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Abbreviations:  

PE: preeclampsia 

EOPE: early-onset preeclampsia 

LOPE: late-onset preeclampsia 

EHR: electronic health record 

SBP: systolic blood pressure 

DBP: diastolic blood pressure 

RR: respiratory rate 

HELLP: hemolysis, elevated liver enzymes, low platelet count  

AST: aspartate transaminase  

PI: prognosis score 

UM: University of Michigan 

UF: University of Florida 

ICD-10: The International Classification of Diseases, Tenth Revision 

MAP: mean arterial pressure  

UtA-PI:  uterine artery pulsatility index 

PLGF: placental growth factor 

ACOG: American College of Obstetricians and Gynecologists  
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Background 

Preeclampsia (PE) is one of the leading factors in maternal and perinatal mortality and morbidity 

worldwide. Delivery timing is key to balancing the risk between severe maternal and neonatal morbidities 

in pregnancies complicated by PE.  

Method 

In this study, we constructed and validated first-of-their-kind deep learning models that can forecast the 

time to delivery among patients with PE using electronic health records (EHR) data. The discovery cohort 

consisted of 1,533 preeclamptic pregnancies, including 374 cases of early-onset preeclampsia (EOPE), 

that were delivered at University of Michigan Health System (UM) between 2015 and 2021. The 

validation cohort contained 2,172 preeclamptic pregnancies (including 547 EOPE) from University of 

Florida Health System (UF) in the same period. Using Cox-nnet, a neural network-based prognosis 

prediction algorithm, we built baseline models of all PE patients and of the subset of EOPE patients, 

using 47 features on demographics, medical history, comorbidities, the severity of PE, and gestational age 

of initial PE diagnosis. We also built full models using 62 features, combining those in baseline models 

and additional features on lab tests and vital signs, on the same PE patients and EOPE subset. The models 

were re-trained and re-validated using reduced sets of the most important features, to improve their 

interpretability and clinical applicability. 

Findings 

The 7-feature baseline models on all PE patients reached C-indices of 0·73, 0·74 and 0·73 on UM training, 

hold-out testing and UF validation dataset respectively, whereas the 12-feature full model had improved 

C-indices of 0·78, 0·79 and 0·74 on the same datasets.  For the EOPE cases, the 6-feature baseline model 

achieved C-indices of 0·67, 0·68 and 0·63 on the training, hold-out testing and UF validation dataset 

respectively, while its 13-feature full model counterpart reached C-indices of  0·74, 0·76 and 0·67 in the 

same datasets. Besides confirming the prognostic importance of gestational age at the time of diagnosis 

and of sPE status, all four models identified parity and PE in prior pregnancies as important features, 

which are not in the current guidelines for PE delivery timing. Laboratory results and vital signs such as 
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platelet count, the standard deviation of respiratory rate within a 5-day observation window, and mean 

diastolic blood pressure are critical to increase the accuracy of predicting time to delivery, in addition to 

testing aspartate aminotransferase and creatinine levels. For EOPE time to delivery prediction, 

comorbidities such as pulmonary circulation disorders and coagulopathy as defined in Elixhauser 

Comorbidity Index are important to consider.  

 

Interpretation 

We set up a user-friendly web interface to allow personalized PE time to delivery prediction. The app is 

available at http://garmiregroup.org/PE-prognosis-predictor/app These actionable models may help 

providers to plan antepartum care in these pregnancies and significantly improve the management/clinical 

outcomes of pregnancies affected by PE. 

 

Funding 

This study is funded by the National Institutes of Health  

 

 

 

Research in context  

Evidence before this study  

Determining the optimal delivery time is essential in preeclampsia management to balance the risk of 

maternal and neonatal morbidities. Current clinical guidelines for delivery timing in preeclampsia, 

according to the American College of Obstetricians and Gynecologists (ACOG), mainly depend on the 

gestational age at diagnosis and the severity of PE. However, the current knowledge doesn’t provide a 

quantitative prediction of patients’ risk of delivery, nor does it discuss the effect of some important 

phenotypic factors (eg. patients’ demographics, lifestyles and comorbidities) on delivery time. Rather, 
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according to a systematic review published in 2021, 18 prior studies predicted the timing of delivery for 

preeclampsia using biomarkers, which are yet to be implemented in routine checkups in pregnancy. On 

the other hand, EHR data are routinely collected but often overlooked information, with huge potential to 

predict challenging time to delivery problems such as those in PE. 

