1	Deep learning-based prognosis models accurately predict the time to delivery
2	among preeclampsia patients using health records at the time of diagnosis
3	
4	Xiaotong Yang, MS ¹ ; Hailey K Ballard, BS ² ; Aditya D Mahadevan, BS ^{4,5} ; Ke Xu, MS ^{2,5} ; David G
5	Garmire, PhD ⁶ ; Elizabeth S Langen, MD ⁷ ; Dominick J Lemas, PhD ^{2,3,5} ; Lana X Garmire, PhD ^{1*}
6	
7	1 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor,
8	Michigan, United States of America
9	2 Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville,
10	Florida, United States of America
11	3 Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville,
12	Florida
13	4 Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
14	5 Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, United States
15	6 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
16	Michigan, United States of America
17	7 Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United
18	States of America
19	
20	
21	
22	
23	*: Corresponding author:
24	Lana Garmire
25	lgarmire@umich.edu
26	Room 3366, Building 520, NCRC,
27	1600 Huron Parkway, Ann Arbor, MI 48105
28	Office phone: (734) 615-0514
29	
30	
31	word count: 5067
32	
33	

2

34 Abbreviations:

- 35 PE: preeclampsia
- 36 sPE: Preeclampsia with severe features
- 37 EOPE: early-onset preeclampsia
- 38 LOPE: late-onset preeclampsia
- 39 EHR: electronic health record
- 40 SBP: systolic blood pressure
- 41 DBP: diastolic blood pressure
- 42 RR: respiratory rate
- 43 HELLP: hemolysis, elevated liver enzymes, low platelet count
- 44 AST: aspartate transaminase
- 45 PI: prognosis score
- 46 UM: University of Michigan
- 47 UF: University of Florida
- 48 ICD-10: The International Classification of Diseases, Tenth Revision
- 49 MAP: mean arterial pressure
- 50 UtA-PI: uterine artery pulsatility index
- 51 PLGF: placental growth factor
- 52 ACOG: American College of Obstetricians and Gynecologist
- 53 AUROC: Area Under the Receiver-Operator curve
- 54
- 55
- 56
- 57
- 58
- 59

3

60 Abstract

61 Background

62 Preeclampsia (PE) is one of the leading factors in maternal and perinatal mortality and morbidity

- 63 worldwide with no known cure. Delivery timing is key to balancing maternal and fetal risk in pregnancies
- 64 complicated by PE. Delivery timing of PE patients is traditionally determined by closely monitoring over
- a prolonged time. We developed and externally validated a deep learning models that can predict the time
- to delivery of PE patients, based on electronic health records (EHR) data by the time of the initial
- 67 diagnosis, in the hope of reducing the need for close monitoring.

68 Method

69 Using the deep-learning survival model (Cox-nnet), we constructed time-to-delivery prediction models

for all PE patients and early-onset preeclampsia (EOPE) patients. The discovery cohort consisted of 1,533

71 PE cases, including 374 EOPE, that were delivered at the University of Michigan Health System (UM)

between 2015 and 2021. The validation cohort contained 2,172 PE cases (547 EOPE) from the University

of Florida Health System (UF) in the same time period. We built clinically informative baseline models

74 from 45 pre-diagnosis clinical variables that include demographics, medical history, comorbidity, PE

severity, and initial diagnosis gestational age features. We also built full models from 60 clinical

variables that include additional 15 lab tests and vital signs features around the time of diagnosis.

77

78 **Results**

The 7-feature baseline models on all PE patients reached C-indices of 0.74 and 0.73 on UM hold-out

80 testing and UF validation dataset respectively, whereas the 12-feature full model had improved C-indices

81 of 0.79 and 0.74 on the same datasets. For the more urgent EOPE cases, the 6-feature baseline model

82 achieved C-indices of 0.68 and 0.63, and its 13-feature full model counterpart reached C-indices of 0.76

and 0.67 in the same datasets.

84

85 Conclusions

4

We successfully developed and externally validated an accurate deep-learning model for time-to-delivery
prediction among PE patients at the time of diagnosis, which helps to prepare clinicians and patients for
expected deliveries.

- 89
- 90

91 Introduction

92 Preeclampsia (PE) is a pregnancy complication affecting 2% to 8% of all pregnancies worldwide and is a leading cause of maternal, fetal, and neonatal mortality and morbidity^{1,2}. PE is defined by new-onset 93 94 hypertension after 20 weeks of gestation and the presence of proteinuria, and/or other signs of end-organ 95 damage. PE is a diverse syndrome with various subtypes along the spectrum of gestational hypertensive disorders³. It can be divided into early-onset PE (diagnosed before 34 weeks of pregnancy) or late-onset 96 97 PE (diagnosed after 34+0 weeks of pregnancy); PE with severe features (sPE) or PE without severe features^{4,5}. Failure to properly manage PE can lead to a wide variety of severe maternal and neonatal 98 99 adverse outcomes according to the iHOPE study, while the only known cure for PE is delivery of the placenta $^{6-8}$. Although earlier delivery can significantly reduce the risk of maternal adverse outcomes, it is 100 101 associated with increased neonatal unit admission among preterm patients. This, especially in cases of 102 EOPE⁹, creates a dilemma as earlier delivery can potentially prevent severe morbidities including 103 maternal seizure, stroke, organ dysfunction, and intrauterine fetal demise, but may lead to premature birth and subsequent neonatal complications^{10,11}. To balance the risks to both mother and baby, current clinical 104 105 management of PE includes supportive blood pressure management and prophylaxis for maternal seizures, and a two-dose intramuscular course of betamethasone to augment fetal lung maturation¹². 106 107

Generally, delivery is recommended for PE patients with more than 37+0 weeks of gestation and for severe PE patients with more than 34+0 weeks of gestation¹². In reality, the delivery timing is a more complex problem, clinicians need to consider both the fetal development, maternal and fetal risk of

5

111 complications, and availability of ICU resources when deciding on delivery timing, particularly among 112 challenging EOPE cases 12,13 . The decision of delivery is usually made after close monitoring and 113 extensive testing on preeclampsia patients over a prolonged time, which may not be easily accessible and 114 affordable to all patients (particularly those in rural areas or under-developed countries). In addition, 115 current risk assessment tools focus on maternal risk prediction but not the overall delivery urgency 116 considering both moms and fetuses. FullPIERS, miniPIERS and PREP-S are well-established and 117 externally validated models to predict the maternal risk of adverse outcomes among PE patients, in the hope of assisting delivery decisions $^{14-19}$. These tools are recommended by some, but not all national 118 119 guidelines^{12,13}. Most of these tools only predict maternal risks, however, clinicians need to consider both 120 maternal and neonatal outcomes when deciding when to deliver. A patient at 34 weeks of gestation would 121 have very different delivery timing compared to a patient at 37 weeks of gestation, even if they have the 122 same risk of adverse outcomes. It is of great importance to directly and precisely predict the time to 123 delivery as early as the first diagnosis of PE, which allows the clinicians to assess the delivery urgency 124 early on and to help them better prioritize resources and treatment, particularly for those doctors 125 practicing in rural or under-developed countries. Additionally, the aforementioned risk predictor models 126 do not assess the risk from baseline features, such as the patient's race, social status, lifestyle, and other 127 comorbidities, which may also have influences on delivery timing.

