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Plasmids carry genes conferring antimicrobial resistance
(AMR), and other clinically important traits; their ability to
move within and between species may provide the machinery
for rapid dissemination of such genes. Existing studies using
complete plasmid assemblies, which are essential for reliable in-
ference, have been small and/or limited to those carrying par-
ticularly antimicrobial resistance genes (ARGs). In this study,
we sequenced 1,880 complete plasmids from 738 isolates from
bloodstream infections (BSI) in 2009 (194 isolates) and 2018 (368
isolates) in Oxfordshire, UK, plus a stratified selection from in-
tervening years (176 isolates). We demonstrate that plasmids
are largely, but not entirely, constrained to host species, al-
though there is substantial overlap between species of plasmid
gene-repertoire. Most ARGs are carried by a relatively small
number of plasmid groups with biological features that are pre-
dictable. Plasmids carrying ARGs (including those encoding
carbapenemases) share a putative ‘backbone’ of core genes with
those carrying no such genes. These findings suggest that fu-
ture surveillance should, in addition to tracking plasmids cur-
rently associated with clinically important genes, focus on iden-
tifying and monitoring the dissemination of high-risk plasmid
groups with the potential to rapidly acquire and disseminate
these genes.

Plasmids | Antimicrobial resistance | E. coli | Klebsiella

Correspondence: samuel.lipworth@ndm.ox.ac.uk

Introduction
Gram-negative bloodstream infections (BSI) are associated
with substantial morbidity and mortality; their incidence
continues to increase both in the UK and globally(1, 2).
Multidrug-resistant and hypervirulent phenotypes are a par-
ticular concern, especially since genes conferring these char-
acteristics (and others which may have either positive or neg-
ative fitness effects) are carried on plasmids, frequently in
association with other smaller mobile genetic elements(3, 4).
Plasmids are thought to facilitate the rapid dissemination of
these genes within and between species. A detailed under-
standing of their biology and epidemiology is therefore likely

to be crucial in tackling the global threat of antimicrobial re-
sistance (AMR).

Complete and accurate genome assemblies, such as those
produced by "hybrid" assemblies of short and long-read se-
quencing data, are crucial for the study of plasmid epi-
demiology. Until recently however, these have been pro-
hibitively expensive for large-scale application and so whilst
this approach has recently been used at scale to evaluate the
plasmidome of environmental/agricultural isolates(5), to our
knowledge its application to human-associated isolates has
been mostly restricted to relatively small numbers of isolates
selected based on AMR phenotype(3, 6). This phenotype-
driven selection strategy has identified several plasmid types
associated with the dissemination of key ARGs but it is cur-
rently not known whether similar plasmids are also found in
susceptible populations. Recently, two studies have demon-
strated the utility of network-based approaches to classify
plasmid assemblies from public databases, offering insights
into the host range of these plasmids, though such analyses
suffer from sampling bias as well as a lack of clinical con-
text and accurate metadata(7, 8). Therefore, the plasmidome
associated with Gram-negative isolates causing both antimi-
crobial susceptible and sensitive clinical infections remains
largely uncharacterised.

In this study, we generated a large collection of complete E.
coli/Klebsiella spp. genomes from all BSIs collected in 2009
and 2018 in Oxfordshire, UK, as well as a representative sam-
ple from intervening years. Using this unprecedented dataset,
we first sought to investigate the extent to which plasmids are
shared and contribute to overlaps in the pangenome within
and between species. We then sought to compare plasmids
associated with ARG carriage to those that are not. Subse-
quently we investigated the dissemination dynamics of the
most prevelant ESBL gene in the population, blaCTX-M-15,
highlighting complex nested mobilisation that can only be
unravelled using hybrid assembly. Finally we contextualised
our findings by comparing our plasmid dataset to a large
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global collection and investigated whether features of "suc-
cessful" plasmids and those with the potential for ARG car-
riage are predictable.

