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ABSTRACT

Background:

Pathogenic mitochondrial (mt)DNA variants cause neuromuscular disease with highly variable

severity and phenotypic presentation, the reason for which is poorly understood. Cells are thought to

tolerate the presence of pathogenic mtDNA variants up to a threshold proportion with little or no

functional consequence, developing significant respiratory complex defects above this threshold. We

developed a robust method to identify deficient muscle fibres, applied it to biopsies from 17 patients

carrying the common m.3243A>G variant and examined the relationship between respiratory

deficiency and m.3243A>G level in hundreds of single skeletal muscle fibres. We hypothesised that

single-cell between-patient differences may explain the vast clinical heterogeneity of mtDNA disease.

Results:

Immunohistochemical measurements of respiratory complexes I and IV and unsupervised machine

learning identified muscle fibres with respiratory deficiency; the pattern of deficiency and proportion of

deficient fibres (range 0-64%) varies between patients. Tissue homogenate m.3243A>G level is a

poor surrogate for the broad and complex distributions of m.3243A>G level in single cells from

individual patients. Estimated thresholds do not differ between patients, but sections with narrow

m.3243A>G distributions have a lower proportion of deficient fibres.

Conclusions:

Inter-individual differences in respiratory complex deficiency in muscle fibres from patients with

m.3243A>G are more complex than previously thought and may be driven by differential segregation

and expansion of mtDNA molecules. Our quantitative observations could constrain the range of

feasible mechanisms responsible for phenotypic diversity in mitochondrial disease.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.04.22272484doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:conor.lawless@ncl.ac.uk
mailto:sarah.pickett@ncl.ac.uk
https://doi.org/10.1101/2022.04.04.22272484
http://creativecommons.org/licenses/by/4.0/


BACKGROUND

The most common pathogenic mitochondrial (mt)DNA variant is an A to G transition at position 3243

(m.3243A>G) within the MT-TL1 gene which encodes tRNALeu(UUR) and causes a mitochondrial

translation defect (Goto et al. 1990; Manwaring et al. 2007; Elliott et al. 2008). Initially identified due to

its association with a syndrome defined by mitochondrial encephalomyopathy and stroke-like

episodes (MELAS), it is associated with highly variable disease severity, rate of progression and

phenotypic presentation (Kaufmann et al. 2011; de Laat et al. 2012; Nesbitt et al. 2013; Chin et al.

2014; Mancuso et al. 2014; Grady et al. 2018). Individuals who carry m.3243A>G can be clinically

asymptomatic or can suffer from a number of disorders including diabetes, deafness, myopathy,

cardiac disease, stroke-like episodes and gastro-intestinal disturbances. The proportion of

m.3243A>G mutant mtDNA varies between individuals, between tissues and between cells (Ozawa et

al. 1998; Sue et al. 1998; Rahman et al. 2001; de Laat et al. 2012) and, along with other factors such

as mtDNA copy number, age and nuclear background, contributes to this variability (reviewed in

(Boggan et al. 2019; Richter et al. 2021)). Nevertheless, a large proportion of variability in both

phenotypic presentation and disease severity remains to be explained (Chinnery et al. 1997; Fayssoil

et al. 2017; Grady et al. 2018; Pickett et al. 2018).

Unlike nuclear DNA, mtDNA replicates continuously in post-mitotic tissue by a process called ‘relaxed

replication’, which is independent of the cell cycle (Gross et al. 1969; Bogenhagen and Clayton 1977;

Chinnery and Samuels 1999). mtDNA turnover is likely a driving factor behind the stochastic

expansion of mtDNA variants, which are believed to contribute to age-related pathogenicity (Elson et

al. 2001; Müller-Höcker et al. 1992; Bua et al. 2006; Greaves et al. 2014). mtDNA also undergoes

‘strict replication’, which, although not tied directly with the cell cycle as in the replication of nuclear

DNA, nevertheless occurs to facilitate cell division, for example during embryogenesis, and which

includes random segregation of mitochondrial genomes into daughter cells. The relative contribution

of these relaxed and strict replication processes to mtDNA population dynamics, via the total number

of replications experienced by an individual mtDNA molecule, is unknown (reviewed in (Lawless et al.

2020)). The accumulation of pathogenic variants to a high level in some cells results in a mosaic

pattern of respiratory complex deficiency; assuming no significant changes in mtDNA copy number,

normal respiratory chain function is maintained up to a certain threshold proportion or level of

pathogenic variant, above which substantial respiratory complex deficiency occurs (Rossignol et al.

2003). Studies in transmitochondrial cybrid cells lines containing different proportions of mutant

mtDNA demonstrated the existence of this threshold, which differs between variants (Wallace 1986;

Hayashi et al. 1991; Chomyn et al. 1992), however, variability also occurs between cell lines indicating

that nuclear background may modify the cellular response to variant level (Dunbar et al. 1995).