128

Toward this goal, we developed and externally validated the first deep learning model to predict patient delivery time after the initial diagnosis of PE using electronic health records (EHR) data. We utilized the state-of-the-art deep learning-based prognosis prediction model, Cox-nnet (version 2), which we previously developed ^{20–22}. Cox-nnet methods had previously consistently shown excellent predictive performances under a variety of conditions, including on EHR data²⁰. Our objectives were: (1) to predict the time to delivery at the first diagnosis of PE for all PE patients and an EOPE sub-cohort, by constructing and validating deep-learning models utilizing EHR data; and (2) to assess the quantitative

6

136 contributions of critical EHR features informative of delivery time among PE patients, including those

- 137 EOPE patients.
- 138

139 Methods

140 Data Source

141 We obtained the discovery cohort of the Precision Health Initiative of Michigan Medicine (UM), the

142 academic healthcare system of the University of Michigan²³. Data usage was approved by the Institutional

143 Review Board (IRB) of the University of Michigan Medical School (HUM#00168171). We obtained the

validation cohort from the Integrated Data Repository database at the University of Florida (UF). Data

145 usage was approved by IRB of the University of Florida (#IRB201601899). In both cohorts, we extracted

all obstetric records with at least one PE diagnosis between 2015 to 2021 based on ICD-10 diagnosis

147 codes (Supplementary Table 1). We excluded patients with the following conditions: Hemolysis,

148 Elevated Liver Enzymes, and Low Platelet (HELLP) syndrome and eclampsia, for which iatrogenic

delivery is ubiquitously induced within 48 hours of diagnosis despite fetal condition; chronic

150 hypertension with superimposed PE, whose onset may occur before week 20 and with no clear definitions

151 in the United States²⁴; and postpartum PE, which is only developed after delivery. We also removed

152 patients transferred from other institutions by deleting patients with no visit record within 180 days before

153 the first diagnosis of PE to ensure the accuracy of the initial diagnosis time of PE. The resulting

discovery cohort consisted of 1,533 PE cases (including 374 EOPE cases) and the validation cohort

- 155 contained 2,172 PE cases (including 547 EOPE).
- 156

157 Fully connected Cox-nnet neural network models

158 We constructed all models using the Cox-nnet v2 algorithm (**Supplementary Figure 1**)²⁰. In this study,

159 we adopted the model to predict the time between PE diagnosis to delivery. To ensure the stability of the

7

models, we divided the discovery dataset into a training set (80%) and a hold-out testing set (20%) and
applied 5-fold cross-validation on the training set.

162

163 EHR Feature Engineering

164 We extracted all available features from UM Precision Health Initiative EMR data. We developed 4

165 models to predict the time to delivery of PE patients: PE baseline, PE full, EOPE baseline and EOPE full

166 models. As suggested by clinicians, the initial baseline models include demographics, medical history,

167 comorbidities, the severity of PE, pregnancy and fetal development characteristics. The full model

168 incorporated all features from the baseline model, with additional lab results and vital signs commonly

169 collected within 5 days before the initial diagnosis of PE (**Supplementary Figure 2A**). EOPE models

170 were built and tested using the same features on patients with PE onset time before 34 weeks of gestation.

171 Features with low powers and high correlation were removed to ensure model accuracy.

172

173 Pregnancy characteristics included parity, number of fetuses, gestational age, PE severity at initial 174 diagnosis, and history of preterm birth, c-section, abruption, etc. Fetal development includes poor fetal 175 growth according to the associated ICD code(O36.59). Other comorbidities were grouped into 29 categories using the Elixhauser Comorbidity Index¹. The observational window for lab results and vital 176 177 signs was 5 days before the day of the initial PE diagnosis. Only the first results of repeated lab tests were 178 used to avoid intervention/treatment effects. Summary statistics of systolic blood pressure (SBP), 179 diastolic blood pressure (DBP), and respiratory rate (RR) measures were included (max, min, mean, standard deviation), as done in previous work². We removed features with high missing proportions (over 180 181 20%) and sparse features with fewer than 10 non-zero values. Highly correlated variables were identified 182 using the variance inflation factor (VIF) and removed one at a time until all features had a VIF below 3 to 183 avoid multicollinearity. The remaining missing values were imputed using the PMM algorithm from R 184 package "mice". All numerical features were scaled by dividing their root mean square. Numeric features

8

185 with skewness above 3 were log-transformed. As a result, 60 features were kept for initial analysis

186 (Supplementary Table 2, Supplementary Figure 2B).

187

188 **Reduced feature representation from the Cox-nnet models**

189 To derive a subset of clinically significant and easily interpretable features, we reduced Cox-nnet features 190 based on both their importance scores and significance levels. To do so, we first selected the top 15 (25% 191 of total features) most important features based on their average permutation importance scores generated 192 by Cox-nnet models. Permutation important scores provide more stable results than other feature 193 selection methods on this dataset, including stepwise selection, lasso regularization, and random forest feature selection²⁵. Then we calculated the log-rank p-value for the 15 features individually and selected 194 195 the significant ones. We also conducted the ANOVA test on the remaining features to ensure their 196 powers (Supplementary Table 3). We rebuilt the clinically informative Cox-nnet models with the

197 reduced set of features, the same way as the models using all initial input features.

198

199 Model evaluation

200 We evaluated the cross-validation, hold-out test, and validation results of each model using Harrel's 201 concordance index (C-index). The C-index evaluates the accuracy of predicted events by comparing their 202 relative order to the order of actual events. It is frequently used to assess survival predictions²⁶. The 203 reported C-indices in the training data are the repeated results of the 5-fold cross-validation C-indices on 204 the training sets. To enhance the interpretation of the prognosis prediction, we also stratified patients into 205 high, medium, and low-urgency groups based on the predicted results plotted the Kalper-Meier (KM) 206 curves of time-to-delivery in each group and reported the log-rank p-values. The log-rank test, on the 207 other hand, compares the survival distribution between patient groups, assuming no differences in 208 survival exist^{27(p4)}. Additionally, we used each clinically informative and reduced model result to predict 209 the chances of patients delivering within 2 days, 7 days, and 14 days and obtained the AUROC (area 210 under the receiver operating curve) for each task.

4	٢	1	۰
ţ	L		
	1	1	,

\mathbf{r}	1	1
7	T	T

211	
212	Interactive Web Application for Easy Model Validation
213	To disseminate the models for public use, we containerized the pre-trained Cox-nnet model into a
214	Docker-based web application using R shiny ^{28} . This allows the users to access the models easily through a
215	local web interface and get prediction results quickly. This app contains two main panels: the individual
216	prediction panel and the group prediction panel. Using pre-trained models, the individual prediction panel
217	calculates the prognosis index (PI) score of a single new patient, marking its positions and percentiles in a
218	distribution plot of PIs within the UM discovery cohort. The group panel takes in a group of new patients
219	and returns predicted PIs and percentiles of their PIs in a table. The shiny app is available at
220	http://garmiregroup.org/PE-prognosis-predictor/app
221	
222	External Validation using UF data
223	We validated the reduced models on a large external EHR dataset from the University of Florida. We
224	extracted and processed the same features included in the baseline, full, EOPE-baseline and EOPE-full
225	model (see Methods). The authors uploaded cleaned UF data to the shiny app described above, and the
226	app automatically produced predicted values using the packaged models trained on UM dataset. The
227	development and validation strictly followed the TRIPOD checklist(Supplementary Table 4).
228	
229	Estimate time-to-deliver using maternal risk of adverse outcomes calculated from the fullPIERS
230	model
231	The fullPIERS model is a model to predict the maternal risk of adverse outcomes in PE patients, yet it
232	cannot effectively predict time-to-delivery at the initial diagnosis of PE. To illustrate this, we calculated
233	the maternal risk of adverse outcomes using the fullPIERS formula as reported by von Dadelszen et al ¹⁴ ,
234	used this risk score to estimate the time-to-delivery and compared its performance with our proposed
235	model.

