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2 

Abbreviations:  34 

PE: preeclampsia 35 

sPE: Preeclampsia with severe features 36 

EOPE: early-onset preeclampsia 37 

LOPE: late-onset preeclampsia 38 

EHR: electronic health record 39 

SBP: systolic blood pressure 40 

DBP: diastolic blood pressure 41 

RR: respiratory rate 42 

HELLP: hemolysis, elevated liver enzymes, low platelet count  43 

AST: aspartate transaminase  44 

PI: prognosis score 45 

UM: University of Michigan 46 

UF: University of Florida 47 

ICD-10: The International Classification of Diseases, Tenth Revision 48 

MAP: mean arterial pressure  49 

UtA-PI:  uterine artery pulsatility index 50 

PLGF: placental growth factor 51 

ACOG: American College of Obstetricians and Gynecologist 52 

AUROC: Area Under the Receiver-Operator curve 53 
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Abstract 60 

Background 61 

Preeclampsia (PE) is one of the leading factors in maternal and perinatal mortality and morbidity 62 

worldwide with no known cure. Delivery timing is key to balancing maternal and fetal risk in pregnancies 63 

complicated by PE. Delivery timing of PE patients is traditionally determined by closely monitoring over 64 

a prolonged time. We developed and externally validated a deep learning models that can predict the time 65 

to delivery of PE patients, based on electronic health records (EHR) data by the time of the initial 66 

diagnosis, in the hope of reducing the need for close monitoring. 67 

Method 68 

 Using the deep-learning survival model (Cox-nnet), we constructed time-to-delivery prediction models 69 

for all PE patients and early-onset preeclampsia (EOPE) patients. The discovery cohort consisted of 1,533 70 

PE cases, including 374 EOPE, that were delivered at the University of Michigan Health System (UM) 71 

between 2015 and 2021. The validation cohort contained 2,172 PE cases (547 EOPE) from the University 72 

of Florida Health System (UF) in the same time period. We built clinically informative baseline models 73 

from 45 pre-diagnosis clinical variables that include demographics, medical history, comorbidity, PE 74 

severity, and initial diagnosis gestational age features.  We also built full models from 60 clinical 75 

variables that include additional 15 lab tests and vital signs features around the time of diagnosis. 76 

 77 

Results 78 

The 7-feature baseline models on all PE patients reached C-indices of 0.74 and 0.73 on UM hold-out 79 

testing and UF validation dataset respectively, whereas the 12-feature full model had improved C-indices 80 

of 0.79 and 0.74 on the same datasets.  For the more urgent EOPE cases, the 6-feature baseline model 81 

achieved C-indices of 0.68 and 0.63, and its 13-feature full model counterpart reached C-indices of  0.76 82 

and 0.67 in the same datasets.  83 

 84 

Conclusions  85 
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We successfully developed and externally validated an accurate deep-learning model for time-to-delivery 86 

prediction among PE patients at the time of diagnosis, which helps to prepare clinicians and patients for 87 

expected deliveries.  88 

 89 

 90 

Introduction 91 

Preeclampsia (PE) is a pregnancy complication affecting 2% to 8% of all pregnancies worldwide and is a 92 

leading cause of maternal, fetal, and neonatal mortality and morbidity1,2. PE is defined by new-onset 93 

hypertension after 20 weeks of gestation and the presence of proteinuria, and/or other signs of end-organ 94 

damage. PE is a diverse syndrome with various subtypes along the spectrum of gestational hypertensive 95 

disorders3. It can be divided into early-onset PE (diagnosed before 34 weeks of pregnancy) or late-onset 96 

PE (diagnosed after 34+0 weeks of pregnancy); PE with severe features (sPE) or PE without severe 97 

features4,5. Failure to properly manage PE can lead to a wide variety of severe maternal and neonatal 98 

adverse outcomes according to the iHOPE study, while the only known cure for PE is delivery of the 99 

placenta6–8.  Although earlier delivery can significantly reduce the risk of maternal adverse outcomes, it is 100 

associated with increased neonatal unit admission among preterm patients. This, especially in cases of 101 

EOPE 9, creates a dilemma as earlier delivery can potentially prevent severe morbidities including 102 

maternal seizure, stroke, organ dysfunction, and intrauterine fetal demise, but may lead to premature birth 103 

and subsequent neonatal complications10,11. To balance the risks to both mother and baby, current clinical 104 

management of PE includes supportive blood pressure management and prophylaxis for maternal 105 

seizures, and a two-dose intramuscular course of betamethasone to augment fetal lung maturation12. 106 

 107 

Generally, delivery is recommended for PE patients with more than 37+0 weeks of gestation and for 108 

severe PE patients with more than 34+0 weeks of gestation12. In reality, the delivery timing is a more 109 

complex problem, clinicians need to consider both the fetal development, maternal and fetal risk of 110 
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complications, and availability of ICU resources when deciding on delivery timing, particularly among 111 

challenging EOPE cases12,13. The decision of delivery is usually made after close monitoring and 112 

extensive testing on preeclampsia patients over a prolonged time, which may not be easily accessible and 113 

affordable to all patients (particularly those in rural areas or under-developed countries).  In addition, 114 

current risk assessment tools focus on maternal risk prediction but not the overall delivery urgency 115 

considering both moms and fetuses. FullPIERS, miniPIERS and PREP-S are well-established and 116 

externally validated models to predict the maternal risk of adverse outcomes among PE patients, in the 117 

hope of assisting delivery decisions14–19.  These tools are recommended by some, but not all national 118 

guidelines12,13. Most of these tools only predict maternal risks, however, clinicians need to consider both 119 