Furthermore, the genetically unstable and mitotic nature of these cells means they may not be

representative of the post-mitotic patient tissues which are most frequently affected by mitochondrial

disease (Sasarman et al. 2008a; Gorman et al. 2016).
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Early investigations into threshold effects of the pathogenic m.3243A>G variant in patient biopsies

used sequential cytochrome c oxidase (COX)-succinate dehydrogenase (SDH) histochemistry to

identify focal fibres demonstrating biochemical defects in COX; consistent with stochastic segregation

and expansion of mtDNA variants, they showed a mosaic pattern of deficiency, with higher

m.3243A>G levels in COX-deficient and ragged red fibres (RRFs) compared to COX-positive fibres

(Tokunaga et al. 1994; Petruzzella et al. 1994; Ozawa et al. 1998; Kärppä et al. 2005). However, only

a small proportion of fibres from m.3243A>G patients tend to be RRF and/or COX-deficient (Moraes

et al. 1992; Petruzzella et al. 1994; Kärppä et al. 2005; Jeppesen et al. 2006), and in some patients,

no obvious COX histochemical deficiency is observed in skeletal muscle (Moraes et al. 1992).

Biochemical studies have shown that complex I activity is preferentially affected in muscle from

patients with m.3243A>G (Goto et al. 1992; Moraes et al. 1992; Hammans et al. 1992;

Morgan-Hughes et al. 1995; James et al. 1996; Fornuskova et al. 2008), affirmed by a

recently-described quadruple immunofluorescence assay which has shown that complex I deficiency

appears to precede complex IV deficiency in muscle fibres from m.3243A>G carriers (Rocha et al.

2015; Ahmed et al. 2017).

Considering the effect on complex I and the phenotypic heterogeneity associated with m.3243A>G,

we wanted to compare mutation load distributions in normal and deficient fibres. An obvious step is to

determine whether threshold varies between patients. We explored patterns of both complex I and

complex IV deficiency in patient muscle to further characterise the complexity associated with this

variant and used our single-fibre observations to estimate the threshold levels of m.3243A>G above

which respiratory deficiency occurs (Figure 1). As these thresholds cannot be directly observed in

patient tissue; mechanistic models (Henderson et al. 2009) or statistical models (Rocha et al. 2018)

can be used to estimate them. Here we progress the statistical approach (Rocha et al. 2018), using a

richer dataset and a more robust statistical analysis to identify deficient fibres: we use unsupervised

machine learning to characterise the respiratory complex status of muscle fibres, allowing us to

investigate the distribution of m.3243A>G levels within hundreds of “normal” and “deficient” single

fibres. We model these m.3243A>G level distributions using kernel density estimates, generate

bootstrap estimates of the m.3243A>G threshold at which fibres develop a respiratory complex defect

and compare estimated threshold distributions between patients. We expected that any significant

between-individual variation that we might observe could explain some of the heterogeneity in

individual outcomes for m.3243A>G-related disease and provide clues for individualised approaches

to treatment.
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RESULTS

Complex I deficiency predominates over Complex IV deficiency

We visualised protein expression patterns for key structural subunits of mitochondrial complex I

(NDUFB8; CI) and complex IV (COX-1; CIV) in individual skeletal muscle fibres using 2Dmito plots

(Warren et al. 2020), Figure 2 and Supplementary figures) and used unsupervised machine

learning (GMM clustering) to identify clusters of fibres within individual muscle sections. This

approach allowed us to define muscle fibres from a single patient as either belonging to a respiratory

complex “deficient” or “normal” cluster, based on relative distance of protein expression profiles from

those in control subjects. We thereby avoided the difficult problem of accounting for batch effects or

inter-individual variability in protein expression in the control population when classifying respiratory

complex status of individual fibres. We find that there is considerable variability in protein expression

profiles between healthy controls. In previous analysis (Rocha et al. 2015; Warren et al. 2020), the

only way we could account for such effects was by increasing the number of control subjects, which

involves considerable extra cost and difficulty recruiting subjects.

In fibres from 15 of the 17 patients examined, we identified two distinct clusters. We classified the

cluster that was most similar to controls as displaying normal CI and CIV expression relative to porin

(blue points; Figure 2 a-d) and those that were least similar to controls as defective for either CI or

CIV or both (red points; Figure 2 a-d). For the majority of patients, CI deficiency predominated over

CIV deficiency; 2Dmito plots show a v-shaped pattern of CI expression with two distinct clusters,

whereas CIV deficiency is not as clearly defined and appears to affect fewer fibres. In two of the

muscle sections examined, GMM clustering identified only one cluster of fibres (P05 and P10, Figure

2 e-f and Supplementary figures).

Patterns of single fibre respiratory complex deficiency vary greatly between individuals

Although fibres from the majority of muscle sections displayed a similar pattern of CI deficiency, the

relative patterns of CI, CIV and porin expression varied greatly between patients (Supplementary

figures, Table 2). We identified some broad patterns in the 2Dmito plots we generated, some of

which appear in the same individuals.

For the majority of patients (exemplified by P04, Figure 2 a-b), the 2Dmito plots for CI show two

distinct clusters of fibres (of varying proportions). In the normal cluster, CI expression increases as

porin increases. In the deficient cluster CI expression does not increase as porin increases. However,

there is no such strong split evident in CIV data. We also see other patterns in much smaller numbers

of patients. In some we observe a shift to the right for the deficient fibres, indicating evidence of

mitochondrial mass (porin) upregulation in the presence of respiratory complex deficiency

(exemplified by P04, Figure 2 a-b). Some muscle sections show evidence of CIV deficiency in the

absence of CI deficiency; most deficient fibres overlay the normal fibres in the CI 2Dmitoplot and CIV
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expression increases with porin at the same rate in deficient fibres as in normal fibres (exemplified by

P3, Figure 2 c-d). A small number of fibres from four patients (exemplified by P02, Supplementary

figures) display reduced expression of CI, CIV and porin, forming a ‘tail’ in the bottom left corner of

the 2Dmito plots. In addition, we also noted fibres that we have defined as normal for P02 have CI,

CIV and porin comparable to the lowest values from controls, though this could be due to incomplete

sampling of the natural variation in the healthy control population. Fibres from P06 also display a

unique pattern (Supplementary figures); there are two distinct clusters but there is also a general

down-shift in the levels of CI, CIV and porin and in this patient, the two clusters segregate in both CI

and CIV 2Dmito plots.