 

Added value of this study  

To our knowledge, these are the first deep-learning-based time to delivery prediction models for PE and 

EOPE patients using routine clinical and demographic variables.  We enlist the quantitative values of 

critical EHR features informative of delivery time among PE patients, many of which are newly reported 

clinical features. We disseminate these models by the web tool “PE time to delivery Predictor”. 

 

Implications of all the available evidence  

All models are externally validated with a large EHR dataset from the University of Florida Health 

System. Adopting these models may provide clinicians and patients with valuable management plans to 

predict and prepare for the best delivery times of pregnancies complicated by PE, especially for EOPE 

cases in which consequences of early delivery are more significant. Further prospective investigation of 

these models’ performance is necessary to provide feedback and potential improvement of this model. 

 

 

 

 

 

 

 

Introduction 
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Preeclampsia (PE) is a pregnancy complication affecting 2% to 8% of all pregnancies worldwide and is a 

leading cause of maternal, fetal, and neonatal mortality and morbidity1,2. PE is defined by new-onset 

hypertension after 20 weeks of gestation and the presence of proteinuria, and/or other signs of end organ 

damage. PE is a diverse syndrome with various subtypes along the spectrum of gestational hypertensive 

disorders.3 It can be divided into early-onset PE (diagnosed before 34 weeks of pregnancy) or late-onset 

PE (diagnosed after 34 weeks of pregnancy); PE with severe features(sPE) or PE without severe features 

(nsPE) 4,5. Failure to properly manage PE can lead to severe maternal morbidities, long-term adverse 

health outcomes, and even maternal death, and the only known cure to PE is delivery of the placenta6, 7. 

This, especially in cases of EOPE8, creates a dilemma as earlier delivery can potentially prevent severe 

morbidities including maternal seizure, stroke, organ dysfunction and intrauterine fetal demise, but may 

lead to premature birth and subsequent neonatal complications9,10. To balance the risks to both mother 

and baby, current clinical management of PE includes supportive blood pressure management and 

prophylaxis for maternal seizures, and a two-dose intramuscular course of betamethasone to augment fetal 

lung maturation11. 

 

Clinical guidelines for delivery timing in preeclampsia mainly depend on gestational age at diagnosis and 

disease severity; generally, delivery is immediate for patients past 37 weeks of gestation or past 34 weeks 

with sPE. If less than 34 weeks and diagnosed with sPE, pregnancy should only continue if intensive care 

is available and no severe maternal morbidity suspected11–13. In cases in which delivery is not 

immediately indicated at the time of PE diagnosis, there is currently no way to know when patients might 

escalate to a state that requires immediate delivery. Additionally, known risk factors for PE, such as the 

patient’s demographics, social status, lifestyle, and other comorbidities may also influence the timing of 

delivery, but they are not discussed in the management guidelines. A comprehensive quantitative model 

using patient-level data to assess time to delivery among PE patients would help clinicians to make 

management decisions, particularly among the challenging EOPE cases. 
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Towards this goal, we conducted the first study to predict patient delivery time after the diagnosis of PE 

using electronic health records (EHR) data. We utilized the state-of-the-art deep learning-based prognosis 

prediction model, Cox-nnet, which we previously developed14–16. Cox-nnet methods have consistently 

shown better predictive performances than the conventional Cox-PH models under a variety of 

conditions, including on EHR data14. Our objectives were: (1) to predict the time to delivery interval 

among PE patients, and an EOPE sub-cohort, from the time of initial diagnosis by constructing and 

validating deep-learning models utilizing EHR data; and (2) to assess the quantitative contributions of 

critical EHR features informative of delivery time among PE patients, including those EOPE patients. 