maternal and neonatal outcomes when deciding when to deliver. A patient at 34 weeks of gestation would 120 

have very different delivery timing compared to a patient at 37 weeks of gestation, even if they have the 121 

same risk of adverse outcomes. It is of great importance to directly and precisely predict the time to 122 

delivery as early as the first diagnosis of PE, which allows the clinicians to assess the delivery urgency 123 

early on and to help them better prioritize resources and treatment, particularly for those doctors 124 

practicing in rural or under-developed countries. Additionally, the aforementioned risk predictor models 125 

do not assess the risk from baseline features, such as the patient’s race, social status, lifestyle, and other 126 

comorbidities, which may also have influences on delivery timing. 127 

  128 

Toward this goal, we developed and externally validated the first deep learning model to predict patient 129 

delivery time after the initial diagnosis of PE using electronic health records (EHR) data. We utilized the 130 

state-of-the-art deep learning-based prognosis prediction model, Cox-nnet (version 2), which we 131 

previously developed 20–22. Cox-nnet methods had previously consistently shown excellent predictive 132 

performances under a variety of conditions, including on EHR data20. Our objectives were: (1) to predict 133 

the time to delivery at the first diagnosis of PE for all PE patients and an EOPE sub-cohort, by 134 

constructing and validating deep-learning models utilizing EHR data; and (2) to assess the quantitative 135 
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contributions of critical EHR features informative of delivery time among PE patients, including those 136 

EOPE patients. 137 

 138 

Methods 139 

Data Source 140 

We obtained the discovery cohort of the Precision Health Initiative of Michigan Medicine (UM), the 141 

academic healthcare system of the University of Michigan23. Data usage was approved by the Institutional 142 

Review Board (IRB) of the University of Michigan Medical School (HUM#00168171). We obtained the 143 

validation cohort from the Integrated Data Repository database at the University of Florida (UF). Data 144 

usage was approved by IRB of the University of Florida (#IRB201601899).  In both cohorts, we extracted 145 

all obstetric records with at least one PE diagnosis between 2015 to 2021 based on ICD-10 diagnosis 146 

codes (Supplementary Table 1). We excluded patients with the following conditions: Hemolysis, 147 

Elevated Liver Enzymes, and Low Platelet (HELLP) syndrome and eclampsia, for which iatrogenic 148 

delivery is ubiquitously induced within 48 hours of diagnosis despite fetal condition; chronic 149 

hypertension with superimposed PE, whose onset may occur before week 20 and with no clear definitions 150 

in the United States24; and postpartum PE, which is only developed after delivery. We also removed 151 

patients transferred from other institutions by deleting patients with no visit record within 180 days before 152 

the first diagnosis of PE to ensure the accuracy of the initial diagnosis time of PE.  The resulting 153 

discovery cohort consisted of 1,533 PE cases (including 374 EOPE cases) and the validation cohort 154 

contained 2,172 PE cases (including 547 EOPE). 155 

 156 

Fully connected Cox-nnet neural network models 157 

We constructed all models using the Cox-nnet v2 algorithm (Supplementary Figure 1)20. In this study, 158 

we adopted the model to predict the time between PE diagnosis to delivery. To ensure the stability of the 159 
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models, we divided the discovery dataset into a training set (80%) and a hold-out testing set (20%) and 160 

applied 5-fold cross-validation on the training set. 161 

 162 

EHR Feature Engineering 163 

We extracted all available features from UM Precision Health Initiative EMR data. We developed 4 164 

models to predict the time to delivery of PE patients: PE baseline, PE full, EOPE baseline and EOPE full 165 

models.  As suggested by clinicians, the initial baseline models include demographics, medical history, 166 

comorbidities, the severity of PE, pregnancy and fetal development characteristics. The full model 167 

incorporated all features from the baseline model, with additional lab results and vital signs commonly 168 

collected within 5 days before the initial diagnosis of PE (Supplementary Figure 2A).  EOPE models 169 

were built and tested using the same features on patients with PE onset time before 34 weeks of gestation. 170 

Features with low powers and high correlation were removed to ensure model accuracy.  171 

 172 

Pregnancy characteristics included parity, number of fetuses, gestational age, PE severity at initial 173 

diagnosis, and history of preterm birth, c-section, abruption, etc. Fetal development includes poor fetal 174 

growth according to the associated ICD code(O36.59). Other comorbidities were grouped into 29 175 

categories using the Elixhauser Comorbidity Index1. The observational window for lab results and vital 176 

signs was 5 days before the day of the initial PE diagnosis. Only the first results of repeated lab tests were 177 

used to avoid intervention/treatment effects. Summary statistics of systolic blood pressure (SBP), 178 

diastolic blood pressure (DBP), and respiratory rate (RR) measures were included (max, min, mean, 179 

standard deviation), as done in previous work2. We removed features with high missing proportions (over 180 

20%) and sparse features with fewer than 10 non-zero values. Highly correlated variables were identified 181 

using the variance inflation factor (VIF) and removed one at a time until all features had a VIF below 3 to 182 

avoid multicollinearity. The remaining missing values were imputed using the PMM algorithm from R 183 

package “mice”. All numerical features were scaled by dividing their root mean square. Numeric features 184 
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with skewness above 3 were log-transformed. As a result, 60 features were kept for initial analysis 185 