Results
We successfully sequenced and assembled n=738 isolates of
which 75% (553/738) were E. coli (n=153, 297, 103 in 2009,
2018, intervening years, respectively), 22% (161/738) Kleb-
siella spp. (n=39, 58, 64 in 2009, 2018, intervening years,
respectively) and 3% (24/168) other Enterobacterales spp
(details in Figure S1). In total, these isolates carried 1,880
plasmids with a median of 2 plasmids per isolate (interquar-
tile range (IQR) 1-3). 10% (77/738) isolates carried none,
29% (211/738) carried one and 61% (450/738) more than one
(Figure 1A). Of the n=661/738 isolates with at least one plas-
mid, 77% (508/661) carried at least one large plasmid (i.e.,
sequence length >100,000bp), and 94% 621/661) at least one
large or medium plasmid (i.e., sequence length >10,000bp);
of these 53% (329/621) also carried at least one small plas-
mid (i.e. sequence length <10,000bp). Carriage of one or
more small plasmids in the absence of any medium or large
plasmid was relatively rare at 6% (40/661). Rarefaction anal-
ysis suggested that a substantial number of plasmid groups
remain unsampled and that there is a significantly greater di-
versity amongst groups containing smaller (<100,000bp) vs
larger (≥100,000bp) plasmids (Figure 1B). There was some
evidence that Klebsiella spp. isolates tended to carry slightly
more plasmids than E. coli: median 2 (IQR 1-5) vs (median
2 (1-3) plasmids respectively (Kruskal-Wallis, p-value=0.03;
Figure 1A), as did multi-drug resistant (MDR i.e., carriage
of ≥3 ARG classes) vs. non-MDR isolates: (n=317/738 vs.
n=421/738 isolates; median 3 (IQR 2-4) vs. median 2 (1-3)
Kruskall-Wallis, p-value<0.001]).

Despite comprising a relatively small proportion of the total
genome (median=2.79%, IQR=1.97-3.97%), plasmids car-
ried 39% (2069/5311) ARGs, 12% (987/8315) virulence
genes and 60% (2836/4735) stress response genes. 50%
(368/738) isolates carried at least one plasmid-borne ARG
and 306 at least 2; of these, 79% (242/306) carried all an-
notated ARGs on a single plasmid (Figure 1C). In isolates
with a medium or large plasmid, co-carriage of a small plas-
mid was significantly more common in isolates harboring
plasmid-borne ARGs 58% (210/361) vs. 46% (119/260)
without (Fisher test, p-value=0.003).

Most BSI isolates carry a large (>100,000bp) plasmid
from a small number of common plasmid groups

We first attempted to classify plasmids using existing tools;
17% (317/1880) plasmids could not be assigned a repli-
con type and 33% (622/1880) had no identifiable relaxase-
type. Similarly 26% (487/1880) plasmids were not ty-
pable using the recently described Plasmid Taxonomic Unit
(PTU) scheme(9); 7% (128/1880) were not typable by any
method. Subsequently, we therefore opted to use a previously
described classification approach, utilizing a graph-based
Louvain community detection algorithm(10) (see methods)

which has the advantage of not being reliant on reference
databases for group assignation and is thus able to classify
all plasmids into groups. This approach yielded 513 groups
from 1880 plasmids, of which 164 (32%) contained >1 plas-
mid, but only 33 (6%) contained ≥10 plasmids, and most
were singletons (349/513 (68%)). 322/553 (58%) E. coli
isolates carried a plasmid from one of the four most com-
mon, predominantly E. coli-associated, large (>=100,000bp)
plasmid groups (4/6/7/8) in Figure 3) and similarly 76/161
(47%) Klebsiella spp. isolates contained a plasmid from one
of the three most common, predominantly Klebsiella spp.-
associated, large plasmid groups (1/2/5) in Figure 3).