In fibres from two patients (P05, P10), we could only identify one cluster. Because our methodology

relies on defining fibres as either normal or deficient based on the presence of two clusters, we chose

to define the status of these single clusters as unknown, nevertheless protein expression patterns

were very different. For P05, CI expression was substantially lower than controls with all fibres

clustering below the control fibres, whilst porin expression was higher and CIV expression similar

compared to controls. In contrast, for P10, expression of both CI and porin was lower and CIV higher

than controls. It is possible that these apparent shifts are due to incomplete sampling of the natural

variation in the healthy control population.

The proportion of deficient fibres varies between individuals

We identified a sub-population of deficient fibres in the muscle sections of 15 out of 17 patients. The

proportion of deficient fibres in patients with a deficient sub-population ranged from 3.6 to 64.3%

(Table 2). We found no significant association between the proportion of deficient fibres and

homogenate m.3243A>G level, the number of fibres analysed, total scaled NMDAS score (linear

regression; p = 0.090, 0.130 and 0.548 respectively) or myopathy (Wilcoxon rank sum test; p =

0.155). However, we detected a significant negative correlation with age at biopsy (R2 = 0.37, p =

0.009, slope = -1.20, SE = 0.40). This is likely to reflect a selection bias; only a small proportion of

m.3243A>G carriers who come to clinic undergo a skeletal muscle biopsy and these are likely to be

younger, more clinically affected patients.

Homogenate m.3243A>G level corresponds to the mean of single cell estimates, but is a poor
representation of underlying distribution in single fibres

As m.3243A>G level is known to vary considerably within tissues, next we explored the distribution of

m.3243A>G levels in individual muscle fibres. We selected ten individual skeletal muscle sections;

eight with varying proportions of deficient fibres (range = 3.6% - 60.5%, median = 26.8%, IQR =

39.6%; P01, P02, P04, P07, P10, P12, P14, P15, P17) and two sections containing only one cluster

(P5, P10) and quantified m.3243A>G variant levels in a sample including normal and deficient fibres

(range of number of fibres sampled = 89 - 118, median = 106.5, IQR = 9.5).
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Single-fibre m.3243A>G level showed considerable within-section variability in all muscle sections

(Supplementary file S1). In four cases, (P02, P05, P14 and exemplified by P10, Figure 3c and d),

the m.3243A>G level distribution is relatively narrow and the median sits close to the tissue

homogenate m.3243A>G variant level. In contrast, m.3243A>G variant level distributions in fibres

from six other cases (P01, P07, P12, P15, P17 and exemplified by P04, Figure 3a and b) are much

wider and are bimodal, with higher, narrower distributions in the deficient fibres. The complexity of

these distributions and the observation that they often span almost the full range of possible values

(0-100%) confirms that tissue homogenate m.3243A>G level is a poor summary of the broad and

complex distributions of m.3243A>G level found in cells from individual fibres.

Tissue segregation and expansion of m.3243A>G determines muscle histochemistry profile

We observed that the six patients whose muscle sections show wider, bimodal distributions of

single-fibre m.3243A>G level display a different pattern of deficient fibres compared to those from four

patients whose muscle sections have narrower, unimodal distributions (Table 2). Wider distributions,

more evident in normal fibres (Figure 4), are associated with a higher proportion of deficient fibres

(range = 8.2% - 60.5%, median = 36.1%, IQR = 29.9%). Furthermore, m.3243A>G levels in deficient

fibres are higher and more tightly distributed than levels in normal fibres. In two of the sections

displaying narrower distributions, the proportions of deficient fibres are much lower (P02: 3.6% and

P14:6.9%) and only one cluster of fibres was identified in the other two (P05 and P10). These

observations suggest that cellular mechanisms responsible for the differential segregation and

expansion of the pathogenic m.3243A>G variant differ between individuals and that these processes

are a major driver of OXPHOS deficiency in single muscle fibres.

We find no difference in the threshold of m.3243A>G required for deficiency between patients

Having observed that the level of m.3243A>G variant is higher in deficient fibres, and given the

hypothesis that cells can tolerate m.3243A>G levels up to a threshold with little or no functional

consequence, next we aimed to determine the critical level of m.3243A>G; the level at which

respiratory complex deficiency becomes detectable. For the six muscle sections with at least 10

deficient fibres, we generated bootstrap estimates of this threshold (Figure 5, Table S2); .

Pairwise comparisons of threshold estimates using the permutation test allowed us to determine the

magnitude and significance of these differences. We find that none of the 15 possible pairwise

comparisons have a difference in threshold estimates that is statistically significant (p>0.05).