(Supplementary Table 2, Supplementary Figure 2B).  186 

 187 

Reduced feature representation from the Cox-nnet models 188 

To derive a subset of clinically significant and easily interpretable features, we reduced Cox-nnet features 189 

based on both their importance scores and significance levels. To do so, we first selected the top 15 (25% 190 

of total features) most important features based on their average permutation importance scores generated 191 

by Cox-nnet models.  Permutation important scores provide more stable results than other feature 192 

selection methods on this dataset, including stepwise selection, lasso regularization, and random forest 193 

feature selection25. Then we calculated the log-rank p-value for the 15 features individually and selected 194 

the significant ones.  We also conducted the ANOVA test on the remaining features to ensure their 195 

powers (Supplementary Table 3). We rebuilt the clinically informative Cox-nnet models with the 196 

reduced set of features, the same way as the models using all initial input features.  197 

 198 

Model evaluation 199 

We evaluated the cross-validation, hold-out test, and validation results of each model using Harrel’s 200 

concordance index (C-index).  The C-index evaluates the accuracy of predicted events by comparing their 201 

relative order to the order of actual events. It is frequently used to assess survival predictions26. The 202 

reported C-indices in the training data are the repeated results of the 5-fold cross-validation C-indices on 203 

the training sets. To enhance the interpretation of the prognosis prediction, we also stratified patients into 204 

high, medium, and low-urgency groups based on the predicted results plotted the Kalper-Meier (KM) 205 

curves of time-to-delivery in each group and reported the log-rank p-values. The log-rank test, on the 206 

other hand, compares the survival distribution between patient groups, assuming no differences in 207 

survival exist27(p4). Additionally, we used each clinically informative and reduced model result to predict 208 

the chances of patients delivering within 2 days, 7 days, and 14 days and obtained the AUROC (area 209 

under the receiver operating curve) for each task. 210 
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 211 

Interactive Web Application for Easy Model Validation 212 

To disseminate the models for public use, we containerized the pre-trained Cox-nnet model into a 213 

Docker-based web application using R shiny28. This allows the users to access the models easily through a 214 

local web interface and get prediction results quickly. This app contains two main panels: the individual 215 

prediction panel and the group prediction panel. Using pre-trained models, the individual prediction panel 216 

calculates the prognosis index (PI) score of a single new patient, marking its positions and percentiles in a 217 

distribution plot of PIs within the UM discovery cohort. The group panel takes in a group of new patients 218 

and returns predicted PIs and percentiles of their PIs in a table.  The shiny app is available at  219 

http://garmiregroup.org/PE-prognosis-predictor/app  220 

 221 

External Validation using UF data 222 

We validated the reduced models on a large external EHR dataset from the University of Florida.  We 223 

extracted and processed the same features included in the baseline, full, EOPE-baseline and EOPE-full 224 

model (see Methods). The authors uploaded cleaned UF data to the shiny app described above, and the 225 

app automatically produced predicted values using the packaged models trained on UM dataset. The 226 

development and validation strictly followed the TRIPOD checklist(Supplementary Table 4). 227 

 228 

Estimate time-to-deliver using maternal risk of adverse outcomes calculated from the fullPIERS 229 

model  230 

The fullPIERS model is a model to predict the maternal risk of adverse outcomes in PE patients, yet it 231 

cannot effectively predict time-to-delivery at the initial diagnosis of PE. To illustrate this, we calculated 232 

the maternal risk of adverse outcomes using the fullPIERS formula as reported by von Dadelszen et al14, 233 

used this risk score to estimate the time-to-delivery and compared its performance with our proposed 234 

model. 235 
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We estimated the probability of adverse outcomes (p) and calculated its concordance index with time to 236 

deliver for all PE patients and EOPE subsets, following the original paper. We also plotted the survival 237 

curves of high-risk (top 25%), middle-risk (25% - 75%) and low-risk  (bottom 25%) groups for all PE and 238 

EOPE patients. One limitation is that we do not have chest pain/dyspnoea or SpO2 information collected, 239 

so we assume no patients have chest pain or dyspnoea and all patients have 97% SpO2, as instructed by 240 

the FullPIERs web calculator https://pre-empt.obgyn.ubc.ca/home-page/past-projects/fullpiers/. 241 

 242 

Software 243 

R 4.2.1 and Python were used for all analyses29,30. R package “dplyr”, “mice” were used in data 244 

preparation31,32. R package “shiny” and continuumio/anaconda3 Docker image were used to build an 245 

interactive web application28. Python version 3.9 and R version 4.2.1 are used to run the models in the 246 

Docker containers.  247 

 248 
RESULT 249 

Cohort characteristics 250 

The discovery cohort consisted of 1,533 PE cases, including 374 EOPE cases collected from the 251 

University of Michigan Precision Health and the validation cohort contained 2,172 PE cases (including 252 

547 EOPE) collected from the University of Florida Health System between 2015 and 2022. (Figure 1). 253 

We employed their EHR data to predict their time-to-delivery from the initial diagnosis of PE. Summaries 254 

of the patient characteristics of these cohorts are shown in Table 1 and 2.   255 

 256 

The baseline prediction model of time to delivery interval among PE patients 257 

PE is a syndrome with well-characterized phenotypes, where hypertension is the most significant clinical 258 

symptom. Thus the structured data in the EHR system provide the most useful and straightforward 259 

information. From the structured data, we obtained 45 variables including patient demographics, medical 260 

history, comorbidities, PE diagnosis time, and severity after data preprocessing (Supplementary Table 261 
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2). The resulting model has very decent performance with C-indices of 0.73, 0.72, and 0.71 in the UM 262 

cross-validation, UM hold-out testing, and UF validation cohorts, respectively (Figure 2A).  263 