Plasmid groups are structured by host phylogeny but
there is evidence of intra and inter-species transfer events

We found strong evidence that the plasmidome of BSI
isolates was structured by host phylogeny, although there
was also vast and persistent background diversity. Over-
all, 141/513 (27%) groups were found in >1 MLST and
22/513 (4%) were found in more than one species; multi-
species groups had ≥10 members significantly more com-
monly (8/22 (36%) vs 25/491 (5%), p<0.001) (Figure 3). Se-
quence type and host species explained 8% and 7% (Ado-
nis p=0.001 for both) of the observed plasmidome variance
respectively. ARG content explained a comparatively small
amount of variance (R2=2%, p=0.001) as did year of isolation
(0.03%, p=0.005) and source attribution (R2=1.2%, p=0.99,
i.e. suspected focus of infection, only available for a small
subset of isolates [198/738]) (Figure 2, panels a, b, c and d
respectively). When we focussed on plasmid groups found in
the most common E. coli STs (131/95/73), we observed that
most were seen in only a single ST (78/109) but 13 ‘gener-
alist’ groups were seen in all three STs, and accounted for
the majority of plasmids (215/400 (54%)). Highly similar
plasmidomes were seen in genetically divergent members of
each ST, consistent with multiple horizontal transfer events
(Figure S2). Persistent plasmid groups seen in both 2009 and
2018 were also seen in more phylogenetically diverse iso-
lates within STs (Figure S3), consistent with the hypothesis
that the persistence of plasmids is linked to their host range
potential.

Common plasmid groups share genes with each other;
gene sharing with chromosomes is also frequent

Whilst we observed only 4% (22/5143) plasmid groups were
shared between species, we hypothesised that this might
greatly under-represent the true extent of plasmid-mediated
horizontal gene transfer given the role of smaller mobile ge-
netic elements and the fact that BSIs represent a tiny fraction
of the overall ecological landscape. We therefore looked for
evidence of overlap in the pangenome between different plas-
mid groups as well as between these and host chromosomes.
Most genes in the pangenomes of common (i.e. containing
n≥10 plasmids) plasmid groups of E. coli and Klebsiella spp.
were non-unique to their group (median % non-unique genes
88%, IQR 67-98%). Most overlap occurred amongst genes
found in the plasmid pangenome from the same species (me-
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Fig. 1. A – number of plasmids per isolate for E. coli (top panel) and Klebsiella spp. (bottum panel), coloured by the number of ARG classes per isolates where MDR
is ≥3 and AMR 1-2. B - Rarefaction curve of the number of novel plasmid groups per new plasmid sequenced stratified by size (Large ≥100,000bp, Medium ≥10,000 -
<100,000bp, Small < 10,000bp. C – Number of plasmid-associated ARGs per isolate vs number of plasmids carrying at least one ARG. Isolates with only one plasmid
associated ARG (by definition carried on one plasmid) are excluded.

Fig. 2. A Umap projection of the mash distances between the plasmidomes of isolates (each point represents the plasmidome, i.e. all plasmid sequences of a single isolate).
These are coloured to show the variability explained by species (A)/ARG carriage (B)/year (C) and infection source (D).

Lipworth et al. | Plasmids in GNBSIs medRχiv | 3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.03.22273290doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.03.22273290
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3. Phylogenetic distribution of the most common (n>=10 members) plasmid groups (n=33 groups) and the content of these. The tree is a neighbour joining tree built
on Mash distances between chromosomes. Tip colours represent species/phylogroup. The black bars represent the presence or absence of plasmid groups (shown along
the bottom x-axis) for each isolate in the tree. The right panel shows the percentage of isolates within each of these 33 plasmid groups carrying the genes indicated (darker
colours denote higher proportion of isolates carrying gene). To improve readability, gene groups have been clustered together.

dian % shared genes 86% (IQR 50-95%) vs 31% (8-43%)
from different species, p<0.001). There was also substantial
overlap between plasmid group pangenomes and the chro-
mosome pangenome, although there was some evidence of
convergence in the chromosomally integrated mobilome be-
tween species, evidenced by less difference in the proportion
of genes shared with the chromosome for same vs different
species (Figure S4, median 33% (IQR 0-45%) vs 21% (0-
35%), respectively p=0.34).