We find no significant association between higher thresholds and a lower disease burden (scaled

NMDAS), however, the statistical power of our study to detect such an association is low (slope =

-1.28, SE = 1.42, p = 0.4188). We also had insufficient power to detect any significant association with

age, m.3243A>G level in tissue homogenate or the proportion of deficient fibres.
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We combine data from all six patients for which we can estimate a threshold to give an overall

estimate of the threshold at which respiratory chain defect occurs. We do this by calculating, for each

of the 10,000 bootstrap estimates, the median across all six patients. We find that the overall median

threshold estimate is 82.9% with IQR between 81.5% and 84.1%.

DISCUSSION

The underlying cellular mechanisms that contribute to the vast phenotypic heterogeneity observed in

individuals with the pathogenic m.3243A>G variant are poorly understood. In an effort to characterise

this variation within skeletal muscle and to estimate threshold mutation levels, we quantified

mitochondrial respiratory complex I and IV expression in single skeletal muscle fibres from 17

patients, revealing mosaic patterns of biochemical deficiency that primarily affected complex I protein

expression. This is something that previous studies, which only evaluated COX (CIV) activity, were

unable to detect. Using unsupervised clustering to classify fibres, we saw striking variation in both the

proportion of respiratory complex “deficient” myofibres and the pattern of deficiency between patients.

This between-individual variability confirms the utility of skeletal muscle, which is relatively accessible,

in understanding the different mechanisms underlying the variable phenotypic expression of

m.3243A>G in post-mitotic tissue.

In order to study the effect of the proportion of pathogenic mtDNA variants on respiratory complex

defects, we also quantified m.3243A>G levels in individual muscle fibres from ten patients, revealing

substantial intra- and inter-individual diversity not captured by the established approach of measuring

the level of m.3243A>G in tissue homogenate. We found that wider, bimodal distributions of

m.3243A>G level are associated with a higher proportion of respiratory-deficient fibres, whereas

samples containing lower proportions of deficiency show a tighter distribution. Differential segregation

of pathogenic variant and wild-type mtDNA molecules into myofibres during the mitotic development

of skeletal muscle may contribute to these differences, but variability in cellular response to the

presence of the m.3243A>G pathogenic variant and subsequent clonal expansion could also play a

role (Battersby et al. 2003; Lawless et al. 2020).

Consistent with previous studies, we found higher and more tightly distributed m.3243A>G levels in

respiratory complex “ deficient” compared to “ normal” fibres, and by modelling these distributions

have been able to generate bootstrap estimates of the m.3243A>G level threshold at which

respiratory complex deficiency begins for six patients. These thresholds are relatively high, but not

significantly different from each other. Our median estimate for the threshold is 82.9% with IQR

between 81.5% and 84.1%, confirming the functionally recessive nature of this mtDNA variant.

Although previous studies have shown higher mutation levels in COX-deficient fibres (Moraes et al.

1992; Tokunaga et al. 1994; Petruzzella et al. 1994; Ozawa et al. 1998; Kärppä et al. 2005; Jeppesen

et al. 2006), this is the first time that critical thresholds of respiratory complex deficiency have been
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estimated using m.3243A>G level distributions. Extending this observation to a larger number of

patients may give us some insight into the differences we see in disease severity and progression

between patients with similar homogenate m.3243A>G levels (Grady et al. 2018). It is likely to be

influenced by factors such as nuclear background, which may modulate the cellular response to the

presence of m.3243A>G (Pickett et al. 2018). It would be fascinating to determine whether there is

also between-individual variability in tissue-specific critical thresholds and whether this contributes to

the diversity of m.3243A>G-related phenotypes that is also largely unexplained (Kaufmann et al.

2011; de Laat et al. 2012; Nesbitt et al. 2013; Mancuso et al. 2014; Fornuskova et al. 2008).

Currently it is thought that much of the heterogeneity that we see in the mutation level in single cells

sampled from post-mitotic tissues from patients arises due to clonal expansion during relaxed mtDNA

replication throughout the patient’s lifespan. However, heterogeneity arising as a result of variability in

the “initial condition” of this process: heterogeneity generated by clonal expansion during very rapid,

strict mtDNA replication during development, is largely ignored, but might contribute (Lawless et al.

2020). Determining the relative contribution of these two processes in human muscle tissue remains

a challenge.

Studies of patient skeletal muscle biopsies are cross-sectional in nature, showing only a single time

point for each fibre, and with no single-cell m.3243A>G level data available for early stages of foetal

development, it is difficult to assess the relative contributions of differential segregation and clonal

expansion to the heteroplasmic mosaicism and between-individual variability in m.3243A>G level

distributions. Previous work has shown that homogenate m.3243A>G levels in the early developing

foetus are similar across tissues, which suggests that the segregation of mutant and wild-type

mitochondrial genomes into daughter cells during tissue development may be random and unrelated

to respiratory function (Monnot et al. 2011). In contrast, tissue-specific nuclear genetic control of

mtDNA segregation has been demonstrated in mice carrying two very different mitochondrial

genomes (Battersby et al. 2003); whether a mechanism that could differentiate human mitochondrial

genomes based on a single point mutation is yet to be demonstrated, although we do know that the

bottleneck in oogenesis is influenced by both nuclear and mitochondrial genetics (Wilson et al. 2016;

Pickett et al. 2019), suggesting that differential segregation could be shaped by an active mechanism

that shows variability between individuals.