 

Methods 

Data Source 

We obtained the discovery cohort from Michigan Medicine (UM), the academic health care system of the 

University of Michigan, Ann Arbor. Data usage was approved by the Institutional Review Board (IRB) of 

the University of Michigan Medical School (HUM#00168171). The validation cohort was obtained from 

the Integrated Data Repository database at the University of Florida (UF). Data usage was approved by 

IRB of the University of Florida (#IRB201601899).  We extracted all obstetric records with at least one 

PE diagnosis based on ICD-10 diagnosis codes (Supplementary Table 1). We excluded patients with the 

following conditions: Hemolysis, Elevated Liver Enzymes, and Low Platelet (HELLP) syndrome and 

eclampsia, for which iatrogenic delivery is ubiquitously induced within 48 hours of diagnosis; chronic 

hypertension with superimposed PE, whose onset may occur before week 20 and whose diagnostic 

criteria are less clear; and postpartum PE, which is only developed after delivery. We also removed 

patients transferred from other institutions by deleting patients with no visit record within 180 days prior 

to the first diagnosis of PE to confirm the accuracy of the initial diagnosis time of PE.   
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EHR Feature Engineering 

The EHR provided baseline individual features, vital signs, and lab values obtained after PE diagnosis. 

Baseline features included age, race, ethnicity, smoking and drug use status, medical history, pregnancy 

characteristics, and comorbidities at the earliest PE diagnosis. Pregnancy characteristics included parity, 

number of fetuses, gestational age, and PE severity at initial diagnosis. Comorbidities were grouped into 

29 categories using the Elixhauser Comorbidity Index17. The observational window for lab results and 

vital signs was 5 days before the day of the initial PE diagnosis. Only the first results of repeated tests 

were used to avoid intervention/treatment effect, resulting in 13 lab test features (10 hematological, 2 

liver function, 1 urine). Vital signs were collected within the 5-day window, and summary statistics of 

systolic blood pressure (SBP), diastolic blood pressure (DBP), and respiratory rate (RR) measures were 

included (max, min, mean, standard deviation), as done in previous work18. As a result, 62 features were 

kept for initial analysis (Supplementary Table 2). Details of feature selection and cleaning are described 

in Supplementary Methods.  

 

Fully-connected Cox-nnet neural network models 

We developed 4 models to predict the time to delivery of PE patients: PE baseline, PE full, EOPE 

baseline and EOPE full model. The baseline models include demographics, medical history, 

comorbidities, the severity of PE, and the gestational age of initial PE diagnosis. The full model 

incorporated all features from the baseline model, with additional lab results and vital signs collected in 

the observation window. EOPE models were built and tested on patients with PE onset time before 34 

weeks of gestation.  We constructed all models using the Cox-nnet v2 algorithm (Supplementary Figure 

1)14. In this study, we adopted the model to predict the time between PE diagnosis to delivery. To ensure 

the stability of the models, the discovery dataset was divided into a training set (80%) and a hold-out 

testing set (20%).  

Reduced feature representation from the Cox-nnet models 
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To derive a subset of clinically significant and easily interpretable features, we reduced Cox-nnet features 

based on both their importance scores and significance levels. To do so, we first selected the top 15 most 

important features based on their average permutation importance scores generated by Cox-nnet models19. 

Then we fit each of the K features individually by a univariate Cox-PH model and kept those features 

with statistical significance (log-rank p-value <0·05).  We rebuilt the clinically informative Cox-nnet 

models with the reduced set of features, exactly the same way as the models using all initial input 

features. 

 

Interactive Web Application for Easy Model Validation 

To disseminate the models for public use, we containerized the pre-trained Cox-nnet model into a 

Docker-based web application using R shiny20. This allows the users to access the models easily through 

a local web interface and get prediction results quickly. This app contains two main panels: the individual 

prediction panel and the group prediction panel. Using pre-trained models, the individual prediction panel 

calculates the prognosis index (PI) score of a single new patient, marking its positions and percentiles in a 

distribution plot of PIs within the UM discovery cohort. The group panel takes in a group of new patients 

and returns predicted PIs and percentiles of their PIs in a table. The shiny app is available at  

http://garmiregroup.org/PE-prognosis-predictor/app 

 

Role of the funding source 

The sponsor of the study had no role in the study design, data collection, data analysis, data interpretation,  

writing of the manuscript, or decision to submit the manuscript for publication. 

