunity against later variants, Σj>i. This happens

with a likelihood φji ∈ [0, 1] for each recovered individ-

ual. Thus, due to Σi, a fraction r̃∞i φ
j
i of the popula-

tion is immunized against Σj when it hits. Similar frac-
tions of cross-immunized population will be generated by
other variants that preceded Σj . These fractions might
or might not overlap—i.e. a person might acquire steriliz-
ing immunity against Σj from one, two, or more different
ancestors. To calculate r0j , we need to compute the frac-
tion of population who acquired cross-immunity from any

(at least one) strain that preceded Σj . Due to the pos-
sible overlaps, this becomes cumbersome. It is easier to
note that the protected population is the complementary
of the population who did not get immunity from any
strain. This can be written as an equation more easily:

r0j = 1−
∏
i<j

(
1− r̃∞i φ

j
i

)
. (7)

When Σj arrives, we can plug in this initial condition
to the SIR equations to check the additional fraction of
immunized population that Σj produces before it remits
spontaneously:

ñ∗j = n∗j − r0j . (8)

If ñ∗j ≤ 0, Σj fails to spread in the population. If ñ∗j > 0,
Σj causes an outbreak. The amount of people infected
by this new variant can again be calculated through Eq.
5 as r̃∞j = r∞j − r0j . We identify r̃∞j ∈ [0, r∞j ] as the
magnitude or size of the Σj outbreak.

For cross-immunity, relatedness between strains is
important. We model it using random walks again,
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now bounded within φji ∈ [0, 1] (Fig. 1d). Say that
Σi produces an outbreak; but that the next strains,
Σi+1, . . . ,Σj−1, fail to spread; until Σj results in an out-
break again. We kick-start a random walk at t = i that
begins with φii = 1 (i.e. Σi offers full protection against
itself). For each successive strain, whether they produce
an outbreak or not, we keep track:

φt+1
i = φti + ηφ, (9)

with ηφ a stochastic Gaussian variable of mean 0 and
standard deviation σφ (usually σφ = 0.1). Non-spreading
variants do not produce cross-immunity, hence we do
not start random walks for any of them. After Σj un-
folds, it does generate cross-immunity, and a new ran-
dom walk is started with φjj = 1. Protection against
future strains might be gained from either Σi or Σj now,
thus the former random walk remains active. Nothing
forces these random walks to offer less cross-immunity
over time, meaning that a strain might offer higher pro-
tection for variants further in the future than for closer
ones. This is counter-intuitive, but it has happened for
SARS-CoV-2 waves as Σ0 offered higher cross-immunity
against Σδ than against Σα and Σβ (Fig. 3) [24].

We should keep a random walk running for each suc-
cessful strain, but carrying so many parallel processes
is computationally expensive. To solve this problem,
we introduce another relevant ingredient that is well
grounded in biology and epidemic dynamics—population
renewal. We assume that, at each time unit (i.e. after
each new strain’s cycle), a fraction δ of the population is
renewed. This has no effect for people who did not ac-
quire immunity—as they are replaced by new people who
are not immunized either. On the other hand, the pop-
ulation fraction that underwent infection by Σi becomes
a time-dependent decaying variable:

r̃∞i → r̃∞i (t) = (1− δ)t−i · r̃∞i . (10)

To ease the computational load, we stop tracking any
variant whose r̃∞i (t) falls below 1% of population size.

The parameter δ introduces a measure of immune
memory across the population. If δ = 1, no memory is
ever left of successful strains. We obtain a trivial series
of SIR outbreaks with parameters drawn from a random
walk. For δ < 1, the population keeps a memory of the
epidemics it endured—thus affecting which future strains
can possibly succeed and, hence, which model parameters
are likely to generate outbreaks.