236	We estimated the probability of adverse outcomes (p) and calculated its concordance index with time to
237	deliver for all PE patients and EOPE subsets, following the original paper. We also plotted the survival
238	curves of high-risk (top 25%), middle-risk (25% - 75%) and low-risk (bottom 25%) groups for all PE and
239	EOPE patients. One limitation is that we do not have chest pain/dyspnoea or SpO2 information collected,
240	so we assume no patients have chest pain or dyspnoea and all patients have 97% SpO2, as instructed by
241	the FullPIERs web calculator https://pre-empt.obgyn.ubc.ca/home-page/past-projects/fullpiers/.
242	
243	Software
244	R 4.2.1 and Python were used for all analyses ^{29,30} . R package "dplyr", "mice" were used in data
245	preparation ^{31,32} . R package "shiny" and continuumio/anaconda3 Docker image were used to build an
246	interactive web application ²⁸ . Python version 3.9 and R version 4.2.1 are used to run the models in the
247	Docker containers.
248 249	RESULT
250	Cohort characteristics
251	The discovery cohort consisted of 1,533 PE cases, including 374 EOPE cases collected from the
252	University of Michigan Precision Health and the validation cohort contained 2,172 PE cases (including
253	547 EOPE) collected from the University of Florida Health System between 2015 and 2022. (Figure 1).
254	We employed their EHR data to predict their time-to-delivery from the initial diagnosis of PE. Summaries
255	of the patient characteristics of these cohorts are shown in Table 1 and 2 .
256	
257	The baseline prediction model of time to delivery interval among PE patients
258	PE is a syndrome with well-characterized phenotypes, where hypertension is the most significant clinical
259	symptom. Thus the structured data in the EHR system provide the most useful and straightforward
260	information. From the structured data, we obtained 45 variables including patient demographics, medical
261	history, comorbidities, PE diagnosis time, and severity after data preprocessing (Supplementary Table

11

262	2). The resulting model has very decent performance with C-indices of 0.73, 0.72, and 0.71 in the UM
263	cross-validation, UM hold-out testing, and UF validation cohorts, respectively (Figure 2A).
264	

265 To enhance the clinical utilities of the Cox-nnet model, we reduced the number of predictive features 266 following the feature reduction procedure in the Method section. This procedure resulted in 7 significant 267 features, which we used to rebuild the "clinically informative Cox-nnet baseline model". It has C-index 268 scores of 0.73, 0.74, and 0.73 on UM cross-validation, hold-out testing, and UF validation dataset 269 respectively (Figure 2A). We stratified patients into 3 groups by the quartiles of predicted time-to-270 delivery from the reduced model: high-risk (upper quartile), intermediate-risk (interquartile), and low-risk 271 (lower quartile) groups. The survival curves of the time to delivery interval on these three risk groups 272 display significant differences (log-rank p-value < 0.0001) on both the hold-out testing set (Figure 2B) 273 and validation set (Figure 2E), confirming the strong discriminatory power of the PI score. To enhance 274 the interpretability of the prognosis modeling, we stratified this model using the threshold of 2/7/14 days 275 and predicted the accuracies of delivery using these classifications. The AUROC scores of these 276 classification tasks are 0.85, 0.88, and 0.89 on the testing set (Figure 2C) and 0.67, 0.76, and 0.75 on the 277 validation set (Figure 2F), respectively.

278

279 The seven features in the clinically informative baseline model included those that shorten the time to 280 delivery and extend the time to delivery (Figure 2D; Table 3). In descending order of importance scores, 281 the features that shorten the time to delivery are gestational age at diagnosis, sPE, uncomplicated 282 pregestational diabetes mellitus, and parity. Conversely, features extending the time to delivery are PE in 283 a prior pregnancy, increasing maternal age, and comorbid valvular disease. To demonstrate the 284 associations of these important features with time to delivery, we dichotomized patient survival in the 285 hold-out testing set by the median value of each feature (Supplementary Figure 3). All features, except 286 maternal age, show significant differences (log-rank p-value < 0.05) between the dichotomized survival 287 groups. We further examined the relationship of the top 3 features (gestational age at diagnosis, sPE, and

288	history of PE in prior pregnancy) with the gestational age at delivery and time to delivery (day) using the
289	UM discovery set in (Figure 2G-2L). Later gestational age at diagnosis leads to a later gestational age of
290	delivery (Figure 2G), but a shorter time to delivery (Figure 2J). sPE is associated with earlier gestational
291	age of delivery (Figure 2H) and shorter time to delivery (Figure 2K) are diagnosed with sPE. In the
292	deliveries from smaller (<32 weeks) gestational ages, the percentages of patients with PE in prior
293	pregnancies are significantly higher (Figure 2I). However, the percentages of prior PE fluctuate with
294	respect to time to delivery (Figure 2L).
295	Worth noticing, that not all patients diagnosed with PE in 37 weeks or later delivered the babies right
296	away, despite being the least severe cases and can be delivered quickly according to the medical
297	recommendation ¹² . Nevertheless, we alternatively built another baseline model with only those patients
298	diagnosed before 37 weeks of gestation. We observed very similar results as the above baseline model
299	using all PE patients, in terms of C-index, the selected top features and their feature scores
300	(Supplementary Figure 4 A-D).
301	
302	The full model of time to delivery among PE patients
303	We next investigated the contribution to time of delivery from all 60 variables, including the 45 baseline
304	variables above and an additional 15 laboratory testing results and vital signs obtained in the 5-day
305	observation window before the time of diagnosis (Supplementary Table 2). The clinical informative
306	model after feature reduction consists of 12 top features (Table 3). This model shows significantly (P<
307	0.001, t-test) higher cross-validation accuracy of time to delivery compared to the seven-feature baseline
308	model, with median C-index scores almost as high as 0.80, with 0.78, 0.79, and 0.74 in the cross-
309	validation, testing, and validation datasets respectively. These C-indices are excellent for survival
310	predictions, despite the high heterogeneity of PE and the large patient size which makes it difficult to
311	
-	predict delivery time precisely. ³⁰⁵ . The Kaplan-Meier curves of the high-, intermediate- and low-risk

- 312 groups show more significant distinction in testing (Figure 3B) and validation set (Figure 3E), than the
- 313 baseline model (Figure 2B and 2E). Similarly, we stratified the full model using the threshold of 2/7/14