 

 

 
RESULT 

Cohort characteristics 
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The discovery cohort contains EHR records from 1,533 unique preeclamptic pregnancies, including 374 

pregnancies complicated by EOPE, from Michigan Medicine between the years 2015 to 2022. Patients 

with HELLP syndrome, chronic hypertension with superimposed PE, and postpartum PE were removed 

from the cohort. Additionally, transferred patients from other clinics outside of Michigan Medicine were 

excluded from the cohort. Following the same inclusion/exclusion criteria, 2,249 unique preeclamptic 

pregnancies (547 with EOPE) from the University of Florida (UF) between 2015 and 2022 were 

identified as the validation cohort (Figure 1). Summaries of the patient characteristics of these cohorts are 

shown in Table 1 and 2.   

 

The baseline prediction model of time to delivery interval among PE patients 

We built the baseline model using 47 variables including patient demographics, medical history, 

comorbidities, PE diagnosis time, and severity  (Supplementary Table 2). We randomly split the 

discovery dataset into a training set (80%) and a hold-out testing set (20%). We then built the survival 

prediction model using the Cox-nnet (version 2) algorithm14 (Supplementary Figure 1).  Cox-nnet 

(version 2) is a multilayer perceptron prognosis prediction model based on Cox Proportional Hazards 

regression, suitable for EHR data prediction (Methods). The resulting model is predictive with C-indices 

of 0·73, 0·72, and 0·71 in the UM training, UM hold-out testing, and UF validation cohorts, respectively 

(Figure 2A). 

 

To enhance the clinical utilities of the Cox-nnet model, we reduced the number of predictive features. We 

selected the top 15 most important features based on their average permutation importance scores in the 

Cox-nnet model19, followed by univariate Cox-PH fitting for each to keep only the features with statistical 

significance (log-rank p-value <0·05)19. This procedure resulted in 7 significant features, which we used 

to rebuild the “clinically informative Cox-nnet baseline model”. It reaches high predictability of the time 

to delivery, with median C-index scores of 0·73, 0·74, and 0·73 on UM training, hold-out testing, and UF 

validation dataset respectively (Figure 2A). We stratified patients into 3 risk groups by the quartiles of 
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predicted PI scores from the reduced model: high-risk (upper quartile), intermediate-risk (interquartile), 

and low-risk (lower quartile) groups. The survival curves of the time to delivery interval on these three 

risk groups display significant differences (log-rank p-value < 0·0001) on both the hold-out testing set 

(Figure 2B) and validation set (Figure 2C), confirming the strong discriminatory power of the PI score. 

 

The seven features in the clinically informative baseline model included those that shorten the time to 

delivery and extend the time to delivery (Figure 2C; Table 3).  In descending order of importance scores, 

the features that shorten the time to delivery are: gestational age at diagnosis, sPE, uncomplicated 

pregestational diabetes mellitus, and parity. Conversely, features extending the time to delivery are: PE in 

a prior pregnancy, increasing maternal age, and comorbid valvular disease. To demonstrate the 

associations of these important features with time to delivery, we dichotomized patient survival in the 

hold-out testing set by the median value of each feature (Supplementary Figure 2). All features, except 

maternal age, show significant differences (log-rank p-value < 0·05) between the dichotomized survival 

groups. We further examined the relationship of the top 3 features (gestational age at diagnosis, sPE, and 

history of PE in prior pregnancy) with the gestational age at delivery and time to delivery (day) using the 

UM discovery set in (Figure 2E-2J).  Later gestational age at diagnosis leads to a later gestational age of 

delivery (Figure 2E), but a shorter time to delivery (Figure 2H). Higher percentage of patients with 

earlier gestational age of delivery (Figure 2F) and shorter time to delivery (Figure 2I) are diagnosed with 

sPE. In the deliveries from smaller (<32 weeks) gestational ages, the percentages of patients with PE in 

prior pregnancies are significantly higher (Figure 2G).  However, the percentages of prior PE fluctuate 

with respect to time to delivery (Figure 2M).   