III. RESULTS

A. Cross-immunity between two consecutive strains

1. Sterilizing immunity

The mechanism for sterilizing cross-immunity leaves
the equations for the second strain (Eqs. 1) unchanged,

but alters their initial conditions—a population fraction
φr∞1 starts as non-susceptible (Fig. 1a). The derivative
of infections at the second outbreak onset reads:

di2
dt

∣∣∣∣
t=0

= (β2(1− φr∞1 )− γ2) i2. (11)

By equating this to zero, we find a threshold that deter-
mines whether sterilizing cross-immunity can prevent the
outbreak:

0 = β2(1− φr∞1 )− γ2

⇒ φ∗ ≡ 1− γ2/β2
r∞1

=
n∗2
r∞1

. (12)

If φ > φ∗, Σ1 provides enough sterilizing cross-immunity.
From the beginning, Σ2 cannot find sufficient hosts—
any impending outbreak remits spontaneously. If φ <
φ∗, enough susceptible individuals remain for Σ2 to take
hold. Fig. 2a shows the amount of cross-immunity needed
to avoid the second outbreak, φ∗, as a function of n∗2
and r∞1 . For n∗2 > r∞1 , φ∗ > 1; hence the spread of Σ2

becomes unavoidable.
φ∗ only depends on model parameters through the

basic reproduction numbers R0
1/2. This makes it eas-

ier to use empirical estimates from real outbreaks. Fig.
2b shows φ∗ as a function of R0

1 and R0
2. The condi-

tion for unavoidable outbreaks (n∗2 > r∞1 ) becomes non-
linear in this representation. A vertical blue line marks
R0

0 = 3.15, a robust estimate for the original variant, Σ0,
of the SARS-CoV-2 virus [22, 23]. This allows us to vi-
sualize φ∗ as a function of infectivity, β2, and recovery
rates, γ2, of potential variants for this actual virus (Fig.
2c).

The line marking R0
0 = 3.15 (Fig. 2b) does not inter-

sect n∗2 = r∞1 within the shown R0
2 range. This means

that all SARS-CoV-2 variants with R0
2 < 10 could have

been blocked if Σ0 had played out completely and it of-
fered enough sterilizing cross-immunity. This becomes
more clear in Fig. 2d (which plots the relevant cross-
section of Fig. 2b). For each possible new variant with
R0

2 < 10, and assuming Σ0 played out fully, infecting a
population fraction r∞0 , it exists a feasible level of ster-
ilizing cross-immunity, φ∗

(
R0

2

)
< 1 (black curve), that

would prevent any new outbreaks.
In Fig. 2d, a horizontal red line marks the estimated

protection that Σ0 offers against Σβ [24]. (Actually,
the likelihood that Σ0 infection prevented symptomatic
Σβ infection—hence a best-case scenario.) The intersec-
tion of this protection level with φ∗

(
R0

2

)
(dashed blue

line) indicates all the variants that Σ0 would have pro-
tected against if it had played out naturally (infecting
a population fraction r∞0 ). Roughly, any variant with
R0

2
<∼ 5 would have been prevented with this level of

cross-immunity.
We can use similar plots to evaluate whether new

variants should worry us given levels of cross-immunity
elicited by a vaccine and fractions of vaccinated popu-
lation. In Figs. 2e, f, horizontal red lines mark steriliz-
ing protection (estimated as above [24]) provided by Σ0
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FIG. 4 Model of rolling strains with fixed population renewal, δ = 0.1. a Example of the model dynamics during
sparse (a1) and frequent (a2) epidemic outbreaks. We show the population fraction immune to each new strain (r0, black), and
each outbreak’s magnitude (r̃∞, red). b Average outbreak magnitude as a function of model parameters β and γ. c Largest
outbreak as a function of model parameters β and γ. d Probability density function of the basic reproduction number among
successful strains with cross-immunity (black) compared to successful strains in the standard SIR model (red). A red dashed
curve outlines the distribution of SIR reproduction numbers to show that both scenarios show similar tails for large R0. e Joint
probability density function of epidemic magnitudes, r̃∞, and protected fraction of the population when each successful strain
hits, r0. f Probability density function of increases in model parameter between two consecutive successful strains.

against variants Σα (solid), Σδ (dashed), and Σo (dot-
ted). We assume that vaccines prompt a same cross-
immune response. The fraction of vaccinated population
enters Eq. 12 as an initial condition, instead of r∞1 , re-
sulting in altered φ∗

(
R0

2

)
curves.