13

314	days and predicted the accuracies of delivery using these classifications. The AUROC scores of these
315	classification tasks are 0.88, 0.93, and 0.93 on the testing set and 0.84, 0.89, and 0.90 on the validation set
316	respectively (Figure 2C, 2F).
317	
318	Further examination of the 12 important features in the full model (Figure 3D, Table 3) shows good
319	consistency with the 7-feature baseline model (Figure 2D, Table 3). Five out of seven features in the
320	baseline model also exist in the full model with similar importance scores: gestational age at diagnosis,
321	sPE, parity, maternal age, and PE in prior pregnancies. Gestational age at PE diagnosis and sPE continued
322	to be the two most important features in the full model. We also identify new important features from lab
323	tests and vital signs: aspartate aminotransferase (AST) value, the standard deviation of diastolic blood

324 pressure (DBP), the standard deviation of respiratory rate (RR), creatinine value, mean DBP and white

blood cell count (Figure 3D). Conversely, platelet count is a new feature with a negative importance

326 score, associated with a longer time to delivery. All dichotomized survival plots using median

327 stratification on each of the 12 important features have log-rank p-values smaller than 0.05, confirming

328 their associations with time to delivery in the discovery set (Supplementary Figure 5). We examined the

329 3 top lab/vital sign features: AST, the standard deviation of DBP, and the standard deviation of RR, on

their association with the duration of time between diagnosis and delivery. These values show negative

331 trends with time to delivery, particularly for AST value and the standard deviation of DBP (Figure 3G-I).

332 These 3 features are roughly uniformly distributed across delivery gestational ages, except AST which

shows slightly higher values in deliveries less than 32 weeks of gestational age (Supplementary Figure6).

Similar to the baseline model earlier using PE patients diagnosed before 37 weeks of gestation, we again alternatively built another full model with the same patients before 37 weeks of gestation. We observed very similar results as the full model using all PE patients, in terms of C-index, the selected top features and their feature scores (**Supplementary Figure 4 E-H**).

14

340 Time to delivery prediction of EOPE patients

341 Accurate prediction of EOPE patients' time to delivery is crucial, given that delivery of a premature infant 342 has more significant neonatal consequences. Using similar modeling techniques, we trained two additional 343 EOPE-specific Cox-nnet v2 models (baseline vs. full model), using the same features described earlier 344 (Supplementary Table 2), on a subset of 374 EOPE patients from the UM discovery cohort. 345 The C-indices for the clinically informative EOPE baseline model are 0.67, 0.68, and 0.63 on the UM 346 cross-validation, hold-out testing, and UF validation sets, respectively (**Figure 4A**). Such significantly 347 lower C-indices for EOPE compared to PE are expected, as EOPE cases are usually difficult to predict 348 prognosis. Still, the time-to-delivery prediction for EOPE is on par or better than the prediction of PE 349 diagnosis using the same set of EHR data³³, demonstrating its potential clinical utility. The KM curves of 350 different predicted survival groups have significant distinctions in both the testing and validation datasets 351 (Figure 4B and 4E). This baseline model consists of the six most important features: gestational age at 352 diagnosis, sPE, PE in a past pregnancy, parity, pulmonary circulatory disorders, and coagulopathies 353 (Figure 4D; Table 3). All survival plots, dichotomized using the median stratification on each of the 6 354 features, have log-rank p-values smaller than 0.05 in the discovery dataset (Supplementary Figure 7). 355 Additionally, the AUROCs of binarized classification on delivery in the next 2/7/14 days range from 356 0.64-0.82 on the testing set (Figure 4C) and 0.52-0.68 on the validation set (Figure 4F). 357

The clinically informative EOPE full model reached much higher accuracy compared to the EOPE baseline model, with median C-indices of 0.74, 0.76, and 0.67 on the cross-validation, testing, and validation sets (**Figure 4G**). The large increases in C-indices are the results of including additional lab tests and blood pressure measurements right around the time of diagnosis of EOPE, confirming their significant clinical values. The 3 risk-stratified groups within the EOPE patient's cohort also showed significant (log-rank p-value<0.001) differences in the hold-out testing set and validation set (**Figure 4H**, **4K**). The AUROCs of chance of delivery in the next 2/7/14 days are significantly improved, ranging

15

365	from 0.82-0.86 on the testing set (Figure 4I) and 0.71-0.72 on the validation set (Figure 4L). This model
366	contains 13 important features selected from the original 60 features (Figure 4J; Table 3). Gestational
367	age at diagnosis continued to be the most important feature. Several other features (eg. PE with severe
368	symptoms, PE in a past pregnancy, parity, and coagulopathy) were of significant importance as well,
369	similar to the EOPE baseline model. Many additional features in the vital signs and lab test categories
370	were also significant, including creatinine value, mean DBP and mean SBP, standard deviation of RR,
371	AST, and platelet counts. Among these 13 features, parity, PE in a prior pregnancy, and higher platelet
372	counts were protective against early delivery (Figure 4J).
373	

374 We created dichotomized survival curves based on creatinine value and platelet count, two new features 375 relative to the EOPE baseline model. Both show strong distinctions between the risk groups (Figure 4I, 376 4L), similar to all other selected features (Supplementary Figure 7-8). These two features also revealed 377 systematic trends in associations with the gestational age at delivery and time from diagnosis to delivery. 378 Patients with high creatinine levels were more likely to be delivered within 3 days or less of diagnosis and 379 more likely to deliver preterm (Figure 4M-4O). Lower platelet counts were also associated with shorter 380 time to delivery (Figure 40), even though the platelet levels were not strongly associated with gestational 381 age at delivery among all EOPE patients (Figure 4R).

382

383 **PE time to deliver predictor graphic user interface (GUI)**

To disseminate our model publicly, we packaged the pre-trained clinically informative models above into an interactive, user-friendly web application using R shiny²³. We named this app "PE time to delivery predictor". The app contains two main panels: the single-patient prediction panel and the group prediction panel (**Supplementary Figure 9**). The single-patient prediction panel calculates the prognosis index (PI) of a single patient if provided the required clinical variables. The PI score describes the patient's risk of delivery at the time of the diagnosis of PE, relative to the population. The panel also provides the percentile of the PI score among the training data and displays the results in a histogram figure and a

16

395	Comparison with previous maternal risk prediction models
394	
393	http://garmiregroup.org/PE-prognosis-predictor/app
392	and also displays them in a table, below the histogram built on the training data. The app is available at
391	table. The group prediction panel calculates the PI and PI percentile of multiple patients simultaneously

396 Lastly, the previously established maternal risk prediction models (i.e. fullPIERS) cannot effectively

397 predict time-to-delivery at the initial diagnosis of PE directly. We calculated the maternal risk of adverse

398 outcomes using the fullPIERS formula on the UM EHR data. We then used this risk score to estimate the

399 time-to-delivery and compared its performance with our proposed model (see Methods). The cross-

400 validation C-index of fullPIERS is 0.50±0.005 on all PE patients and 0.60±0.01 on the EOPE subset

401 (Supplementary Figure 10A), much worse than those from our models. So are the survival curves

402 grouped by predicted risk (Supplementary Figure 10B-C). Thus the time-to-delivery models are not

403 only different but also irreplaceable by the maternal risk prediction models.