 

The full model of time to delivery among PE patients 

We next investigated the contribution to time of delivery from all 62 variables, including the 47 baseline 

variables above and an additional 15 laboratory testing results and vital signs obtained in the 5-day 

observation window before the time of diagnosis (Supplementary Table 2). We performed model 
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construction, validation, and feature reduction for clinical use in the same way as the baseline model. As a 

result, 12 top features were kept in the clinically informative full model (Table 4).  This model shows 

higher predictive accuracy of time to delivery compared to the seven-feature baseline model, with median 

C-index scores of 0·78, 0·79, and 0·74 in the training, testing, and validation datasets respectively. The 

difference between survival curves of the high-, intermediate- and low-risk groups stratified by predicted 

PI scores from the reduced model has log-rank p-values close to 0 in the hold-out test set (Figure 3B) and 

validation set (Figure 3C), even more significant than those from the baseline model (Figure 2B and 

2C).  

 

Further examination of the 12 important features in the full model (Figure 3D, Table 4) shows good 

consistency with the 7-feature baseline model (Figure 2D, Table 3). Five out of seven features in the 

baseline model also exist in the full model with similar importance scores: gestational age at diagnosis, 

sPE, parity, maternal age, and PE in prior pregnancies. Gestational age at PE diagnosis and sPE continued 

to be the two most important features in the full model.  New features associated with shorter intervals 

from diagnosis to delivery were also identified. They were, in descending order of feature importance:  

aspartate aminotransferase (AST) value, the standard deviation of diastolic blood pressure (DBP), the 

standard deviation of respiratory rate (RR), creatinine value, mean DBP and white blood cell count 

(Figure 3D). Conversely, platelet count was identified as a new feature with a negative importance score, 

which means it’s associated with a longer time to delivery. All dichotomized survival plots using median 

stratification on each of the 12 important features have log-rank p-values smaller than 0·05, confirming 

their associations with time to delivery in the discovery set (Supplementary Figure 3). We examined the 

3 top lab/vital sign features: AST, the standard deviation of DBP, and the standard deviation of RR, on 

their association with the duration of time between diagnosis and delivery. These values show negative 

trends with time to delivery, particularly for AST value and the standard deviation of DBP (Figure 3E-

G). These 3 features are roughly uniform across delivery gestational ages, except AST which shows 

slightly higher values in deliveries less than 32 weeks of gestational age (Supplementary Figure 4). 
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Time to delivery prediction of EOPE patients 

Accurate prediction of EOPE patients’ time to delivery is crucial, given that delivery of a premature infant 

has more significant neonatal consequences. Using similar modeling techniques, we trained two additional 

EOPE-specific Cox-nnet (version 2) models (baseline vs. full model), using the same features described 

earlier (Supplementary Table 2), on a subset of 374 EOPE patients from the UM discovery cohort. 

 

The C-indices for the clinically informative EOPE baseline model are 0·67, 0·68, and 0·63 on the UM 

training, testing, and UF validation sets, respectively (Figure 4A).  In the UM hold-out testing set and UF 

validation set, the high- median-, and low- EOPE patient delivery risk groups using the PI scores from the 

reduced model show significant differences, with log-rank p-value < 0·001 (Figure 4B and 4C).  This 

baseline model consists of the six most important features: gestational age at diagnosis, sPE, PE in a past 

pregnancy, parity, pulmonary circulatory disorders, and coagulopathies (Figure 4D; Table 5).  All 

survival plots, dichotomized using the median stratification on each of the 6 features, have log-rank p-

values smaller than 0·05 in the discovery dataset (Supplementary Figure 5).  

 

The clinically informative EOPE full model reached much higher accuracy compared to the EOPE 

baseline model, with median C-indices of 0·74, 0·76, and 0·67 on the training, testing, and validation sets 

(Figure 4E). The 3 risk-stratified groups within the EOPE patients cohort also showed significant (log-

rank p-value<0·001) differences in the hold-out testing set and validation set (Figure 4F, 4G).  This 

model contains 13 important features selected from the original 62 features (Figure 4H; Table 6). 