Fig. 2e shows two extreme cases: (i) just enough peo-
ple to stop Σ1 was vaccinated (dashed curve) and (ii)
the whole population was vaccinated (solid curve). Fig.
2f shows φ∗

(
R0

2

)
depending on vaccination rates across

the world as of Oct. 16, before the deadly Σδ wave hit
most of the represented countries. Estimates of R0

δ range
between 3.2 and 6 [26–28]. In this best-case scenario,
Σδ could have been avoided by fully vaccinated popu-
lations. Cross-immunity offered for Σo would not have
been enough to stop it unless its basic reproduction num-
ber were very low (which, likely, was not [29, 30]).

2. Attenuating immunity

Our second mechanism is closer to implementations of
cross-immunity in the literature [5, 19–21]. Individuals
who underwent Σ1 infection remain susceptible during a
Σ2 outbreak, but their infection rate is attenuated: β̄2 ≡

β2/σ, with σ > 1. This entails both a change of initial
conditions and of model equations for Σ2 outbreaks (Fig.
1b):

ds̄2
dt

= −β2
σ
s̄2i2,

ds2
dt

= −β2s2i2,

di2
dt

= β2i2

( s̄2
σ

+ s2

)
− γ2i2,

dr2
dt

= γ2i2. (13)

s̄2(t) represents the fraction of susceptible individuals
with attenuated infection rate, while s2(t) are regular
susceptible hosts. Population is normalized again, mak-
ing one of these equations redundant.

We check when Σ2 stops spreading:

di2
dt

= 0⇔ β2i2

[ s̄2
σ

+ s2

]
− γ2i2 = 0

⇒ s̄2
σ

+ s2 =
γ2
β2

=
1

R0
2

. (14)

We get a herd-immunity threshold for the weighted sum
of susceptible individuals: If s̄2/σ + s2 < 1/R0

2, then
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Σ2 cannot cause enough new infections in average—the
outbreak remits spontaneously. If s̄2/σ+ s2 > 1/R0

2, the
outbreak grows until the susceptible populations become
depleted enough. Both s̄2(t) and s2(t) decrease over time
always, thus they can only pass this threshold once—i.e.
these dynamics cannot bounce back up.

We substitute the initial conditions after Σ1 to check
whether Σ2 is spontaneously halted at its onset. A pop-
ulation fraction r∞1 starts in S̄, while 1− r∞1 start out as
regular susceptible individuals:

r∞1
σ

+ 1− r∞1 =
γ2
β2
. (15)

By solving for σ, we find a threshold that determines
whether attenuating cross-immunity can prevent the out-
break:

σ∗ ≡ r∞1
γ2/β2 − 1 + r∞1

=
r∞1

r∞1 − n∗2
. (16)

If σ is larger than this threshold, then the level of atten-
uation is enough as to halt a Σ2 outbreak.

For n∗2 → 0, σ∗ → 1; thus any attenuation is enough
to halt Σ2. To reach this limit, β2 itself must become
very small—hence explaining why any σ > 1 would suf-
fice. On the opposite end (n∗2 → r∞1 ), attenuating cross-
immunity cannot be achieved since σ∗ →∞. Eq. 16 has
a singularity at n∗2 = r∞1 , after which σ∗ becomes neg-
ative (Fig. 3a), and is thus meaningless for n∗2 > r∞1 .
But we know that, due to parsimony, there is no level of
attenuation that can prevent outbreaks in that regime.
Thus, we recover the same limit condition as for steriliz-
ing cross-immunity. These results, again, only depend on
model parameters through the basic reproduction num-
bers. Fig. 3b shows σ∗ in the R0

1 − R0
2 plane. We mark

the boundary of unavoidable outbreaks (n∗2 = r∞1 , red)
and the estimate R0

0 = 3.15 for the original SARS-CoV-2
strain (blue). By holding this value fixed, we can repre-
sent σ∗2 as a function of γ2 and β2 (Fig. 3c).