 264 

To enhance the clinical utilities of the Cox-nnet model, we reduced the number of predictive features 265 

following the feature reduction procedure in the Method section. This procedure resulted in 7 significant 266 

features, which we used to rebuild the “clinically informative Cox-nnet baseline model”. It has C-index 267 

scores of 0.73, 0.74, and 0.73 on UM cross-validation, hold-out testing, and UF validation dataset 268 

respectively (Figure 2A). We stratified patients into 3 groups by the quartiles of predicted time-to-269 

delivery from the reduced model: high-risk (upper quartile), intermediate-risk (interquartile), and low-risk 270 

(lower quartile) groups. The survival curves of the time to delivery interval on these three risk groups 271 

display significant differences (log-rank p-value < 0.0001) on both the hold-out testing set (Figure 2B) 272 

and validation set (Figure 2E), confirming the strong discriminatory power of the PI score. To enhance 273 

the interpretability of the prognosis modeling, we stratified this model using the threshold of 2/7/14 days 274 

and predicted the accuracies of delivery using these classifications. The AUROC scores of these 275 

classification tasks are 0.85, 0.88, and 0.89 on the testing set (Figure 2C) and 0.67, 0.76, and 0.75 on the 276 

validation set (Figure 2F), respectively. 277 

 278 

The seven features in the clinically informative baseline model included those that shorten the time to 279 

delivery and extend the time to delivery (Figure 2D; Table 3).  In descending order of importance scores, 280 

the features that shorten the time to delivery are gestational age at diagnosis, sPE, uncomplicated 281 

pregestational diabetes mellitus, and parity. Conversely, features extending the time to delivery are PE in 282 

a prior pregnancy, increasing maternal age, and comorbid valvular disease. To demonstrate the 283 

associations of these important features with time to delivery, we dichotomized patient survival in the 284 

hold-out testing set by the median value of each feature (Supplementary Figure 3). All features, except 285 

maternal age, show significant differences (log-rank p-value < 0.05) between the dichotomized survival 286 

groups.  We further examined the relationship of the top 3 features (gestational age at diagnosis, sPE, and 287 
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history of PE in prior pregnancy) with the gestational age at delivery and time to delivery (day) using the 288 

UM discovery set in (Figure 2G-2L).  Later gestational age at diagnosis leads to a later gestational age of 289 

delivery (Figure 2G), but a shorter time to delivery (Figure 2J). sPE is associated with earlier gestational 290 

age of delivery (Figure 2H) and shorter time to delivery (Figure 2K) are diagnosed with sPE. In the 291 

deliveries from smaller (<32 weeks) gestational ages, the percentages of patients with PE in prior 292 

pregnancies are significantly higher (Figure 2I).  However, the percentages of prior PE fluctuate with 293 

respect to time to delivery (Figure 2L).   294 

Worth noticing, that not all patients diagnosed with PE in 37 weeks or later delivered the babies right 295 

away, despite being the least severe cases and can be delivered quickly according to the medical 296 

recommendation12. Nevertheless, we alternatively built another baseline model with only those patients 297 

diagnosed before 37 weeks of gestation.  We observed very similar results as the above baseline model 298 

using all PE patients, in terms of C-index, the selected top features and their feature scores 299 

(Supplementary Figure 4 A-D).   300 

 301 

The full model of time to delivery among PE patients 302 

We next investigated the contribution to time of delivery from all 60 variables, including the 45 baseline 303 

variables above and an additional 15 laboratory testing results and vital signs obtained in the 5-day 304 

observation window before the time of diagnosis (Supplementary Table 2). The clinical informative 305 

model after feature reduction consists of 12 top features (Table 3).  This model shows significantly (P< 306 

0.001, t-test) higher cross-validation accuracy of time to delivery compared to the seven-feature baseline 307 

model, with median C-index scores almost as high as 0.80, with 0.78, 0.79, and 0.74 in the cross-308 

validation, testing, and validation datasets respectively. These C-indices are excellent for survival 309 

predictions, despite the high heterogeneity of PE and the large patient size which makes it difficult to 310 

predict delivery time precisely18,33.  The Kaplan-Meier curves of the high-, intermediate- and low-risk 311 

groups show more significant distinction in testing (Figure 3B) and validation set (Figure 3E), than the 312 

baseline model (Figure 2B and 2E).  Similarly, we stratified the full model using the threshold of 2/7/14 313 
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days and predicted the accuracies of delivery using these classifications. The AUROC scores of these 314 

classification tasks are 0.88, 0.93, and 0.93 on the testing set and 0.84, 0.89, and 0.90 on the validation set 315 

respectively (Figure 2C, 2F). 316 

 317 

Further examination of the 12 important features in the full model (Figure 3D, Table 3) shows good 318 

consistency with the 7-feature baseline model (Figure 2D, Table 3). Five out of seven features in the 319 

baseline model also exist in the full model with similar importance scores: gestational age at diagnosis, 320 

sPE, parity, maternal age, and PE in prior pregnancies. Gestational age at PE diagnosis and sPE continued 321 

to be the two most important features in the full model. We also identify new important features from lab 322 

tests and vital signs: aspartate aminotransferase (AST) value, the standard deviation of diastolic blood 323 

pressure (DBP), the standard deviation of respiratory rate (RR), creatinine value, mean DBP and white 324 

blood cell count (Figure 3D). Conversely, platelet count is a new feature with a negative importance 325 

score, associated with a longer time to delivery. All dichotomized survival plots using median 326 

stratification on each of the 12 important features have log-rank p-values smaller than 0.05, confirming 327 

their associations with time to delivery in the discovery set (Supplementary Figure 5). We examined the 328 