Plasmids associated with ARG carriage are often highly
similar to those with no such genes

The 439 plasmids carrying at least one ARG were predom-
inantly large (≥100,000bp, 277/439, 63%), low copy num-
ber (median 1.80 IQR 1.63-2.37) and conjugative (347/439,
79%). Whilst most plasmid-borne ARGs were carried by
plasmids clustering in a small number of groups (i.e. 81%
1674/2069 ARGs were carried by 8 plasmid groups), 36%
(170/474) plasmids in these groups did not carry an ARG and
all groups had at least one such member, highlighting that ac-
quisition of ARGs in ARG-negative plasmid backbones rep-
resents a common risk across genetically divergent plasmid
groups (Figure 4). We repeated this analysis using group
assignations given by COPLA (Plasmid Taxonomic Units)
and Plasmidfinder (replicon typing) and found similar results
(Table S1), suggesting that this finding is robust to the choice
of clustering method.

Hybrid assembly reveals complex nested diversity associ-
ated with key AMR genes, significant chromosomal inte-
gration of ARGs and presence of multiple copies in dif-
ferent contexts
Chromosomal integration of ARGs was common: for ex-
ample, in E. coli, 56% (23/41) blaCTX-M-15, 9% (2/22)
blaCTX-M-27, 14% (42/293) blaTEM-1, 42% (14/33) blaOXA-1,

39% (7/18) aac(3)-IIa and 5% (3/65) dfrA17 were chromoso-
mally integrated. There was significantly more chromosomal
integration of ARGs also seen at least once in a plasmid in
our study in E. coli vs Klebsiella spp. (restricting to 2009 and
2018 only 15% [324/2103] vs 8% 39/478 [8%], Chi-squared
test p<0.001). For E. coli, there was significantly more chro-
mosomal integration in 2018 vs 2009 (19% [285/1485] vs
6% [39/618], Chi-squared test p<0.001) but there was no
evidence of this for Klebsiella spp. (7% [13/190] vs 6%
[17/279], Chi-squared test p=0.89). For most of these ARGs,
there were multiple instances of isolates carrying two (and
occasionally more) copies (9 such examples for blaCTX-M-15
(Figure 5), 1 blaCTX-M-27, 29 blaTEM-1, 2 aac(3)-IIe and 1
dfrA7).

Given the global importance of the ESBL gene blaCTX-M-15
conferring third generation cephalosporin resistance, we fo-
cused on its genetic background and putative dissemination
mechanisms. As above, plasmid groups carrying this gene
in our dataset were generally species constrained. However,
within a single species, considering phylogroup, sequence
type and even plasmid group, blaCTX-M-15 was found in a va-
riety of genetic contexts (Figure 5). For example, in E. coli
ST131 it was found in five plasmid groups and was chromo-
somally intergrated in 41% (17/41) isolates. Within ST131
sub-clades, there was some evidence of vertical transmission,
as well as numerous independent integration events. In many
cases, several unique gene flanking regions were found in as-
sociation with blaCTX-M-15 within a single plasmid group, or
identical flanking regions were shared across plasmid groups
and between plasmid groups and chromosomes. Visual in-
spection of gene flanking regions and hierarchical clustering
of a weighted graph (Methods: Bioinformatics) suggested
that whilst there was substantial diversity, these flanking re-
gions appear to have evolved in a stepwise manner with bilat-
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Fig. 4. Plasmid network where plasmids (nodes) are connected by edges if they cluster in the same group using the Louvain-based methodology and coloured acording to
the number of classes of ARGs that they carry. Edge thickness is drawn proportional to the Jaccard distance (see methods) between plasmids. Multi-species clusters are
donated by black outlined shapes. Only plasmids groups with ≥2 members are shown.