Fig. 3d plots the cross-section of Fig. 3b with R0
0 =

3.15. The black curve marks σ∗
(
R0

2

)
, the attenuation

level needed to halt new SARS-CoV-2 strains as a func-
tion of R0

2. The dashed blue line marks the separation
between strains that could and could not be halted by
sterilizing cross-immunity. The red horizontal line uses
σ∗
(
R0

2

)
to track back the level of attenuation that would

offer a similar protection: Σ2 infection following Σ0 re-
covery should be ∼ 7 times less frequent than natural
infection. Similar translations are possible for scenar-
ios with population immunized through vaccination (Fig.
3e).

We make this equivalence between models rigorous by
demanding that the n∗2 featured in Eqs. 12 and 16 take

the same value, obtaining:

σ∗ =
1

1− φ∗
,

φ∗ =
σ∗ − 1

σ∗
. (17)

Fig. 3f shows this mapping between models. We mark
levels of attenuating immunity needed to match steril-
izing immunity for SARS-CoV-2 variants. Eq. 17 does
not depend on the fraction of immunized population—
suggesting a deep correspondence between both immu-
nizing mechanisms.

B. Cross-immunity between rolling strains

Model dynamics alternate (i) long periods of no ac-
tivity with periods of (ii) sparse and (iii) very frequent
outbreaks. The former happen when the random walk
is confined to the upper-left half of the (β, γ) plane
(no-epidemics region, Fig. 2c). We name this area Z0,
and we call Z1 to the lower-right hemiplane (where SIR
outbreaks always happen). If the random walk spends
enough time in Z0, all memory about earlier outbreaks is
lost. Fig. 4a1 shows model behavior during sparse out-
breaks. Such sparsity might be due to the random walk
dwelling near the Z0 − Z1 boundary. Decay dynamics
following population renewal stand out. The fraction of
protected population remains similar to outbreak mag-
nitudes. Fig. 4a2 shows model behavior during frequent
outbreaks. This regime corresponds to deep dives into
Z1. New successful strains appear at every time step.
The dynamics are dominated by the accumulated immu-
nized population. The fraction of protected population
is much larger than the average outbreak size.

We are interested in statistical properties of successful
strains over long periods. Therefore we ran our model for
106 time steps under different experimental conditions.

Fig. 4b shows average outbreak magnitude as a func-
tion of model parameters (β, γ) with δ = 0.1. Outbreak
sizes are greatly reduced with respect to SIR processes
without cross-immunity (Sup. Fig. 1f). Fig. 5a shows
that outbreak size mitigation depends linearly on popu-
lation renewal. Both with (Fig. 4b) and without (Sup.
Fig. 1f) cross-immunity, outbreak magnitude becomes
larger the deeper we dive into Z1. But only with cross-
immunity, relatively large outbreaks stand out around
the lower-left corner of parameter space, near the Z0−Z1

boundary. This becomes more evident when plotting the
largest outbreak as a function of model parameters (Fig.
4c). With cross-immunity, the largest outbreaks happen
exclusively in this small region, while larger outbreaks
happen for broader combinations of parameters without
cross-immunity (Sup. Fig. 2f). Indeed, if the random
walk reaches deep into Z1, it will follow a long path with
frequent successful strains, thus accumulating immunized
population unless renewal is high.
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FIG. 5 Model of rolling strains—comparison with
varying population renewal. a Average outbreak mag-
nitude as a function of population renewal. b Average model
parameters β (black) and γ (red) of successful strains as
a function of population renewal. We observe a striking
constancy. Solid curves represent unweighted averages and
shading represents unweighted standard deviations. Dashed
curves represent averages weighted by outbreak size. Dotted
horizontal lines help visualize the slight increase in γ from
its value at δ = 0.05 to δ = 1. c Basic reproduction num-
bers from average model parameters from panel b (both un-
weighted, solid, and weighted, dashed) as a function of pop-
ulation renewal. Dotted horizontal lines help visualize trends
within the studied range. d Inter-event interval as a function
of event size for several values of population renewal.