3 top lab/vital sign features: AST, the standard deviation of DBP, and the standard deviation of RR, on 329 

their association with the duration of time between diagnosis and delivery. These values show negative 330 

trends with time to delivery, particularly for AST value and the standard deviation of DBP (Figure 3G-I). 331 

These 3 features are roughly uniformly distributed across delivery gestational ages, except AST which 332 

shows slightly higher values in deliveries less than 32 weeks of gestational age (Supplementary Figure 333 

6).  334 

Similar to the baseline model earlier using PE patients diagnosed before 37 weeks of gestation, we again 335 

alternatively built another full model with the same patients before 37 weeks of gestation.  We observed 336 

very similar results as the full model using all PE patients, in terms of C-index, the selected top features 337 

and their feature scores (Supplementary Figure 4 E-H).   338 

 339 
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Time to delivery prediction of EOPE patients 340 

Accurate prediction of EOPE patients’ time to delivery is crucial, given that delivery of a premature infant 341 

has more significant neonatal consequences. Using similar modeling techniques, we trained two additional 342 

EOPE-specific Cox-nnet v2 models (baseline vs. full model), using the same features described earlier 343 

(Supplementary Table 2), on a subset of 374 EOPE patients from the UM discovery cohort. 344 

The C-indices for the clinically informative EOPE baseline model are 0.67, 0.68, and 0.63 on the UM 345 

cross-validation, hold-out testing, and UF validation sets, respectively (Figure 4A).  Such significantly 346 

lower C-indices for EOPE compared to PE are expected, as EOPE cases are usually difficult to predict 347 

prognosis. Still, the time-to-delivery prediction for EOPE is on par or better than the prediction of PE 348 

diagnosis using the same set of EHR data33, demonstrating its potential clinical utility. The KM curves of 349 

different predicted survival groups have significant distinctions in both the testing and validation datasets 350 

(Figure 4B and 4E). This baseline model consists of the six most important features: gestational age at 351 

diagnosis, sPE, PE in a past pregnancy, parity, pulmonary circulatory disorders, and coagulopathies 352 

(Figure 4D; Table 3).  All survival plots, dichotomized using the median stratification on each of the 6 353 

features, have log-rank p-values smaller than 0.05 in the discovery dataset (Supplementary Figure 7). 354 

Additionally, the AUROCs of binarized classification on delivery in the next 2/7/14 days range from 355 

0.64-0.82 on the testing set (Figure 4C) and 0.52-0.68 on the validation set (Figure 4F).   356 

 357 

The clinically informative EOPE full model reached much higher accuracy compared to the EOPE 358 

baseline model, with median C-indices of 0.74, 0.76, and 0.67 on the cross-validation, testing, and 359 

validation sets (Figure 4G). The large increases in C-indices are the results of including additional lab 360 

tests and blood pressure measurements right around the time of diagnosis of EOPE, confirming their 361 

significant clinical values. The 3 risk-stratified groups within the EOPE patient’s cohort also showed 362 

significant (log-rank p-value<0.001) differences in the hold-out testing set and validation set (Figure 4H, 363 

4K).  The AUROCs of chance of delivery in the next 2/7/14 days are significantly improved, ranging 364 
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from 0.82-0.86 on the testing set (Figure 4I) and 0.71-0.72 on the validation set (Figure 4L). This model 365 

contains 13 important features selected from the original 60 features (Figure 4J; Table 3). Gestational 366 

age at diagnosis continued to be the most important feature. Several other features (eg. PE with severe 367 

symptoms, PE in a past pregnancy, parity, and coagulopathy) were of significant importance as well, 368 

similar to the EOPE baseline model. Many additional features in the vital signs and lab test categories 369 

were also significant, including creatinine value, mean DBP and mean SBP, standard deviation of RR, 370 

AST, and platelet counts. Among these 13 features, parity, PE in a prior pregnancy, and higher platelet 371 

counts were protective against early delivery (Figure 4J).  372 

 373 

We created dichotomized survival curves based on creatinine value and platelet count, two new features 374 

relative to the EOPE baseline model. Both show strong distinctions between the risk groups (Figure 4I, 375 

4L), similar to all other selected features (Supplementary Figure 7- 8). These two features also revealed 376 

systematic trends in associations with the gestational age at delivery and time from diagnosis to delivery. 377 

Patients with high creatinine levels were more likely to be delivered within 3 days or less of diagnosis and 378 

more likely to deliver preterm (Figure 4M-4O).  Lower platelet counts were also associated with shorter 379 

time to delivery (Figure 4Q), even though the platelet levels were not strongly associated with gestational 380 

age at delivery among all EOPE patients (Figure 4R).  381 

 382 

PE time to deliver predictor graphic user interface (GUI) 383 

To disseminate our model publicly, we packaged the pre-trained clinically informative models above into 384 

an interactive, user-friendly web application using R shiny23. We named this app “PE time to delivery 385 

predictor”. The app contains two main panels: the single-patient prediction panel and the group prediction 386 

panel (Supplementary Figure 9). The single-patient prediction panel calculates the prognosis index (PI) 387 

of a single patient if provided the required clinical variables. The PI score describes the patient’s risk of 388 

delivery at the time of the diagnosis of PE, relative to the population. The panel also provides the 389 

percentile of the PI score among the training data and displays the results in a histogram figure and a 390 
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table. The group prediction panel calculates the PI and PI percentile of multiple patients simultaneously 391 

and also displays them in a table, below the histogram built on the training data. The app is available at 392 

http://garmiregroup.org/PE-prognosis-predictor/app 393 

 394 

Comparison with previous maternal risk prediction models 395 

Lastly, the previously established maternal risk prediction models (i.e. fullPIERS) cannot effectively 396 

predict time-to-delivery at the initial diagnosis of PE directly. We calculated the maternal risk of adverse 397 

outcomes using the fullPIERS formula on the UM EHR data. We then used this risk score to estimate the 398 

time-to-delivery and compared its performance with our proposed model (see Methods). The cross-399 

validation C-index of fullPIERS is 0.50±0.005 on all PE patients and 0.60±0.01 on the EOPE subset 400 