- 404
- 405

406 **Discussion**

407 PE is a highly heterogenous pregnancy syndrome currently without cure except for delivering the baby 408 and placenta^{3,34}. Here we report a new type of survival model to precisely predict the time to delivery as 409 early as the initial diagnosis of PE, subsequent to our recent success in predicting the onset of PE using 410 the same set of EHR data³³. It helps to save the effort of close monitoring and extensive testing which is 411 conventionally done in resource-rich settings. The simple yet precise models can also be utilized in 412 healthcare systems in resource-limited countries and regions. With such information, clinicians may 413 allocate limited resources in busy antepartum and neonatal ICU beds, or make decisions about the 414 urgency to transfer a patient to a higher level of care in the lack of sufficient resources. As many pregnant 415 women are willing to accept personal risks to improve perceived fetal outcomes, a more concrete model

17

416	such as the one proposed here will allow them to understand the likely latency and may help them to
417	prepare for delivery emotionally. Many previous studies, such as the fullPIERS and PREP-S models
418	recommended by NICE guidelines, did not predict the precise time of delivery, instead, they fall into very
419	different classification models ^{16,18,27,28} that aim to predict risks of maternal adverse outcomes
420	(Supplementary Table 5). Assisting in deciding delivery timing is not their primary purpose. If they
421	were to be used to predict the time-to-delivery directly, the result would not be satisfactory
422	(Supplementary Figure 10). Additionally, the prediction window of proposed models is longer than 48
423	hours in the fullPIERS model, making them good initial assessment tools.
121	The proposed models confirmed law factors already highlighted in current DE management, including
424	The proposed models commed key factors aready nightighted in current PE management, including
425	gestational age at the time of diagnosis, sPE, and the use of creatinine, platelet counts and AST as risk
426	factors in clinical guidelines (Figure 5) ^{$12-14,18$} . This is not surprising, as less time to delivery is likely
427	associated with patients at higher risk for complications based on clinical assessments. However, this
428	class of models also assigns weights of relative importance, among these key factors, a capacity
429	nonexistent in the current ACOG guidelines ¹² . Another novel finding is the identification of parity and PE
430	in prior pregnancies as important predictors for delivery timing in all models tested but not included in
431	current guidelines for PE delivery timing (Figure 5). Most importantly, the models predict the timing of
432	delivery at the initial diagnosis and require no more than readily available information from blood work,
433	medical history, and demographics that are routinely collected in medical centers in the US.
434	

There are several noticeable strengths of this study. The models show consistently high performance in survival prediction and classification tasks, better than previous time-to-delivery prediction models using clinical data or biomarkers^{37–39}. Unlike the majority of previous studies that are not validated with external data^{35,40,41}, our models are validated with an external and independent EHR dataset from UF Health System, despite the noticeable differences between the populations in the two cohorts (**Table 1, 2**). These models also address clinical interpretability by providing importance scores with directionality for

18

441	each included predictor. Furthermore, the model is designed for accessibility by utilizing fewer than 15
442	common demographic and disease histories and routinely collected clinical variables in a short
443	observation window. Our approach is much more convenient, as compared to previous studies relying
444	extensively on nonstandard biomarkers such as uterine artery pulsatility index (UtA-PI) or placental
445	growth factor (PLGF) ^{39–41} . Measurement of these biomarkers is rare in routine prenatal checkups,
446	particularly in lower-income regions, limiting the wide adoption of these biomarker-based models. To
447	maximize the dissemination of the models among clinicians and patients, we have packaged the pre-
448	trained models into a user-friendly shiny application. We aim to embed these models into the EHR
449	system, though it will require additional higher levels of cooperation within the UM Health System. Once
450	integrated, the models will provide clinicians with a fast and accurate assessment of the urgency for
451	delivery at the initial diagnosis of PE.
452	
453	A few caveats to this study are potentially limiting. Firstly, the ICD coding system lags behind the most
454	recent diagnostic guidelines of PE. However, the codes that are entered into the EHR are based on the
455	clinical assessments of the treating physicians at two academic medical centers, therefore they most likely
456	reflect contemporary diagnostic standards. Also as a retrospective study, the delivery timing can be
457	influenced by clinicians' previous judgment, changes in hospital protocol, communication between
458	patient and provider, intensive care resource availability, and each patient's intentions. However, since
459	these models generally perform well on the external validation set as they achieve C-indices of 0.7 or
460	even close to 0.80, we believe that these subjective factors may not be the main concerns for achieving
461	high prediction power, rather, additional data modalities may help. Prospective investigations of this
462	model's performance in other medical centers would be necessary to confirm the findings. Lastly, our
463	data came from two medical centers with high levels of obstetrics care and therefore testing the model in other
464	settings (eg. other countries and rural regions) will be deemed valuable.

19

466	In summary, we have developed the first accurate, deep-learning-based, time-to-delivery prediction
467	models for PE and EOPE patients. The models are disseminated with an easy-to-use web app. Adoption
468	of these models could provide clinicians and patients with valuable management plans to predict and
469	prepare for the best delivery time of each PE pregnancy. Further prospective investigation of the
470	performance of these models is necessary to provide feedback and potential improvement of these
471	models.
472	
473	Acknowledgment
474	We thank Anisa Driscoll and Kate Smith from the University of Michigan Precision Health for providing
475	technical support when extracting data used in this study. We acknowledge the University of Florida
476	Integrated Data Repository (IDR) and the UF Health Office of the Chief Data Officer for providing the
477	analytic data set for this project.
478	
479	Data Sharing Statement
480	We are unable to publicly share electronic health records data due to its potential to reveal sensitive
481	patient information. However, interested investigators who met the criteria for accessing sensitive data
482	can contact the University of Michigan Precision Health's Research Scientific Facilitators at
483	PHDataHelp@umich.edu (also see https://research.medicine.umich.edu/our-units/data-office-clinical-
484	translational-research/data-access) to inquire about the UM dataset and the necessary steps regarding
485	ethics committee approval and data sharing agreement. Please contact the UF Health Integrated Data
486	Repository (IDR, <u>https://idr.ufhealth.org/</u>) at IRBDataRequest@ahc.ufl.edu to inquire about the UF
487	dataset and the necessary steps regarding ethics committee approval and data sharing agreement.
488	
489	Code Availability

490 Codes used for analysis are available at https://github.com/lanagarmire/PE_delivery

20

491

492 **Declaration of Interest**

- 493 The authors declare no conflict of interest.
- 494
- 495 Funding
- 496 LXG was supported by grants R01 LM012373 and LM012907 awarded by NLM, R01 HD084633
- 497 awarded by NICHD. DJL was supported by the National Institute of Diabetes and Digestive and Kidney
- 498 Diseases (K01DK115632) and the University of Florida Clinical and Translational Science Institute
- 499 (UL1TR001427). XY is supported by NIH/NIGMS Grant T32GM141746. AM is supported by the
- 500 National Center for Advancing Translational Science (5TL1TR001428).
- 501

502 Author's Contribution

503 LG conceived this project and supervised the study, after discussing it with ESL. XY conducted data

analysis, implemented the Shiny app, and wrote the manuscript. HKB, ADM, KX, and DJL collaborated

505 on validation using the UF cohort. ESL and ADM provided clinical assessments and assistance. DG

506 assisted with Shiny app editing and troubleshooting. All authors have read, revised, and approved the

507 manuscript.