eral association of blaCTX-M-15 and Tn2 in flanking groups 2,
3 and 6 compared to the presence of Kpn14 (groups 1 and 5)
and IS26 (group 4) (Figure S5). Inspection of core-genome
phylogenies of the two largest blaCTX-M-15 carrying plasmid
groups (plasmid groups 2 and 3 in Figure 3) demonstrated
multiple probable independent horizontal acquisition events
of this gene (and other ARG cassettes Figure S6 and Fig-
ure S7), suggesting that a flexible capacity to acquire ARGs
through diverse mobile genetics elements rather than a fixed
association with them might be important factors for the suc-
cessful dissemination of the host plasmid.

Comparison with wider plasmid datasets highlights un-
dersampled plasmid diversity, more widespread inter-
species and inter-niche plasmid sharing, and the potential
for carbapenemase dissemination amongst “high-risk”
plasmid groups

We repeated our graph-based plasmid clustering method on a
combined dataset of Oxfordshire plasmids (N=1880, hereby

referred to as the ‘Oxfordshire dataset’) and the Global col-
lection of plasmids deposited in the NCBI (N=10,159, de-
noted the ‘global dataset’) using the same sparsifying thresh-
old (≤0.551). This yielded 5913 groups of which 484 con-
tained at least one plasmid from the ‘Oxfordshire dataset’; of
these, 326 groups (67%) containing 536 plasmids appeared to
be unique to Oxfordshire. 79/484 (16%) of groups containing
Oxfordshire plasmids were found in more than one species in
the full dataset; of these 57 (72%) occurred in only a single
species in the Oxfordshire dataset, highlighting the substan-
tial underestimation of wider between-species dissemination
by investigating only a single region and single source (i.e.
bloodstream infections).

A striking feature of the global network was that plasmids
carrying carbapenemase genes clustered with those that did
not (Figure 6). Of 122 plasmid groups with at least one mem-
ber carrying a carbapenemase gene, 19 (16%) contained at
least one Oxfordshire plasmid. These included representa-
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Fig. 5. Nested genetic complexity associated with blaCTX-M-15 mobilisation. The ‘Tree’ panel shows a neighbour-joining tree of Mash distances between chromosomes
for isolates carrying a blaCTX-M-15 gene. Tip colours represent species/ST/phylogroup. The chromosomal copy 1 and 2 panels show the genetic context 5000bp up- and
downstream from chromosomal copies of the blaCTX-M-15 gene (shown in red); the plasmid copy panel shows this equivalent information for isolates carrying a plasmid-borne
copy of this gene. The outlining colour in these panels shows the hierarchical cluster assignment of these flanking groups. The plasmid group panel shows group membership
of plasmids carrying the blaCTX-M-15 gene with each x-axis position representing a distinct group and black bars showing the presence or absence of these for isolates in the
tree. The encircled numbers denote: 1 - different flanking sequences in the same ST, 2 - different flanking sequences in the same plasmid group, 3 - the same flanking group
found in both chromosomal and plasmid contexts and 4 - different plasmid groups harbouring the gene found within the same ST.

tives from the K. pneumoniae MDR-associated Oxfordshire
BSI dataset groups 2 and 5 (Figure 3), three large groups
(Figure 3 groups 3/6/8) widely distributed amongst E. coli
isolates and two groups of smaller plasmids (<100,000bp,
Figure 3 groups 10 and 12), also widely distributed in Ox-
fordshire E. coli. Although only 2% (7/414) Oxfordshire
plasmids falling into these groups actually carried a car-
bapenemase ARG, this suggests the potential for carbapen-
emase acquisition and dissemination amongst widespread
“high-risk” plasmid backbones.