(Supplementary Figure 10A), much worse than those from our models. So are the survival curves 401 

grouped by predicted risk (Supplementary Figure 10B-C). Thus the time-to-delivery models are not 402 

only different but also irreplaceable by the maternal risk prediction models. 403 

 404 

 405 

Discussion 406 

PE is a highly heterogenous pregnancy syndrome currently without cure except for delivering the baby 407 

and placenta3,34. Here we report a new type of survival model to precisely predict the time to delivery as 408 

early as the initial diagnosis of PE, subsequent to our recent success in predicting the onset of PE using 409 

the same set of EHR data33. It helps to save the effort of close monitoring and extensive testing which is 410 

conventionally done in resource-rich settings. The simple yet precise models can also be utilized in 411 

healthcare systems in resource-limited countries and regions. With such information, clinicians may 412 

allocate limited resources in busy antepartum and neonatal ICU beds, or make decisions about the 413 

urgency to transfer a patient to a higher level of care in the lack of sufficient resources. As many pregnant 414 

women are willing to accept personal risks to improve perceived fetal outcomes, a more concrete model 415 
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such as the one proposed here will allow them to understand the likely latency and may help them to 416 

prepare for delivery emotionally. Many previous studies, such as the fullPIERS and PREP-S models 417 

recommended by NICE guidelines, did not predict the precise time of delivery, instead, they fall into very 418 

different classification models 16,18,27,28 that aim to predict risks of maternal adverse outcomes 419 

(Supplementary Table 5).  Assisting in deciding delivery timing is not their primary purpose. If they 420 

were to be used to predict the time-to-delivery directly, the result would not be satisfactory 421 

(Supplementary Figure 10). Additionally, the prediction window of proposed models is longer than 48 422 

hours in the fullPIERS model, making them good initial assessment tools.  423 

The proposed models confirmed key factors already highlighted in current PE management, including 424 

gestational age at the time of diagnosis, sPE, and the use of creatinine, platelet counts and AST as risk 425 

factors in clinical guidelines (Figure 5)12–14,18. This is not surprising, as less time to delivery is likely 426 

associated with patients at higher risk for complications based on clinical assessments. However, this 427 

class of models also assigns weights of relative importance, among these key factors, a capacity 428 

nonexistent in the current ACOG guidelines12. Another novel finding is the identification of parity and PE 429 

in prior pregnancies as important predictors for delivery timing in all models tested but not included in 430 

current guidelines for  PE delivery timing (Figure 5). Most importantly, the models predict the timing of 431 

delivery at the initial diagnosis and require no more than readily available information from blood work, 432 

medical history, and demographics that are routinely collected in medical centers in the US. 433 

 434 

There are several noticeable strengths of this study. The models show consistently high performance in 435 

survival prediction and classification tasks, better than previous time-to-delivery prediction models using 436 

clinical data or biomarkers37–39. Unlike the majority of previous studies that are not validated with 437 

external data35,40,41,  our models are validated with an external and independent EHR dataset from UF 438 

Health System, despite the noticeable differences between the populations in the two cohorts (Table 1, 2). 439 

These models also address clinical interpretability by providing importance scores with directionality for 440 
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each included predictor. Furthermore, the model is designed for accessibility by utilizing fewer than 15 441 

common demographic and disease histories and routinely collected clinical variables in a short 442 

observation window. Our approach is much more convenient, as compared to previous studies relying 443 

extensively on nonstandard biomarkers such as uterine artery pulsatility index (UtA-PI) or placental 444 

growth factor (PLGF)39–41.  Measurement of these biomarkers is rare in routine prenatal checkups, 445 

particularly in lower-income regions, limiting the wide adoption of these biomarker-based models. To 446 

maximize the dissemination of the models among clinicians and patients, we have packaged the pre-447 

trained models into a user-friendly shiny application. We aim to embed these models into the EHR 448 

system, though it will require additional higher levels of cooperation within the UM Health System. Once 449 

integrated, the models will provide clinicians with a fast and accurate assessment of the urgency for 450 

delivery at the initial diagnosis of PE.   451 

 452 

A few caveats to this study are potentially limiting. Firstly, the ICD coding system lags behind the most 453 

recent diagnostic guidelines of PE. However, the codes that are entered into the EHR are based on the 454 

clinical assessments of the treating physicians at two academic medical centers, therefore they most likely 455 

reflect contemporary diagnostic standards.  Also as a retrospective study, the delivery timing can be 456 

influenced by clinicians’ previous judgment, changes in hospital protocol, communication between 457 

patient and provider, intensive care resource availability, and each patient’s intentions. However, since 458 

these models generally perform well on the external validation set as they achieve C-indices of 0.7 or 459 

even close to 0.80, we believe that these subjective factors may not be the main concerns for achieving 460 

high prediction power, rather, additional data modalities may help. Prospective investigations of this 461 

model’s performance in other medical centers would be necessary to confirm the findings. Lastly, our 462 

data came from two medical centers with high levels of obstetrics care and therefore testing the model in other 463 

settings (eg. other countries and rural regions) will be deemed valuable. 464 

 465 
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In summary, we have developed the first accurate, deep-learning-based, time-to-delivery prediction 466 

models for PE and EOPE patients. The models are disseminated with an easy-to-use web app. Adoption 467 

of these models could provide clinicians and patients with valuable management plans to predict and 468 

prepare for the best delivery time of each PE pregnancy. Further prospective investigation of the 469 

performance of these models is necessary to provide feedback and potential improvement of these 470 

models.  471 
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 624 

Tables and legends 625 

Table 1: Basic Patient Characteristics for this study 626 

Variable Name University of Michigan PE 
Discovery Cohort (n = 1533) 