508

509 **Reference**

- Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia—Pathophysiology and Clinical Presentations. *Journal of the American College of Cardiology*. 2020;76(14):1690-1702. doi:10.1016/j.jacc.2020.08.014
- US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, et al. Screening for
 Preeclampsia: US Preventive Services Task Force Recommendation Statement. *JAMA*.
 2017;317(16):1661. doi:10.1001/jama.2017.3439
- Roberts JM, Rich-Edwards JW, McElrath TF, Garmire L, Myatt L, for the Global Pregnancy
 Collaboration. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness.
 Hypertension. 2021;77(5):1430-1441. doi:10.1161/HYPERTENSIONAHA.120.14781

- 519
 4. Sibai BM. Evaluation and management of severe preeclampsia before 34 weeks' gestation. *American Journal of Obstetrics and Gynecology*. 2011;205(3):191-198. doi:10.1016/j.ajog.2011.07.017
- 521 5. von Dadelszen P, Magee LA, Roberts JM. Subclassification of Preeclampsia. *Hypertension in* 522 *Pregnancy*. 2003;22(2):143-148. doi:10.1081/PRG-120021060
- 523 6. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics
 524 and therapies. *Nat Rev Nephrol.* 2019;15(5):275-289. doi:10.1038/s41581-019-0119-6
- Amaral LM, Wallace K, Owens M, LaMarca B. Pathophysiology and Current Clinical Management
 of Preeclampsia. *Curr Hypertens Rep.* 2017;19(8):61. doi:10.1007/s11906-017-0757-7
- 527 8. Duffy J, Cairns A, Richards Doran D, et al. A core outcome set for pre eclampsia research: an
 528 international consensus development study. *BJOG*. 2020;127(12):1516-1526. doi:10.1111/1471529 0528.16319
- 530
 9. Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early531 versus late-onset disease. *American Journal of Obstetrics and Gynecology*. 2013;209(6):544.e1532 544.e12. doi:10.1016/j.ajog.2013.08.019
- Manuck TA, Rice MM, Bailit JL, et al. Preterm neonatal morbidity and mortality by gestational age:
 a contemporary cohort. *American Journal of Obstetrics and Gynecology*. 2016;215(1):103.e1103.e14. doi:10.1016/j.ajog.2016.01.004
- 536 11. Hollegaard B, Lykke JA, Boomsma JJ. Time from pre-eclampsia diagnosis to delivery affects future
 537 health prospects of children. *Evolution, Medicine, and Public Health*. 2017;2017(1):53-66.
 538 doi:10.1093/emph/eox004
- 539 12. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. *Obstetrics & Gynecology*. 2020;135(6):e237-e260. doi:10.1097/AOG.00000000003891
- 541 13. Visintin C, Mugglestone MA, Almerie MQ, et al. Management of hypertensive disorders during
 542 pregnancy: summary of NICE guidance. *BMJ*. 2010;341(aug25 3):c2207-c2207.
 543 doi:10.1136/bmj.c2207
- 544 14. Von Dadelszen P, Payne B, Li J, et al. Prediction of adverse maternal outcomes in pre-eclampsia:
 545 development and validation of the fullPIERS model. *The Lancet*. 2011;377(9761):219-227.
 546 doi:10.1016/S0140-6736(10)61351-7
- 547 15. Ukah UV, Payne B, Hutcheon JA, et al. Assessment of the fullPIERS Risk Prediction Model in
 548 Women With Early-Onset Preeclampsia. *Hypertension*. 2018;71(4):659-665.
 549 doi:10.1161/HYPERTENSIONAHA.117.10318
- 16. Ukah UV, Payne B, Karjalainen H, et al. Temporal and external validation of the fullPIERS model
 for the prediction of adverse maternal outcomes in women with pre-eclampsia. *Pregnancy Hypertension*. 2019;15:42-50. doi:10.1016/j.preghy.2018.01.004
- 17. Payne BA, Hutcheon JA, Ansermino JM, et al. A Risk Prediction Model for the Assessment and
 Triage of Women with Hypertensive Disorders of Pregnancy in Low-Resourced Settings: The
 miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) Multi-country Prospective Cohort Study.
 Lawn JE, ed. *PLoS Med.* 2014;11(1):e1001589. doi:10.1371/journal.pmed.1001589
- 18. for the PREP Collaborative Network, Thangaratinam S, Allotey J, et al. Prediction of complications
 in early-onset pre-eclampsia (PREP): development and external multinational validation of
 prognostic models. *BMC Med.* 2017;15(1):68. doi:10.1186/s12916-017-0827-3
- 560 19. Schmidt LJ, Rieger O, Neznansky M, et al. A machine-learning-based algorithm improves prediction
 561 of preeclampsia-associated adverse outcomes. *Am J Obstet Gynecol*. 2022;227(1):77.e1-77.e30.
 562 doi:10.1016/j.ajog.2022.01.026
- Wang D, Jing Z, He K, Garmire LX. Cox-nnet v2.0: improved neural-network-based survival
 prediction extended to large-scale EMR data. Schwartz R, ed. *Bioinformatics*. 2021;37(17):27722774. doi:10.1093/bioinformatics/btab046
- 566 21. Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for prognosis prediction
 567 of high-throughput omics data. Markowetz F, ed. *PLoS Comput Biol*. 2018;14(4):e1006076.
 568 doi:10.1371/journal.pcbi.1006076
- 569 22. Zhan Z, Jing Z, He B, et al. Two-stage Cox-nnet: biologically interpretable neural-network model for