Notwithstanding this localization of large outbreaks for
small renewal (hence large cross-immunity), the average
β and γ appear relatively constant for varying δ (Fig.
5b). This suggests that, overall, cross-immunity prevents
(or weakens) outbreaks similarly throughout parameter
space. Upon close inspection, these averages actually
change slightly. Dotted lines in Fig. 5b help visualize
that γ(δ = 0.1) < γ(δ = 1). This effect becomes more
salient in the basic reproduction number (Fig. 5c, since
R0 = β/γ has γ in the denominator, hence amplifying
trends). R0 stands for a growth factor, thus its varia-
tion has an exponential effect in the dynamics. Changes
in this parameter with respect to SIR without cross-
immunity stand out in distributions of R0 for successful
strains (Fig. 4d). Distributions for both δ = 0.1 (black)
and δ = 1 (red) present similar tails, but their peaks (at
1 and ∼ 1.2 respectively) differ.

A population’s current immunization state constrains
the characteristics of the next, possible successful strains.
Fig. 4e shows how a given amount of protected popula-
tion limits the magnitude of possible outbreaks. This
effect wanes as increased population renewal erases the
immune memory (Sup. Fig. 3). A current immunization
state also influences likely increases in model parame-
ters, β and γ. The underlying random-walk is unbiased,
but the distribution of β and γ increases becomes asym-
metric (Fig. 4f). If a random-walk step increases β and
decreases γ (deeper into Z1), the strain becomes more
aggressive, likely producing an outbreak despite existing
cross-immunity. If the step goes in the opposite direction
(towards Z0), the resulting, less-aggressive strain might
be averted by population immunity. Then, the next out-
break shall arrive when memory is lost and the random
walk has drifted further away. This asymmetry is lost
as population renewal increases (Sup. Fig. 4). Fig. 4f
also shows frequent events along the diagonal ∆β = ∆γ.
These events result from returns from Z0 into Z1 (re-
entry points can be arbitrarily far apart along the Z0−Z1

boundary).
Average time between consecutive outbreaks of a given

size (Inter-Event Times, IET ) grows monotonously and
include a stark non-linearity for any δ 6= 1 (Fig. 5d).
The step-like behavior suggests a singular, δ-dependent
outbreak size, r∗(δ), such that larger events very swiftly
become very rare (roughly, at the intersection of IET
curves with the dashed black line, Fig. 5d). This invites a
qualitative distinction between epidemic (frequent, small
magnitude) and pandemic (rare, larger size) dynamics
that emerges naturally out of cross-immunity (note that
r∗(δ = 1) = 1, thus events of all sizes are fairly equally
frequent in memory-less SIR).

IV. DISCUSSION

We studied simple models of cross-immunity to see
how it affects dynamics in short- and long-term scopes.
Starting from the SIR equations (a cornerstone of epi-
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demic dynamics), we added as little as possible to include
cross-immunity, avoiding additional dynamic ingredients
(e.g. reinfection, strain coexistence and competition, pop-
ulation structure, etc.) present in other cross-immunity
models [5, 19–21].

Regarding short-time effects, we investigated two
mechanisms: (i) A past strain might provide sterilizing
immunity against a future strain. Each recovered indi-
vidual has a chance of becoming sterile to the second
pathogen. (ii) A past strain does cause attenuating im-
munity against a future strain. All affected individuals
might become infected by the second variant, but at a
lower rate. Both mechanisms modify the thresholds of
herd immunity of the standard SIR model. Our thresh-
olds depend on the magnitude of the first outbreak, and
on the likelihood of sterilization (in the first case) or on
the level of attenuation (in the second).

These thresholds result in intuitive maps that sepa-
rate which future strains can and cannot cause outbreaks.
These plots also asses whether vaccination rates and vac-
cine efficiency suffice to stop new variants—a point illus-
trated with actual data from SARS-CoV-2 waves. The
reliability of these charts depends on accurate estimates
of vaccine efficiency and each variant’s basic reproductive
number. Measuring these parameters might require that
a strain spreads throughout a population (which would
preempt the utility of our approach). However, lab ex-
periments can compare emerging variants to earlier ones,
rendering quick proxies to build preliminary maps for
variants of concern.