Factors predictive of plasmid group “success”

Having demonstrated that most isolates carry a plasmid from
a relatively small number of plasmid groups, we next sought
to understand what factors might be driving the widespread
dissemination of these amongst BSI isolates. Multivariable
Poisson regression analysis revealed that plasmid group fre-
quency (a subjective marker of evolutionary “success”) was

associated with isolation in multiple species (adjusted rate
ratio aRR 4.89, 95%CI 4.29-5.57, p<0.001), capacity to
conjugate (aRR 1.73, 95%CI 1.47-2.04) or mobilise (aRR
1.29, 95%CI 1.13-1.48) (i.e. containing either a relaxase
or oriT but missing a mate-pair formation marker), carriage
of multiple ARGs (aRR 1.23, 95% CI 1.19-1.27)/virulence
(aRR 1.44, 95%CI 1.36-1.53)/Toxin-antitoxin genes (aRR
1.32, 95%CI 1.18-1.47) and a higher GC content (aRR 1.01,
95%CI 1.00-1.03) (Table S2). Carriage of ARGs (adjusted
Odds Ratio, (aOR=2.88, 95%CI 1.53–5.41, p<0.001) and
isolation in multiple species (aOR=7.79, 95%CI 3.07-22.90,
p<0.001) were independently associated with a higher prob-
ability of plasmid groups being observed internationally (Ta-
ble S3).

Machine learning allows risk stratification of plasmids

Given that we have shown that plasmids carrying ARGs
are often very similar to those with no such genes ("ARG-

6 | medRχiv Lipworth et al. | Plasmids in GNBSIs

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.03.22273290doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.03.22273290
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 6. Plasmids carrying carbapenemase genes are highly similar to plasmids without these genes found in Oxfordshire BSIs. A) Each horizontal bar represents a plasmid
assembly either from Oxfordshire ‘Group 2/11’ or the NCBI global dataset. Common genes are shown in color (with blast identity between these shown from light grey to black
(where the latter represents a perfect match) whereas genes unique to a given plasmid are shown in grey. B) a network plot of plasmids which cluster with carbapenemase
carrying plasmids in the global network analysis. Plasmids (nodes) are connected with an edge where the edge weight is ≤0.551 (see methods). The thickness of edges is
displayed so that it is proportional to the edge weight.

negative plasmids"), we hypothesised that it might be possi-
ble to predict whether ARG-negative plasmids pose a risk
for eventual association with ARGs. To do this we first
performed a genome-wide association study (corrected for
population structure and plasmid size, using the Oxfordshire
dataset only) to identify genes (excluding known ARGs) sig-
nificantly more or less likely to be carried by plasmids in
ARG-associated groups (i.e. plasmid groups where at least
one member carries at least one ARG). This revealed signif-
icant associations between ARG-associated plasmid groups
and presence of insertion/transposon sequences, various vir-
ulence factors, toxin/anti-toxin system and heavy metal resis-
tance genes (Table S4).

We then tested the predictive value of these elements to iden-
tify ARG-negative plasmids belonging to ARG-associated
groups using a variety of models on the Oxfordshire dataset
(see methods) with stratified 10-fold cross-validation to esti-
mate out of sample performance. The best performing model
(Random Forrest) had a mean accuracy of 90.3% (standard
deviation [SD] 2.4%), mean area under the receiver opera-
tor curve [AUC] 0.90 (SD 0.02), mean sensitivity 86% (SD
4.3%) and mean specificity 93.4% (SD 2.9%). We re-trained

the Random Forrest model on ARG-negative plasmids in the
global dataset using only plasmids sequenced prior to 2018
and subsequently made predictions on the held-out 2018
plasmids. This demonstrated that the model generalised well
but was less sensitive on this dataset (accuracy 84.6%, AUC
0.82, sensitivity 73.7% and specificity 89.9%).