- 570 prognosis prediction and its application in liver cancer survival using histopathology and
- transcriptomic data. *NAR Genomics and Bioinformatics*. 2021;3(1):lqab015.
- 572 doi:10.1093/nargab/lqab015
- 23. Zawistowski M, Fritsche LG, Pandit A, et al. The Michigan Genomics Initiative: A biobank linking
 genotypes and electronic clinical records in Michigan Medicine patients. *Cell Genomics*.
 2023;3(2):100257. doi:10.1016/j.xgen.2023.100257
- ACOG Practice Bulletin No. 203: Chronic Hypertension in Pregnancy. *Obstetrics & Gynecology*.
 2019;133(1):e26-e50. doi:10.1097/AOG.0000000003020
- 578 25. Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance
 579 measure. *Bioinformatics*. 2010;26(10):1340-1347. doi:10.1093/bioinformatics/btq134
- 580 26. Harrell FE. Evaluating the Yield of Medical Tests. *JAMA*. 1982;247(18):2543.
 581 doi:10.1001/jama.1982.03320430047030
- 582 27. Peto R, Peto J. Asymptotically Efficient Rank Invariant Test Procedures. *Journal of the Royal* 583 *Statistical Society Series A (General)*. 1972;135(2):185. doi:10.2307/2344317
- S84
 S85
 S95
 S95
- 586 29. R Core Team. R: A language and environment for statistical computing. Published online 2021.
 587 https://www.R-project.org/
- 588 30. Rossum G van, Drake FL. The Python language reference. Published online 2010.
- 589 31. Wickham H, François R, Lionel Henry, Kirill Müller. dplyr: A Grammar of Data Manipulation.
 590 Published online 2020. https://CRAN.R-project.org/package=dplyr
- Suuren S van, Groothuis-Oudshoorn K. mice □: Multivariate Imputation by Chained Equations in *R*. *J Stat Soft*. 2011;45(3). doi:10.18637/jss.v045.i03
- 33. Ballard HK, Yang X, Mahadevan A, Lemas DJ, Garmire LX. Building and validating 5-feature
 models to predict preeclampsia onset time from electronic health record data. Published online March
 24, 2023. doi:10.1101/2023.03.23.23287655
- 596 34. Benny PA, Alakwaa FM, Schlueter RJ, Lassiter CB, Garmire LX. A review of omics approaches to study preeclampsia. *Placenta*. 2020;92:17-27. doi:10.1016/j.placenta.2020.01.008
- 598 35. Li S, Wang Z, Vieira LA, et al. Improving preeclampsia risk prediction by modeling pregnancy
 599 trajectories from routinely collected electronic medical record data. *npj Digit Med.* 2022;5(1):68.
 600 doi:10.1038/s41746-022-00612-x
- 36. Jhee JH, Lee S, Park Y, et al. Prediction model development of late-onset preeclampsia using
 machine learning-based methods. Spradley FT, ed. *PLoS ONE*. 2019;14(8):e0221202.
 doi:10.1371/journal.pone.0221202
- 37. Duhig KE, Seed PT, Placzek A, et al. Prognostic indicators of severe disease in late preterm pre eclampsia to guide decision making on timing of delivery: The PEACOCK study. *Pregnancy Hypertension*. 2021;24:90-95. doi:10.1016/j.preghy.2021.02.012
- 80.7 88. Reeder HT, Haneuse S, Modest AM, Hacker MR, Sudhof LS, Papatheodorou SI. A novel approach to
 ipoint prediction of preeclampsia and delivery timing using semicompeting risks. *American Journal of Obstetrics and Gynecology*. Published online August 2022:S0002937822006883.
 doi:10.1016/j.ajog.2022.08.045
- 611 39. Lim S, Li W, Kemper J, Nguyen A, Mol BW, Reddy M. Biomarkers and the Prediction of Adverse
 612 Outcomes in Preeclampsia: A Systematic Review and Meta-analysis. *Obstetrics & Gynecology*.
 613 2021;137(1):72-81. doi:10.1097/AOG.0000000004149
- 614 40. Binder J, Palmrich P, Pateisky P, et al. The Prognostic Value of Angiogenic Markers in Twin
 615 Pregnancies to Predict Delivery Due to Maternal Complications of Preeclampsia. *Hypertension*.
 616 2020;76(1):176-183. doi:10.1161/HYPERTENSIONAHA.120.14957
- 41. Wright D, Wright A, Nicolaides KH. The competing risk approach for prediction of preeclampsia.
 American Journal of Obstetrics and Gynecology. 2020;223(1):12-23.e7.
- 619 doi:10.1016/j.ajog.2019.11.1247

23

0.11

0.87

0.01

0.13

NA

0.87

0.17

0.83

0.12

0.88

0.35

0.65

620					
621					
622					
623					
624					
625	Tables and legends				
626	Table 1: Basic Patient Characteristics for this study				
		-			
	Variable Name	University of Michigan PE Discovery Cohort (n = 1533)	University of Florida PE Validation Cohort (n = 2172)		
	Variable Name Maternal Age, mean (SD)	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74)	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46)		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD)	University of Michigan PE <i>Discovery Cohort (n = 1533)</i> 30.19(5.74) 0.72(1.15)	University of Florida PE <i>Validation Cohort (n = 2172)</i> 28.63(6.46) 0.73(1.55)		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD)	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27)	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21)		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD)	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44)	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83)		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD)	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39)	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28)		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD) Race, N (%)	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39)	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28)		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD) Race, N (%) African American	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39) 0.18	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28) 0.37		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD) Race, N (%) African American American Indian or Alaska Native	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39) 0.18 0.00	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28) 0.37 0.00		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD) Race, N (%) African American American Indian or Alaska Native Asian	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39) 0.18 0.00 0.07	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28) 0.37 0.00 0.02		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD) Race, N (%) African American American Indian or Alaska Native Asian Caucasian	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39) 0.18 0.00 0.07 0.75	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28) 0.00 0.00 0.02 0.49		
	Variable Name Maternal Age, mean (SD) Parity, mean (SD) Number of fetuses, mean (SD) Gestational Age at Diagnosis (days), mean (SD) Time to Delivery (days), mean (SD) Race, N (%) African American American Indian or Alaska Native Asian Caucasian Native Hawaiian and Other Pacific Islander	University of Michigan PE Discovery Cohort (n = 1533) 30.19(5.74) 0.72(1.15) 1.07(0.27) 249.96(27.44) 7.02(15.39) 0.18 0.00 0.07 0.75 0.00	University of Florida PE Validation Cohort (n = 2172) 28.63(6.46) 0.73(1.55) 1.04(0.21) 256.72(26.83) 5.70(13.28) 0.00 0.02 0.49 0.00		

0.06

0.94

0.00

0.06

0.24

0.70

0.10

0.90

0.11

0.89

0.47

0.53

Hispanic

Unknown

Non-Hispanic

Current Smoker Former Smoker

Never Smoker

Yes

No

Yes No

Yes

No

sPE, N (%)

Smoking Status, N (%)

History of PE, N (%)

Illegal Drug Use Status, N(%)

628
629

Table 2: Basic Characteristics of EOPE patients in this study

	University of Michigan EOPE	University of Florida EOPE		
Variable Name	Subset $(n = 374)$	Subset (n=547)		
Maternal Age, mean (SD)	30.70(5.72)	29.48(6.65)		
Parity, mean (SD)	0.98(1.26)	1.11(1.55)		
Number of fetuses, mean (SD)	1.12(0.34)	1.09(0.31)		
Gestational Age at Diagnosis,				
mean (SD), day	211.10(23.79)	217.75(21.43)		
Time to Delivery, mean (SD), day	19.12(26.44)	16.28 (22.12)		
Race, N (%)				
African American	26.74%	43.33%		
American Indian or Alaska Native	0.80%	0.18%		
Asian	5.08%	1.10%		
Caucasian	66.58%	45.16%		
Native Hawaiian and Other Pacific				
Islander	0.80%	0.00%		
Unknown or Other	0.00%	10.23%		
Ethnicity, N (%)				
Hispanic	3.21%	9.14%		
Non-Hispanic	96.79%	89.58%		
Unknown	0.00%	1.28%		
Smoking Status, N (%)				
Current Smoker	7.22%	17.00%		
Former Smoker	22.99%	NA		
Never Smoker	69.79%	NA		
Illegal Drug Use Status, N(%)				
Yes	11.76%	14.08%		
No	88.24%	85.92%		
History of PE, N (%)				
Yes	18.72%	15.54%		
No	81.28%	84.46%		
sPE, N (%)				
Yes	54.28%	35.10%		
No	45.72%	64.90%		