Random drift by relaxed replication is thought to be sufficient to explain the clonal expansion of

mitochondrial point mutations in post-mitotic tissues (Chinnery and Samuels 1999; Elson et al. 2001;

Coller et al. 2001), however, the striking difference in the distribution of single-fibre m.3243A>G levels

in muscle sections displaying a higher degree of respiratory complex deficiency compared to those

with relatively low levels of deficiency suggests that some selective pressure may take place. Recent

work focusing on mtDNA deletions suggests that the initiation of clonal expansion occurs in the

perinuclear niche of skeletal myofibres, providing more evidence that clonal expansion is likely to be
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under the control of the nucleus and thus may be influenced by nuclear genetic background (Vincent

et al. 2018). If this is also the case for point mutations such as m.3243A>G, it could give us clues as

to the cellular control mechanisms that contribute to clonal expansion in muscle, age-related

pathology and the vast phenotypic variation associated with this variant, which is likely to be

influenced by nuclear factors (Maeda et al. 2016; Pickett et al. 2018).

The predominance of complex I deficiency in m.3243A>G muscle has been well-documented (Goto et

al. 1992; Moraes et al. 1992; Hammans et al. 1992; Morgan-Hughes et al. 1995; James et al. 1996;

Fornuskova et al. 2008), and hypothesised to be due to the impact of m.3243A>G on the synthesis of

ND6 and ND5 subunits as a result of their high UUG codon content (Chomyn et al. 2000; Dunbar et

al. 1996; Kirino et al. 2004; Sasarman et al. 2008b). Importantly, we show that the patterns of complex

I and complex IV deficiency are very different between individuals, suggesting that the m.3243A>G

pathomechanism is not necessarily universal. Theories proposed to explain the pathogenicity of

m.3243A>G include the mis-incorporation of amino acids into mtDNA-encoded proteins (Yasukawa et

al. 2000; Flierl et al. 1997; Sasarman et al. 2008b), impairment of the termination of mt-rRNA

transcription (Hess et al. 1991; King et al. 1992) and a decrease in steady-state levels of

aminoacylated mt-tRNA(Leu[UUR]) (Janssen et al. 1999; Yasukawa et al. 2000; Chomyn et al. 2000).

Given the between-individual variability in focal respiratory deficiency observed, it would seem likely

that the lack of consensus could, in part, be related to the impact of other (nuclear) genetic factors.

Ultimately, it would be fascinating to be able to replace quadruple immunofluorescence with Imaging

Mass Cytometry (IMC) - examining many more respiratory complex proteins and signalling molecules,

but the real strength of the approach that we present here is the combined quantification of protein

expression and variant level in single cells. Other important extensions would be to observe the

variation in respiratory complex defect (as in (Elson et al. 2002)) and m.3243A>G level along the

length of muscle fibres, and the variation in both between sections. Both would give different insights

into the spatial variation of the processes of clonal expansion and the loss of respiratory complex

function, which is currently largely unknown.

The statistical analyses presented here suggest that there could be a great deal of heterogeneity in

the timing and strength of clonal expansion and the effect this has on mitochondrial function. These

factors are likely to contribute to the diverse phenotypic presentation of m.3243A>G, highlighting the

importance of understanding these complex processes. As a single muscle fibre cannot be studied

over multiple time points, moving from naive statistical models and clustering towards predictive,

mechanistic, mathematical models of respiratory complex function and dysfunction as well as the

processes leading to dysfunction might usefully bridge this gap. If we could predict the evolution of

mutant and wild type genotype distribution during disease progression, it could explain some of the

observed clinical heterogeneity. Adding even a simple, threshold model of the onset of focal
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biochemical deficiency in response to mtDNA mutant load could help us explore the link between

focal respiratory deficiency and clonal expansion, shedding light on the phenotypic diversity observed

between patients.

CONCLUSIONS

Quantifying the diverse phenotypic consequences of the m.3243A>G variant in patient cells is an

important first step towards understanding and ultimately treating patients carrying this common

cause of mitochondrial disease. We have demonstrated a robust new method for classifying patient

myofibres into respiratory normal and respiratory deficient sub-populations and describe distinct

distributions of m.3243A>G allele frequency in the two sub-populations. The diversity of fibre

phenotypes and genotype distributions which we quantified was surprising and will provide important

constraints on possible mechanisms to describe the progression of disease in patients carrying the

pathogenic m.3243A>G variant.

METHODS

Patient Cohort

We obtained skeletal muscle biopsies (Tibialis Anterior muscle or Quadriceps) from 17 patients (10

females) who were registered in the Mitochondrial Disease Patient Cohort: A Natural History Study

and Patient Registry and Newcastle Mitochondrial Research Biobank (REC references 13/NE/0326

and 16/NE/0267) and who harbour the pathogenic m.3243A>G variant (Table 1). Patients were

between 18 and 60 years at the time of skeletal muscle biopsy (mean = 43.6 years, SD = 12.6), their

scaled NMDAS score (calculated as described previously (Grady et al. 2018)) ranged from 4.1 to 49.7

(mean = 24.5, SD = 11.8) and mean muscle homogenate m.3243A>G levels ranged from 39% to 89%

(mean = 66.8, SD = 14.0). Muscle biopsy referrals, clinical evaluation and molecular genetics had

previously been undertaken as part of the diagnostic pathway at the NHS Highly Specialised Service

for Rare Mitochondrial Disorders of Adults and Children.