University of Florida PE 
Validation Cohort (n = 2172) 

Maternal Age, mean (SD) 30.19(5.74) 28.63(6.46) 
Parity, mean (SD) 0.72(1.15) 0.73(1.55) 
Number of fetuses, mean (SD) 1.07(0.27) 1.04(0.21) 
Gestational Age at Diagnosis 
(days), mean (SD) 

249.96(27.44) 256.72(26.83) 

Time to Delivery (days), mean 
(SD) 

7.02(15.39) 5.70(13.28) 

Race, N (%)    
African American 0.18 0.37 
American Indian or Alaska Native 0.00 0.00 
Asian 0.07 0.02 
Caucasian 0.75 0.49 
Native Hawaiian and Other Pacific 
Islander 

0.00 0.00 

Unknown or Other 0.00 0.12 
Ethnicity, N (%)   
Hispanic 0.06 0.11 
Non-Hispanic 0.94 0.87 
Unknown 0.00 0.01 
Smoking Status, N (%)   
Current Smoker 0.06 0.13 
Former Smoker 0.24 NA 
Never Smoker 0.70 0.87 
Illegal Drug Use Status, N(%)   
Yes 0.10 0.17 
No 0.90 0.83 
History of PE, N (%)   
Yes 0.11 0.12 
No 0.89 0.88 
sPE, N (%)   
Yes 0.47 0.35 
No 0.53 0.65 
 627 
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 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
Table 2: Basic Characteristics of EOPE patients in this study 641 
 642 

Variable Name 
University of Michigan EOPE 
Subset (n = 374) 

University of Florida EOPE 
Subset (n=547) 

Maternal Age, mean (SD) 30.70(5.72) 29.48(6.65) 
Parity, mean (SD) 0.98(1.26) 1.11(1.55) 
Number of fetuses, mean (SD) 1.12(0.34) 1.09(0.31) 
Gestational Age at Diagnosis, 
mean (SD), day 211.10(23.79) 217.75(21.43) 
Time to Delivery, mean (SD), day 19.12(26.44) 16.28 (22.12) 
Race, N (%)    
African American 26.74% 43.33% 
American Indian or Alaska Native 0.80% 0.18% 
Asian 5.08% 1.10% 
Caucasian 66.58% 45.16% 
Native Hawaiian and Other Pacific 
Islander 0.80% 0.00% 
Unknown or Other 0.00% 10.23% 
Ethnicity, N (%)   
Hispanic 3.21% 9.14% 
Non-Hispanic 96.79% 89.58% 
Unknown 0.00% 1.28% 
Smoking Status, N (%)   
Current Smoker 7.22% 17.00% 
Former Smoker 22.99% NA 
Never Smoker 69.79% NA 
Illegal Drug Use Status, N(%)   
Yes 11.76% 14.08% 
No 88.24% 85.92% 
History of PE, N (%)   
Yes 18.72% 15.54% 
No 81.28% 84.46% 
sPE, N (%)   
Yes 54.28% 35.10% 
No 45.72% 64.90% 
 643 
 644 
 645 
 646 
 647 
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 659 
Table 3: Features and their permutation importance score in each reduced model 660 
 661 

Baseline Model for all PE Full model for all PE Baseline Model for EOPE Full Model for EOPE 