25

648
649
650
651
652
653
654
655
656
657
658

658 659

Table 3: Features and their permutation importance score in each reduced model

Baseline Model for all PE		Full model for all PE		Baseline Model for EOPE		Full Model for EOPE	
Name	Importance Score	Name	Importance Score	Name	Importanc e Score	Name	Importance Score
Gestational Age at Diagnosis	323.55	Gestational Age at Diagnosis	390.29	Gestational Age at Diagnosis	29.88	Gestational Age at Diagnosis	26.36
sPE	79.59	sPE	38.71	sPE	12.37	Creatinine	10.52
PE in Prior Pregnancies	7.02	DBP Standard Deviation	30.22	PE in Prior Pregnancies	6.69	Mean DBP	8.85
Maternal Age	2.75	AST	26.56	Pulmonary Circulatory Disorders	6.38	Mean SBP	7.21
Uncomplicated Diabetes	1.35	Mean DBP	13.64	Parity	4.78	AST	7.1
Valvular Disease	1.11	RR Standard Deviation	12.37	Coagulopathies	1.17	Pulmonary Circulatory Disorders	5.96
Parity	1.04	Parity	11.45			Parity	4.74
		Creatinine	11.16			RR Standard Deviation	4.52
		Platelet Count	9.67			sPE	2.83
		White Blood Cell Count	6.08			Number of Fetuses	2.24
		Age	3.84			Platelet Count	1.93
		PE in Prior Pregnancies	3.38			PE in Prior Pregnancy	1.34
						Coagulopathie s	0.69

663	
664	
665	
666	
667	
007	
668	
669	
670	
671	
672	
673	Figure Legends
674	i igure Legends
675	
676	Figure 1: Experimental design and cohort overview. A) Experiment Design Workflow: The
677	discovery cohort was obtained from the University of Michigan Health System and a validation cohort of
678	similar size and time was obtained from the University of Florida Health System. We constructed 4
679	predictive models: baseline and full models for all PE patients and baseline and full models for EOPE
680	patients. The input variables in baseline models include patients' demographics, lifestyle, comorbidities
681	and medical history. The full models include additional lab tests and vital signs from within 5 days of PE
682	diagnosis, in addition to the variables in the baseline models. We trained the Cox-nnet prognosis
083 684	discovery cohort, and validated it using the validation achort. We then built alignedly informative models
004 685	by reducing Cox, net features based on both their importance scores and significance levels. The models
686	are examined by the importance scores of top features and stratified survival curves based on patient
687	survival risks. We disseminated the feature-reduced clinically informative models into a user-friendly
688	web application for healthcare professionals to use. Created with BioRender.com.
689	
690	Figure 2: PE Baseline model results, interpretation, and evaluation. A: The bar plots of C-indices
691	from the original Cox-nnet models (red) and feature-reduced clinically informative model (green), on the
692	UM cross-validation and hold-out testing set and UF validation set. B, E: The survival curves of high-risk
693	(top 25%), intermediate-risk (middle 50%) and low-risk groups (bottom 25%), categorized by predicted
694	PI from the reduced baseline model in A on B: hold-out testing data and E: validation data. C, F: ROC
695	curves of prediction delivery time within 2 days, 7 days and 14 days using results from reduced baseline
090 607	model on C: noid-out testing data and F: validation data. D: The in-transformed permutation importance
698	feature is associated with a shorter time to delivery and a negative sign means an extension of time to
699	delivery G-L. The distribution of diagnosis gestational age sPE rate and PE in prior pregnancy rate in
700	associations with delivery gestational week (G-I) and time (days) to delivery (J-L).
701	
702	
703	Figure 3: PE Full model results, interpretation and evaluation. A: The bar plots of C-indices from the
704	original models (red) and feature-reduced clinical informative model (green), on the UM training cross-
705	validation and hold-out testing set and UF validation set. B, E: The survival curves of high-risk (top
706	25%), intermediate-risk (middle 50%) and low-risk groups (bottom 25%), categorized by predicted PI
/0/	trom the reduced full model in A. B: hold-out testing data, E: validation data. C, F: ROC curves of
708	C: hold out testing data and E: validation data. D: The in transformed permutation importance scores of
709	C. non-our result guara and F. vanuation data. D. The III-transformed permutation importance scores of features in the feature-reduced baseline model. A positive sign indicates that a higher value in the feature
/10	reatures in the reature-reduced baseline moder. A positive sign indicates that a higher value in the reature

27

711 is associated with a shorter time to delivery and a negative sign means an extension of time to delivery.

- G-I: The distribution of aspartate aminotransferase (AST) values, the standard deviation of diastolic blood
 pressure (DBP) and the standard deviation of respiratory rate (RR), in association with time (days) to
- delivery.
- 715

716 Figure 4: Results, interpretation and evaluation of baseline and full models on the EOPE patient

717 subset. A: The bar plots of C-indices from the original Cox-nnet EOPE baseline model (red) and feature-718 reduced clinically informative model (green) on the cross-validation and testing set and validation set. B-719 C: The survival curves of high-risk (top 25%), intermediate-risk (middle 50%) and low-risk groups 720 (bottom 25%), categorized by predicted PI from the reduced EOPE baseline model in A. B, E: hold-out 721 testing data, E: validation data. C, F: ROC curves of prediction delivery time within 2 days, 7 days and 14 722 days using results from reduced EOPE baseline model (A) on C: hold-out testing data and F: validation 723 data. D: The ln-transformed permutation importance score of features in the EOPE full model. G: The bar 724 plots of C-indices from the original Cox-nnet EOPE full model (red) and its feature-reduced clinically 725 informative model (green) on the cross-validation and testing set and validation set. H, K: The survival 726 curves of high-risk (top 25%), intermediate-risk (middle 50%) and low-risk groups (bottom 25%), 727 categorized by predicted PI from the reduced full model in E. H: hold-out testing data, K: validation data. 728 I, L: ROC curves of prediction delivery time within 2 days, 7 days and 14 days using results from reduced 729 EOPE full model (G) on I: hold-out testing data and L: validation data. J: The ln-transformed permutation 730 importance scores of features in the EOPE full model. M-O: Analysis of creatinine values among the 731 EOPE patients in the discovery cohort. M: The dichotomized survival curves by the median value of 732 creatinine. N, O: Distributions of creatinine values by delivery gestational week (N) and time to delivery 733 (O). P-R: Analysis of platelet counts among the EOPE patients in the discovery cohort. P: The 734 dichotomized survival curves by the median value of platelet counts. Q-R: Distributions of creatinine 735 values by delivery gestational week (Q) and time to delivery (R).

736 737

738 Figure 5: Comparison of important features among the four feature-reduced clinically informative

739 models A: The bubble plot of important features from PE baseline, EOPE baseline, PE full, and EOPE

full models using reduced top important features. The size of the bubbles represents the permutation

importance score of each feature. Color represents the sign of features in the time to delivery prediction: a

positive sign indicates that a higher value in the feature is associated with a shorter time to delivery and a

negative sign means an extension of time to delivery. B: Venn diagram of the important features from the

- four models shown in A.
- 745

Time to Delivery(Day)

Time to Delivery(Day)

A

Time to Delivery(Day)

0.8

0.03

0.02

0.01

2

Time to Delivery(Day)

В

100

200