Gestational age at diagnosis continued to be the most important feature. Several other features (eg. PE 

with severe symptoms, PE in a past pregnancy, parity, and coagulopathy) were of significant importance 

as well, similar to the EOPE baseline model. Many additional features in the vital signs and lab test 

categories were also significant, including creatinine value, mean DBP and mean SBP, standard deviation 
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of RR, AST, and platelet counts. Among these 13 features, parity, PE in a prior pregnancy, and higher 

platelet counts were protective against early delivery (Figure 4H).  

 

We created dichotomized survival curves based on creatinine value and platelet counts, two new features 

relative to the EOPE baseline model. Both of them show strong distinctions between the risk groups 

(Figure 4I, 4L), similar to all other selected features (Supplementary Figure 6). These two features also 

revealed systematic trends in associations with the gestational age at delivery and time from diagnosis to 

delivery. Patients with high creatinine levels were more likely to be delivered within 3 days or less of 

diagnosis and more likely to deliver preterm (Figure 4J, 4K).  Lower platelet counts were also associated 

with shorter time to delivery (Figure 4N), even though the platelet levels were not strongly associated 

with gestational age at delivery among all EOPE patients (Figure 4M).  

 

PE time to delivery predictor graphic user interface (GUI) 

To disseminate our model publicly, we packaged the pre-trained clinically informative models above into 

an interactive, user-friendly web application using R shiny23. We named this app “PE time to delivery 

predictor”. The app contains two main panels: the single-patient prediction panel and the group prediction 

panel (Supplementary Figure 7). The single-patient prediction panel calculates the prognosis index(PI) 

of a single patient if provided the required clinical variables. The PI score describes the patient’s risk of 

delivery at the time of the diagnosis of PE, relative to the population. The panel also provides the 

percentile of the PI score among the training data, and displays the results in a histogram figure and a 

table. The group prediction panel calculates the PI and PI percentile of multiple patients simultaneously 

and also displays them in a table, below the histogram built on the training data. The app is available at 

http://garmiregroup.org/PE-prognosis-predictor/app 

 

Discussion 
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The implementation of predictive models of delivery time may provide clinicians with critical, and 

patient-specific, information for time-sensitive PE management. Here, we present the first study to 

precisely predict time to delivery among PE patients using electronic health records (EHR).  Our work is 

distinctive from most other studies of risk prediction or classification21,22, in that the patients’ time to 

delivery is explicitly modeled as a continuum by the neural network model. Our models confirmed key 

factors in current PE management, including gestational age at the time of diagnosis, sPE, and the use of 

creatinine and AST as biomarkers in clinical decision-making (Figure 5). An important observation made 

by our study includes the identification of parity and PE in prior pregnancies as important predictors in all 

models tested which are not included in current guidelines to manage PE (Figure 5). For EOPE time to 

delivery prediction, we found that consideration of comorbidities such as pulmonary circulatory disorders 

and coagulopathies is important. We expect that these new findings will accelerate the improvement of 

PE management guidelines. Most importantly, the work here provides clinicians with a practical 

management tool through personalized prognosis score prediction in a user-friendly manner. This nuanced 

clinical calculator may help clinicians both provide more accurate expectations for families and make 

decisions about the urgency to transfer a patient to a higher level of care. 

 

There are several noticeable strengths of this study. Unlike the majority of previous studies that are not 

validated with external data21,23,24,  our models are validated with an external and independent EHR 

dataset from UF Health System, despite the differences between the populations in the two cohorts (Table 

1). These models also addressed clinical interpretability by providing importance scores with 

directionality for each included feature. Furthermore, the model is designed for accessibility by utilizing 

fewer than 15 commonly collected demographic and clinical variables and can be readily utilized through 

a user-friendly shiny application. Our results are contrary to previous studies focused on predicting PE 

delivery timing relying extensively on nonstandard biomarkers such as uterine artery pulsatility index 