Name 
Importance 
Score Name 

Importance 
Score Name 

Importanc
e Score Name 

Importance 
Score 

Gestational Age at 
Diagnosis 323.55 

Gestational Age 
at Diagnosis 390.29 

Gestational Age 
at Diagnosis 29.88 

Gestational 
Age at 
Diagnosis 26.36 

sPE 79.59 sPE 38.71 sPE 12.37 Creatinine 10.52 

PE in Prior 
Pregnancies 7.02 

DBP Standard 
Deviation 30.22 

PE in Prior 
Pregnancies 6.69 Mean DBP 8.85 

Maternal Age 2.75 AST 26.56 

Pulmonary 
Circulatory 
Disorders 6.38 Mean SBP 7.21 

Uncomplicated 
Diabetes 1.35 Mean DBP 13.64 Parity 4.78 AST 7.1 

Valvular Disease 1.11 
RR Standard 
Deviation 12.37 Coagulopathies 1.17 

Pulmonary 
Circulatory 
Disorders 5.96 

Parity 1.04 Parity 11.45   Parity 4.74 

  Creatinine 11.16   
RR Standard 
Deviation 4.52 

  Platelet Count 9.67   sPE 2.83 

  
White Blood 
Cell Count 6.08   

Number of 
Fetuses 2.24 

  Age 3.84   Platelet Count 1.93 

  
PE in Prior 
Pregnancies 3.38   

PE in Prior 
Pregnancy 1.34 

      
Coagulopathie
s 0.69 

 662 
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 666 
 667 
 668 
 669 
 670 
 671 
 672 
Figure Legends 673 
 674 
 675 
Figure 1: Experimental design and cohort overview. A) Experiment Design Workflow: The 676 
discovery cohort was obtained from the University of Michigan Health System and a validation cohort of 677 
similar size and time was obtained from the University of Florida Health System. We constructed 4 678 
predictive models: baseline and full models for all PE patients and baseline and full models for EOPE 679 
patients. The input variables in baseline models include patients’ demographics, lifestyle, comorbidities 680 
and medical history. The full models include additional lab tests and vital signs from within 5 days of PE 681 
diagnosis, in addition to the variables in the baseline models. We trained the Cox-nnet prognosis 682 
prediction model using 80% training from the discovery cohort, tested it on 20% hold-out data from the 683 
discovery cohort, and validated it using the validation cohort. We then built clinically informative models 684 
by reducing Cox-nnet features based on both their importance scores and significance levels. The models 685 
are examined by the importance scores of top features and stratified survival curves based on patient 686 
survival risks. We disseminated the feature-reduced, clinically informative models into a user-friendly 687 
web application for healthcare professionals to use. Created with BioRender.com.  688 
 689 
Figure 2: PE Baseline model results, interpretation, and evaluation. A: The bar plots of C-indices 690 
from the original Cox-nnet models (red) and feature-reduced clinically informative model (green), on the 691 
UM cross-validation and hold-out testing set and UF validation set. B, E: The survival curves of high-risk 692 
(top 25%), intermediate-risk (middle 50%) and low-risk groups (bottom 25%), categorized by predicted 693 
PI from the reduced baseline model in A on B: hold-out testing data and E: validation data. C, F: ROC 694 
curves of prediction delivery time within 2 days, 7 days and 14 days using results from reduced baseline 695 
model on C: hold-out testing data and F: validation data. D: The ln-transformed permutation importance 696 
scores of features in the feature-reduced baseline model. A positive sign indicates that a higher value in 697 
feature is associated with a shorter time to delivery and a negative sign means an extension of time to 698 
delivery. G-L: The distribution of diagnosis gestational age, sPE rate and PE in prior pregnancy rate, in 699 
associations with delivery gestational week (G-I) and time (days) to delivery (J-L). 700 
 701 
 702 
Figure 3: PE Full model results, interpretation and evaluation.  A: The bar plots of C-indices from the 703 
original models (red) and feature-reduced clinical informative model (green), on the UM training cross-704 
validation and hold-out testing set and UF validation set. B, E:  The survival curves of high-risk (top 705 
25%), intermediate-risk (middle 50%) and low-risk groups (bottom 25%), categorized by predicted PI 706 
from the reduced full model in A. B: hold-out testing data, E: validation data. C, F: ROC curves of 707 
prediction delivery time within 2 days, 7 days and 14 days using results from reduced full model (A) on 708 
C: hold-out testing data and F: validation data. D: The ln-transformed permutation importance scores of 709 
features in the feature-reduced baseline model. A positive sign indicates that a higher value in the feature 710 
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is associated with a shorter time to delivery and a negative sign means an extension of time to delivery. 711 
G-I: The distribution of aspartate aminotransferase (AST) values, the standard deviation of diastolic blood 712 
pressure (DBP) and the standard deviation of respiratory rate (RR), in association with time (days) to 713 
delivery.  714 
 715 
Figure 4: Results, interpretation and evaluation of baseline and full models on the EOPE patient 716 
subset.  A: The bar plots of C-indices from the original Cox-nnet EOPE baseline model (red) and feature-717 
reduced clinically informative model (green) on the cross-validation and testing set and validation set. B-718 
C: The survival curves of high-risk (top 25%), intermediate-risk (middle 50%) and low-risk groups 719 
(bottom 25%), categorized by predicted PI from the reduced EOPE baseline model in A. B, E: hold-out 720 
testing data, E: validation data. C, F: ROC curves of prediction delivery time within 2 days, 7 days and 14 721 
days using results from reduced EOPE baseline model (A) on C: hold-out testing data and F: validation 722 
data. D: The ln-transformed permutation importance score of features in the EOPE full model. G: The bar 723 
plots of C-indices from the original Cox-nnet EOPE full model (red)  and its feature-reduced clinically 724 
informative model (green) on the cross-validation and testing set and validation set.  H, K: The survival 725 
curves of high-risk (top 25%), intermediate-risk (middle 50%) and low-risk groups (bottom 25%), 726 
categorized by predicted PI from the reduced full model in E. H: hold-out testing data, K: validation data. 727 
I, L: ROC curves of prediction delivery time within 2 days, 7 days and 14 days using results from reduced 728 
EOPE full model (G) on I: hold-out testing data and L: validation data. J: The ln-transformed permutation 729 
importance scores of features in the EOPE full model. M-O: Analysis of creatinine values among the 730 
EOPE patients in the discovery cohort. M: The dichotomized survival curves by the median value of 731 
creatinine. N, O: Distributions of creatinine values by delivery gestational week (N)  and time to delivery 732 
(O).  P-R:  Analysis of platelet counts among the EOPE patients in the discovery cohort. P: The 733 
dichotomized survival curves by the median value of platelet counts. Q-R: Distributions of creatinine 734 
values by delivery gestational week (Q) and time to delivery (R). 735 
 736 
 737 
Figure 5: Comparison of important features among the four feature-reduced clinically informative 738 
models A: The bubble plot of important features from PE baseline, EOPE baseline, PE full, and EOPE 739 
full models using reduced top important features. The size of the bubbles represents the permutation 740 
importance score of each feature. Color represents the sign of features in the time to delivery prediction: a 741 
positive sign indicates that a higher value in the feature is associated with a shorter time to delivery and a 742 
negative sign means an extension of time to delivery. B: Venn diagram of the important features from the 743 
four models shown in A. 744 
 745 
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