Discussion regarding herd protection usually consid-
ers sterilizing immunity alone. Hopes of herd immunity
against SARS-CoV-2 often faltered as it became evident
that vaccines would not be sterilizing [7]. Following the
same logic, several research strategies bet on sterilizing
vaccines as a more definitive way out of this and other
pandemics [31–35]. Our results show that attenuating
immunity also modify SIR thresholds substantially. We
further prove an equivalence (encapsulated by Eqs. 17)
between both immunity mechanisms, offering new hope
in dealing with epidemic scenarios.

In a relevant perspective, Lipsitch et al. [7] reviewed
possible epidemiological scenarios for the COVID-19 pan-
demic depending on cross-reactive activity developed by
different kinds of T-cells localized in distinct tissues.
Three cases are studied: (i) reduction of lung burden,
in which antibodies only mitigate the severity of late-
stage COVID disease; (ii) accelerated antibody response,
which mitigates the disease and shortens its infectivity
period; and (iii) fast and strong response in the upper res-
piratory tract (URT), which would halt within-organism
spread swiftly, and which comes the closest to sterilizing
immunity. Implications to the epidemiological dynam-
ics are discussed for all cases, but only in the third one
(which the authors consider the less likely) do they ex-
pect a reduced herd-immunity threshold.

We should revise all three scenarios in a more opti-
mistic note. On the one hand, even if it is unlikely that

URT response is prompt and strong enough as to be
sterilizing, it might still result in a reduced infectivity
rate. Hence, even a weak response of the third kind could
trigger our mechanism of attenuating cross-immunity.
On the other hand, both (i) and (ii) cases result in
reduced viral load and duration of the infective process,
lowering the chances that cross-immunized individuals
infect others. This effect is different from the one that
we model, but it too results in a reduced infectivity (like
β/σ) for a population subset. Based on our results, we
expect changes in the herd-immunity thresholds in all
scenarios. Herd immunity is a stark non-linear effect that
causes spontaneous remission of epidemic outbreaks.
Of all epidemiological consequences of cross-immunity
discussed in [7], more lenient thresholds is the most
impactful and desired possibility.

Regarding long-time effects, we simulated a succession
of strains rolling one after the other and offering cross-
immunity over longer periods of time. The length of these
periods is loosely controlled by population renewal—the
smaller it is, the larger the population-wide effect of
cross-immunity.

Increased cross-immunity reduces the average epidemic
magnitude linearly. When population renewal is small,
the largest outbreaks become confined to a small region of
parameter space—while, in memory-less SIR processes,
large outbreaks happen for broad combinations of infec-
tivity and recovery rates. Thus, cross-immunity alters
the phenotype of strains from which extreme events can
be expected. In our model, a natural distinction appears
between frequent, relatively small outbreaks and rare,
relatively large episodes. This distinction (not present in
SIR processes) invites an emergent classification of “epi-
demic” and “pandemic” events.

Existing cross-immunity levels constrain which model
parameters (hence which strain phenotypes) might pro-
duce an outbreak next. Our model (built upon an unbi-
ased random walk) has no explicit preference regarding
whether infectivity and recovery rates should increase or
decrease as strains roll out. Cross-immunity induces an
asymmetry favoring more infective strains with longer
recovery rates.

There is ample room for future exploration regarding
this last point. We do not distinguish between recovered
and deceased individuals, nor do we track disease
severity. Very likely, pathogens causing more serious
illness, with increased death tolls, will induce stronger
(cross-)immunity. This should further change where, in
parameter space, large outbreaks are expected; as well
as the phenotypes into which an active pathogen (e.g.,
currently, SARS-CoV-2) might evolve as constrained
by cross-immunity. We modeled one of these aspects
using random walks biased towards less averted strains
(i.e., lower φ; not shown). We did not find qualitative
differences from the behavior reported in this paper.
This indicates that more ingredients are needed to
expand the model in this direction.
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A limitation of our model with rolling strains is that we
only implement sterilizing immunity, as attenuating im-
munity poses some computational challenges. However,
we can use the equivalence captured by Eq. 17 to find
out what strains would have had similar effects using our
second mechanism.