(UtA-PI)or placental growth factor (PLGF)23,25,26).  Measurement of these biomarkers is rare in routine 
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prenatal checkups, particularly in lower-income regions, posing significant challenges to the widespread 

adoption of these biomarker-based models. A few caveats to this study are potentially limiting. As a 

retrospective study, it was not clear if a patient was delivered at the most optimal time, or what the 

clinical considerations of their care might have been. Further prospective investigations of this model’s 

performance would be necessary to confirm the findings. Also,the quality of EHR data is influenced by 

clinicians’ previous judgment and use of billing codes, changes in hospital protocol, communication 

between patient and provider, intensive care resource availability, and each patient’s intentions. These 

factors cannot be quantified or corrected for in this model, but can potentially affect the timing of delivery 

in PE and/or EOPE patients. Additionally, our data came from two medical centers with high levels of 

obstetrics care and therefore testing the model in other settings may provide additional insights. 

 

In summary, we have developed the first accurate, deep-learning-based, time to delivery prediction 

models for PE and EOPE patients. The models are disseminated with an easy-to-use web app. Adoption 

of these models could provide clinicians and patients with valuable management plans to predict and 

prepare for the best delivery time of each PE pregnancy. Further prospective investigation of the 

performance of these models is necessary to provide feedback and potential improvement of these 

models. 
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Tables and legends 

Table 1: Basic Patient Characteristics for this study 

Variable Name University of Michigan PE 
Discovery Cohort (n = 1533) 

University of Florida PE 
Validation Cohort (n = 2172) 

Maternal Age, mean (SD) 30·19(5·74) 28·63(6·46) 
Parity, mean (SD) 0·72(1·15) 0·73(1·55) 
Number of fetuses, mean (SD) 1·07(0·27) 1·04(0·21) 
Gestational Age at Diagnosis 
(days), mean (SD) 

249·96(27·44) 256·72(26·83) 

Time to Delivery (days), mean 
(SD) 

7·02(15·39) 1·56(13·28) 

Race, N (%)    
African American 0·18 0·37 
American Indian or Alaska Native 0·00 0·00 
Asian 0·07 0·02 
Caucasian 0·75 0·49 
Native Hawaiian and Other Pacific 
Islander 

0·00 0·00 

Unknown or Other 0·00 0·12 
Ethnicity, N (%)   
Hispanic 0·06 0·11 
Non-Hispanic 0·94 0·87 
Unknown 0·00 0·01 
Smoking Status, N (%)   
Current Smoker 0·06 13·35 
Former Smoker 0·24 NA 
Never Smoker 0·70 NA 
Illegal Drug Use Status, N(%)   
Yes 0·10 0·17 
No 0·90 0·83 
History of PE, N (%)   
Yes 0·11 0·12 
No 0·89 0·88 
sPE, N (%)   
Yes 0·47 0·35 
No 0·53 0·65 
 
 
Table 2: Basic Characteristics of EOPE patients in this study 
 

Variable Name 
University of Michigan EOPE 
Subset (n = 374) 

University of Florida EOPE 
Subset (n=547) 

Maternal Age, mean (SD) 30·70(5·72) 29·48(6·65) 
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Parity, mean (SD) 0·98(1·26) 1·11(1·55) 
Number of fetuses, mean (SD) 1·12(0·34) 1·09(0·31) 
Gestational Age at Diagnosis, 
mean (SD), day 211·10(23·79) 217·75(21·43) 
Time to Delivery, mean (SD), day 19·12(26·44) 9·25(22·12) 
Race, N (%)    
African American 26·74% 43·33% 
American Indian or Alaska Native 0·80% 0·18% 
Asian 5·08% 1·10% 
Caucasian 66·58% 45·16% 
Native Hawaiian and Other Pacific 
Islander 0·80% 0·00% 
Unknown or Other 0·00% 10·23% 
Ethnicity, N (%)   
Hispanic 3·21% 9·14% 
Non-Hispanic 96·79% 89·58% 
Unknown 0·00% 1·28% 
Smoking Status, N (%)   
Current Smoker 7·22% 17·00% 
Former Smoker 22·99% NA 
Never Smoker 69·79% NA 
Illegal Drug Use Status, N(%)   
Yes 11·76% 14·08% 
No 88·24% 85·92% 
History of PE, N (%)   
Yes 18·72% 15·54% 
No 81·28% 84·46% 
sPE, N (%)   
Yes 54·28% 35·10% 
No 45·72% 64·90% 
 