We obtained non-disease control skeletal muscle tissue (distal region of hamstring) from five healthy

individuals (from the Newcastle Mitochondrial Research Biobank), following anterior cruciate ligament

surgery (ages 16-20, 21-25, 21-25, 26-30 and 31-35 years; two females).

Quantitative mitochondrial immunohistochemistry

We undertook quantitative quadruple immunohistochemistry on 10µm transverse skeletal muscle

sections as previously described (3). Briefly, we labelled sections with antibodies (Table S1) detecting

subunits of mitochondrial complex I (NDUFB8) and complex IV (COX-1), a mitochondrial mass marker

(mitochondrial porin; VDAC1) and a cell membrane marker (laminin), followed by incubation with

secondary antibodies (Alexa Fluor 488, 546, biotinylated IgG1 and 750) and subsequently with
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streptavidin 647. Alongside each sample, we processed a no-primary control section (labelled only for

laminin). We captured fluorescent images of the muscle sections using automated scanning at 20×

magnification using Zen 2011 (blue edition) software and Zeiss Axio imager MI microscope and

maintained exposure times across all sections for each experimental batch.

We analysed the fluorescent images using an in-house analysis software Quadruple Immuno

Analyser written in Matlab 2015a (https://github.com/CnrLwlss/quad_immuno), as previously

described (Ahmed et al. 2017). This software automatically identifies single transverse myofibres in

the images by creating surfaces over fibres using the laminin immunofluorescence (750 channel);

segmentation was subsequently checked manually and adjusted where necessary. The mean pixel

intensities of 488 (COX-1), 546 (Porin) and 647 (NDUFB8) in each individual fibre were measured for

all fluorescent labelled muscle sections and for each of the no-primary control sections to determine

the levels of non-specific binding. Following this, .csv files containing mean intensities for each muscle

fibre were generated and used in subsequent statistical analyses.

Single cell molecular genetics

We selected and isolated fibres for molecular genetic analysis using laser microdissection of serial

20µm skeletal muscle sections, as previously described (4) and quantified m.3243A>G levels in single

muscle fibres using pyrosequencing on the Pyromark Q24 platform, as previously described (5).

Primer sequences according to GenBank Accession number NC_012920.1 are: 5’biotinylated

forward: m.3143-3163; reverse: m.3331-3353; reverse pyrosequencing primer: m.3244-3258 (IDT,

Coralville, USA). We used the allele quantification application from Pyromark proprietary Q24

software to calculate m.3243A>G levels (test sensitivity > 3% mutant mtDNA, accuracy ± 3%).Three

controls with known homogenate m.3243A>G levels were used to validate each experimental run.

Statistical analysis

Classification of skeletal muscle fibres

To classify skeletal muscle fibres as either respiratory complex “normal" or "deficient", we carry out

two-component Gaussian Mixture Model (GMM) clustering of the multidimensional, mean protein

expression levels estimated within each fibre by quadruple immunohistochemistry. We use GMM to

classify patient fibres into exactly one or two clusters, using the mclust package (6) in R. For

patients with two clusters, we randomly sample one fibre from each cluster and one fibre from controls

from the same experimental batch and calculate the Euclidean distance in protein expression space

between the two individual fibres and the control fibre. By repeating this random sampling procedure

15,000 times, we can calculate the proportion of times that a fibre from cluster #1 is closer to the

control fibres than a fibre from cluster #2. If that proportion is > 0.5 then cluster #1 is classified as

"normal" and cluster #2 is classified as “deficient". Otherwise the opposite classification is used. For
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patients where one cluster is found, fibres are classified as “unknown”, however it is interesting to

consider whether this cluster is distant from control fibres.

Estimation of thresholds of biochemical deficiency

For patients with two clusters, in order to estimate the threshold m.3243A>G level at which a

biochemical defect occurs, we identify those fibres in each cluster which have been sampled for

genetic testing. If there are at least 10 sampled fibres in each of the two groups (normal and

deficient), then we estimate the threshold m.3243A>G level (T) above which cells become respiratory

complex deficient. To estimate T, we generate non-parametric kernel density estimates for the

distribution of m.3243A>G levels in each of the two clusters, defining the threshold estimate as the

proportion with the highest probability density where the density for the two clusters are equal.

Bootstrap sampling the original data 10,000 times captures our uncertainty about the estimate.

Demonstration of differences between estimated individual thresholds using bootstrapping

To examine whether differences that we observed between the threshold m.3243A>G level above

which a respiratory complex defect occurs for each patient were reproducible, we test for significance

using a non-parametric resampling method: the permutation test. We calculate, for each pair A & B

taken from the set of patients where we can estimate a respiratory complex defect threshold, the

absolute difference in their thresholds: ΔAB, as a test statistic. We then take the single cell data from

patients A & B and shuffle the patient labels attached to each fibre and recalculate ΔAB. By repeating

the last step 10,000 times, we build up the distribution of our two-tailed test statistic under the null

hypothesis that there is no difference between patient A and B. We then calculate a p-value: the

proportion of times that ΔAB under H0 is greater than ΔAB when the data are labelled correctly. We

correct for multiple testing using Hochberg correction (p.adjust function in R).
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Table 1. Clinical and molecular genetic characteristics of patient cohort. Clinical phenotypes are derived from the NMDAS assessment closest to the time of muscle

biopsy using NMDAS scores and previously defined thresholds (Pickett 2018); scaled total NMDAS are calculated as previously described (Grady et al 2018);  differences in

age between biopsy and NMDAS assessment ranged from 0 - 2.4 years (median = 0.40, IQR = 0.1). Homogenate m.3243A>G level refers to tissue homogenate m.3243A>G

level measured in the skeletal muscle sample studied. CPEO - chronic progressive external ophthalmoplegia.