A more general limitation is in assuming SIR equations
throughout. More factors, both biological (incubation
period, super-spreaders, etc.) and social (confinement,
fear, social distancing, etc.), affect the empirical param-
eters from SARS-CoV-2 analyzed. Our charts should be
taken as limit cases. It is noteworthy, however, that we
can produce meaningful tools for a real, ongoing epidemic
process—this should be furthered. Note also that most
of these factors would slow viral spread compared to ac-
tual SIR processes. Thus, more accurate models should
result in more lenient thresholds.

The SARS-CoV-2 pandemic made explicit a very im-
portant limitation of SIR-like models: while they re-
veal overall trends and the existence of phenomena such
as herd-immunity thresholds, they are useless to pre-
dict even the most salient aspects of a specific out-
break (namely, its magnitude and duration) [10]. We
explore our models with the same philosophy, avoid-
ing specific predictions and seeking broad qualitative
changes induced by cross-immunity. To overcome the
problems of compartmental models, and allow us to
apply them in more realistic situations, two strategies
are being explored: (i) To produce more detailed equa-
tions, that include as many aspects as possible. In
this approach, cross-immunity should be indispensable,
as the interactions between SARS-CoV-2 variants illus-
trate. (ii) To gather data at a microscopic level, register-
ing sub-regional incidences, capturing population move-
ments across road or airplane networks [14, 18, 36, 37],
or quantifying the structure of social contact networks
(often depending on age and cultural aspects of a given
group) [38]. Regarding prediction, these details might
work similarly to how abundant, localized data allevi-
ates the chaotic weather dynamics—but gathering such
low-level data in human behavior has a distinct ethic
dimension that makes it problematic. Regarding qual-
itative aspects of epidemic dynamics, such microscopic
data might help us understand where (in a spatial or so-
cial network) (cross-)immunity could be more effective—
and hence design, e.g., smart quarantine or vaccination
strategies [17, 36].
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SUP. FIG. 1 Average outbreak size as a function of model parameters in the rolling strings model. Death rates,
a δ = 0.1, b 0.3, c 0.5, d 0.7, e 0.9, f 1. As δ → 1, a random sampling of SIR model outbreaks is recovered.
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SUP. FIG. 2 Largest outbreak size as a function of model parameters in the rolling strings model. Death rates,
a δ = 0.1, b 0.3, c 0.5, d 0.7, e 0.9, f 1. For small enough population renewal (i.e. large cross-immunity memory), the largest
outbreaks are confined to a small region of parameter space (bottom left, near the Z0 − Z1 border). When cross-immunity is
removed (as δ → 1), very large outbreaks happen for almost any combination of model parameters.
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SUP. FIG. 4 Joint probability density distribution of increases in model parameters β and γ between consecutive
outbreaks. Death rates, a δ = 0.1, b 0.3, c 0.5, d 0.7, e 0.9, f 1. While the underlying random walk is perfectly symmetric
(barring effects at the border of parameter space), cross-immune memory induces an asymmetry in the likelihood of observing
increases in β and γ between consecutive successful strains. Symmetry is recovered as increased population renewal erases
cross-immune memory from the population.
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SUP. FIG. 5 Probability density distributions of extant cross-immunity at outbreaks. Death rates, a δ = 0.1, b 0.3,
c 0.5, d 0.7, e 0.9, f 1. In solid black, usual probability density distribution of extant cross-immunity at outbreaks. In dashed
red, probability density distribution of extant cross-immunity at outbreaks weighting each φ by the amount of population that
the ancient strain still offers protection to. For large memories, the distribution should approach the limit of an unbiased
random walk (uniform except for border effects). For lower memory, cross-immunity cannot diffuse much from its starting
point (φ = 1). The actual distribution has spikes at φ = 0 and φ = 1 due to the random walk persistently bouncing against
the borders—this has been removed for clarity.
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