 
 
 
Table 3: Permutation importance Score, directionality, and individual Cox-PH P-values of features in 
reduced but clinically informative PE baseline model. Positive directionality indicates that a higher value 
in the feature is associated with a shorter time to delivery and negative directionality means the extension 
of time to delivery.  

 
Name Permutation Importance Score Directionality P-value 

Gestational Age at Diagnosis 323·55 Positive 6·29E-120 

sPE 79·59 Positive 2·00E-11 

PE in Prior Pregnancies 7·02 Negative 7·50E-11 

Maternal Age 2·75 Negative 3·32E-02 

Uncomplicated Diabetes 1·35 Positive 1·44E-02 

Valvular Disease 1·11 Negative 3·44E-02 

Parity 1·04 Positive 5·92E-07 

 
 
Table 4: Permutation importance Score, directionality, and individual Cox-PH P-values of features in 
reduced but clinically informative PE full model. Positive directionality indicates that a higher value in 
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the feature is associated with a shorter time to delivery and negative directionality means an extension of 
time to delivery.  
 

Name Permutation Importance Score Directionality P-value 

Gestational Age at Diagnosis  390·29 Positive 6·29E-120 

sPE 38·71 Positive 2·00E-11 

DBP Standard Deviation 30·22 Positive 1·24E-27 

AST 26·56 Positive 2·25E-14 

Mean DBP 13·64 Positive 1·17E-10 

RR Standard Deviation 12·37 Positive 1·21E-18 

Parity 11·45 Positive 5·92E-07 

Creatinine 11·16 Positive 6·26E-14 

Platelet Count 9·67 Negative 2·74E-09 

White Blood Cell Count 6·08 Positive 1·77E-03 

Age 3·84 Negative 3·32E-02 

PE in Prior Pregnancies 3·38 Negative 7·50E-11 
 
 
 
Table 5: Permutation importance Score, directionality, and individual Cox-PH P-values of features in 
reduced but clinically informative EOPE baseline model. Positive directionality indicates that a higher 
value in the feature is associated with a shorter time to delivery and negative directionality means the 
extension of time to delivery.  
 
 

Name Permutation Importance Score Directionality P-value 

Gestational Age at Diagnosis 29·88 Positive 1·45E-14 

sPE 12·37 Positive 1·69E-08 

PE in Prior Pregnancies 6·69 Negative 9·73E-07 

Pulmonary Circulatory Disorders 6·38 Positive 1·89E-05 

Parity 4·78 Negative 1·92E-04 

Coagulopathies 1·17 Positive 2·00E-04 
 
 
Table 6: Permutation importance Score, directionality, and individual Cox-PH P-values of features in 
reduced but clinically informative EOPE full model. Positive directionality indicates that a higher value in 
the feature is associated with a shorter time to delivery and negative directionality means the extension of 
time to delivery.  
 

Name Permutation Importance Score Directionality P-value 

Gestational Age at Diagnosis 26·36 Positive 1·45E-14 

Creatinine 10·52 Positive 9·80E-15 

Mean DBP 8·85 Positive 4·29E-19 

Mean SBP 7·21 Positive 1·68E-19 
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AST 7·1 Positive 1·03E-07 

Pulmonary Circulatory Disorders 5·96 Positive 1·89E-05 

Parity 4·74 Negative 1·92E-04 

RR Standard Deviation 4·52 Positive 4·95E-05 

sPE 2·83 Positive 1·69E-08 

Number of Fetuses 2·24 Positive 1·04E-02 

Platelet Count 1·93 Negative 5·46E-05 

PE in Prior Pregnancy 1·34 Negative 9·73E-07 

Coagulopathies 0·69 Positive 2·00E-04 
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