Patient Sex Homogenate
m.3243A>G Level (%) Age at biopsy Clinical Presentation Total Scaled

NMDAS

P01 M 89 21-25 Seizures 12.4

P02 F 84 51-55 Hearing impairment, diabetes 20.7

P03 M 80 46-50 Migraine, myopathy 20.4

P04 F 78 31-35 Hearing impairment, myopathy, cerebellar ataxia 23.2

P05 F 78 41-45 Hearing impairment, diabetes, psychiatric involvement, myopathy 27.9

P06  F 77 21-25 Seizures, stroke-like episodes, encephalopathy, myopathy, dysphonia/dysarthria 33.5

P07 F 74 46-50 Migraine, ptosis, myopathy 21.8

P08 F 70 56-60 Hearing impairment, diabetes 26.9

P09 M 67 46-50 Hearing impairment, diabetes, cerebellar ataxia, myopathy 45.1

P10 F 66 16-20 Migraine, myopathy 21.5

P11 M 63 31-35 Mild phenotypes only (under threshold) 4.1

P12 F 62 56-60 Mild phenotypes only (under threshold) 9.7

P13 M 57 36-40 Cardiovascular involvement, ptosis, CPEO 26.9

P14 F 55 56-60 Migraine, myopathy 22.8
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P15 M 50 51-55 Diabetes, cardiovascular involvement, ptosis, CPEO, myopathy, cerebellar ataxia,
neuropathy

35.2

P16 M 46 41-45 Hearing impairment, migraine 14.0

P17 F 39 55-60 Hearing impairment, seizures, encephalopathy, CPEO, cerebellar ataxia 49.7
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Patient Number
of fibres

%
OXPHOS
deficient

fibres

No.
clusters Description

Separation between
groups visible in

plots for:
Higher porin
expression in

respiratory
complex

deficient fibres?

Fibres with lower
CI, CIV and

porin?

Number of fibres
sampled for
molecular
genetics

Distribution of
m.3243A>G

level  in
OXPHOS

normal fibres
CI CIV

P01 871 57.4 2 Fibres low in CI present
Higher porin level in some OXPHOS
deficient fibres

Y 1 or 2
fibres only

Y N 106 Wide

P02 101 3.6 2 Small group of fibres with low
expression of CI, CIV and porin

Y 1 or 2
fibres only

N Y 101 Narrow

P03 506 23.7 2 Fibres low in CI and CIV present
Fibres low in CIV but not CI present

Y Y Slightly N 0 nd

P04 1179 60.5 2 Fibres low in CI and CIV present
Higher porin level in some OXPHOS
deficient fibres

Y Y Y N 114 Wide

P05 854 nd 1 CI expression lower than controls
Porin expression higher than controls

N N N N 118 Narrow

P06  857 64.3 2 Fibres low in CI and CIV present
CIV expression lower than controls
Porin is not higher in OXPHOS
deficient fibres
Porin expression lower than controls

Y Y N Y 0 nd

P07 625 44.2 2 Fibres low in CI and CIV present
Some deficient fibres have higher porin
expression

Y A few
fibres only

Y Y 89 Wide

P08 318 10.1 2 Fibres low in CI and CIV present
Small group of fibres with low
expression of CI, CIV and porin

Y A few
fibres only

N Y 0 nd

P09 104 15.4 2 Fibres low in CI present Y N N N 0 nd
P10 739 nd 1 Downward-shift in CI and porin and

upward-shift in CIV compared to
controls

N N N N 107 Narrow

P11 431 5.3 2 Some CIV deficient fibres are normal
for CI

2 fibres
only

Y N N 0 nd

P12 1261 8.2 2 Fibres low in CI and CIV present Y Y N N 89 Wide
P13 422 12.3 2 Fibres low in CI and CIV present Y A few

fibres only
N N 0 nd

P14 991 6.9 2 Fibres low in CIV but not CI present Y Y N N 108 Narrow
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P15 601 25.6 2 Fibres low in CI and CIV present
Small group of fibres with low
expression of CI, CIV and porin

Y Y N Y 106 Wide

P16 290 6.9 2 Fibres low in CI and CIV present
Fibres low in CIV but not CI present

Y Y N N 0 nd

P17 1690 27.9 2 Fibres low in CI and CIV present
Small group of fibres with low
expression of CI, CIV and porin

Y Y Y Y 113 Wide

Table 2. Summary of clustering patterns from 2Dmito plots. Complex I and Complex IV protein expression is compared with mitochondrial mass (porin expression).

OXPHOS = oxidative phosphorylation, CI = Complex I, CIV = Complex IV, nd = not determined, Y = some evidence, N = no evidence.
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Figure 1: Schematic diagram of experimental method linking single cell protein expression and genetics in skeletal muscle sections

A: Quantitative quadruple immunohistochemistry was performed on serial 10µm transverse skeletal muscle sections labelled with antibodies detecting subunits of

mitochondrial Complex I (NDUFB8), Complex IV (COX-1), a mitochondrial mass marker (mitochondrial porin; VDAC1) and laminin (membrane protein). A no-primary control

section (NPC), labelled only for laminin, was processed in parallel; a serial 20µm section was also cut to enable molecular genetics to be performed. B: Fibre boundaries were

defined using semi-automated fibre segmentation and manually matched across serial sections to enable downstream integration of protein quantification and molecular

genetic assays. C: Protein expression was quantified using fluorescent imaging and selected fibres were isolated using laser microdissection of the serial 20µm skeletal

muscle section. D: The OXPHOS status of muscle fibres was characterised by unsupervised machine learning; m.3243A>G levels in isolated single fibres were quantified by

pyrosequencing. E: Distributions of the m.3243A>G level within ‘normal’ and ‘OXPHOS deficient’ fibres were modelled using kernel density estimates generating estimates of

the m.3243A>G threshold at which fibres develop an OXPHOS defect.
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Figure 2: 2Dmito plots show diverse Complex I, Complex IV and porin protein expression profiles. Each fibre is represented by one point in both
Complex I (CI; left) and Complex IV (CIV; right) panels and is coloured according to its Gaussian Mixture Model classification (grey – unclassified fibres from
five non-disease, control individuals, blue - respiratory chain normal fibres from a patient, red - respiratory chain deficient fibres from a patient, purple –
unclassified fibres from a patient: only one class identified). Examples from three m.3243A>G positive individuals showing common patterns are shown: A &
B – P04: CI expression increases with porin in OXPHOS normal fibres but not in OXPHOS deficient fibres. CIV expression is similar in both groups; OXPHOS
deficient fibres have higher porin levels without a corresponding increase in CIV levels. C & D - P03: Only a very small number of fibres have low CI levels;
some fibres with low CIV levels have normal CI levels. E & F - P10: All fibres in the same class and appear to show slightly reduced CI and porin expression
and slightly increased CIV expression relative to controls.
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Figure 3: m.3243A>G variant level distribution in single skeletal muscle fibres from P04 (a & b) and P10 (c & d). A & C: frequency distribution of
m.3243A>G levels; single-fibre observations are marked with crosses, coloured according to OXPHOS status.  Vertical grey dotted line = tissue homogenate
m.3243A>G level. B & D: m.3243A>G level distribution where fibres are split by OXPHOS class: blue = OXPHOS normal fibres,  red = OXPHOS deficient
fibres, purple = OXPHOS status unknown, grey dotted line = tissue homogenate m.3243A>G level, grey dashed line = mean threshold estimate.
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Figure 4: m.3243A>G level distribution in muscle fibres split by OXPHOS status.  Blue = OXPHOS normal fibres, red = OXPHOS deficient fibres, purple
= OXPHOS status unknown, grey dotted line = tissue homogenate m.3243A>G level, grey dashed line = mean threshold estimate. Box plots show the
median and IQR, whiskers represent minimum and maximum values within 1.5 x IQR.  A-F example patients where m.3243A>G level distribution is very
broad.  G & H example patients where m.3243A>G level distribution is relatively narrow.  I example patients where m.3243A>G level distribution is narrow
and only one cluster is detected from biochemical data.
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Figure 5: Estimated m.3243A>G level thresholds for patients carrying m.3243A>G variant. 10,000 bootstrapped samples from each patient representing
uncertainty about the m.3243A>G level threshold above which biochemical deficiency occurs (red points) along with kernel density estimates of bootstrapped
samples (black curves). Horizontal line segments represent median threshold estimates.  Dotted line represents the median threshold across all patients.  The
All column represents uncertainty about the mean level across all six patients for which estimates are possible.
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Table S1: Primary and secondary antibodies used in the quadruple Immunofluorescence assay

Antibody Target Supplier Catalogue number Dilution

Primary antibody

Mouse IgG1 NDUFB8 Subunit of Complex I Abcam Ab110242 1:100

Mouse IgG2a MTCO1 Subunit of Complex IIV Abcam Ab14705 1:100

Mouse  IgG2b VDAC (Porin) Voltage gated anion on outer membrane of mitochondria Abcam Ab14734 1:100

Polyclonal Rabbit IgG Laminin α-1 Protein of the extracellular matrix Sigma Aldrich L9393 1:50

Secondary antibody

Goat Anti- mouse IgG1 (488nm) N/A Life Technologies A21121 1:200

Goat Anti- mouse IgG2b (546nm) N/A Life Technologies A21143 1:200

Goat Anti-rabbit IgG (750nm) N/A Life Technologies A21039 1:100

Streptavidin (647nm) N/A Life Technologies S32357 1:100

Goat Anti-mouse IgG1 Biotin N/A Life Technologies A10519 1:200
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Table S2: Estimates of critical m.3243A>G threshold estimates from 10,000 bootstrapped samples.

Patient Median IQR

P01 82.68 16.05

P04 74.60 10.55

P07 84.14 1.11

P12 93.53 2.82

P15 78.78 3.67

P17 84.10 2.98

File S1: Multi-page .pdf report showing 2Dmito plots and m.3243A>G level distributions (where available) for all patients in cohort.

https://drive.google.com/file/d/1pQMxsPziyHTS-KrKHIyWm7AnfISdUuru/view?usp=sharing
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