Discussion
In this study, we fully reconstructed 738 isolates (1880 plas-
mids) to conduct the largest, most unselected and compre-
hensive evaluation of the epidemiology and function of plas-
mids associated with Gram-negative isolates causing blood-
stream infections to date. Most isolates in this study carried a
large plasmid from a small number of plasmid groups; these
were frequently, but not invariably, associated with carriage
of multiple antibiotic resistance, virulence and heavy metal
resistance genes, potentially providing survival and fitness
benefits to the host bacterium. The fact that most isolates
with multiple plasmid-borne ARGs (often from several dif-
ferent classes) carry all of these on a single plasmid rein-
forces the importance of good antimicrobial stewardship and
avoiding unnecessary exposure to all classes of antibiotics
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to control co-selection as much as possible. Crucially we
also found that plasmids carrying ARGs frequently cluster
in large, widely disseminated groups with plasmids without
these genes, representing a potential set of “high-risk” back-
bones for ARG acquisition and horizontal spread.

To date, most similar sequencing studies have focused on
plasmids carrying particular ARGs (particularly those with
ESBL/carbapenem resistance genes) and have therefore not
considered how these might be related to plasmids without
such genes. We hypothesise that plasmid adaptation to co-
exist with successful lineages often occurs prior to the acqui-
sition of high-risk ARGs, presenting a potential window of
opportunity for intervention which is lost if one is solely fo-
cused on the presence of these genes. Our data and should
therefore motivate a shift away from studies focusing on a
single phenotype or gene of interest and towards efforts to
identify and track high-risk plasmid groups or other smaller
mobile genetic elements and clearly illustrate that such a new
surveillance framework must incorporate unselected sam-
pling frames, i.e. not only selecting isolates with particular
AMR phenotypes for sequencing. Notably we found an asso-
ciation of small plasmids and medium/large ARG-associated
plasmids, suggesting that they may play an important helper
role in ARG plasmid persistence/spread, and a more detailed
understanding of this possible synergy could be valuable(11).

Whilst plasmid populations were structured, and plasmid
groups where mostly constrained to a single species and in
some cases species lineages in Oxfordshire, there was also
clear evidence of exchange between lineages of a species
and different species. Enterobacterales are widely distributed
as commensals and in multiple environmental sources; our
study sample is thus extremely sparse relative to the whole
ecology. Even where we found no evidence that certain plas-
mids were shared between species in Oxfordshire, our data
demonstrated widespread sharing of the plasmid gene reper-
toire (including ARGs and their flanking regions) with plas-
mids and chromosomes in other species. The unexpectedly
high proportion of isolates with chromosomally integrated
ARGs (and apparent increase across the study period for E.
coli) may either represent a success of plasmids in conferring
survival benefits to their host while lowering their own as-
sociated fitness cost or a success of the host by lowering its
dependence on the presence of the plasmid.

A limitation of this study is that it is from a single region,
mitigated in part by comparisons with publicly available
datasets. The lower sensitivity for predicting ARG-group
association in the global dataset likely reflects its inherent
bias and heterogeneity compared to the Oxfordshire dataset
as well as the existence of such ARG-associated groups and
genes not observed in our setting. The inability to sequence
and/or assemble all plasmids from the selected cohort is an
additional limitation. Sequencing only bloodstream infec-
tion isolates may lead to underestimation of how much shar-
ing of plasmids between species truly occurs given that this
represents a highly selected subset of isolates causing se-
vere disease. This is supported by our analysis of the large

publicly available dataset, which demonstrated that several
groups found only in a single species in our study have pre-
viously been seen in other species. Our results also highlight
the substantial limitations of previous studies using reference
database-based approaches for plasmid typing and demon-
strate that fully reconstructed genomes (i.e. long read se-
quencing data) are essential in order to provide meaningful
insight.

In conclusion our study provides the first high-resolution
description of the plasmidome associated with E.
coli/Klebsiella spp. bloodstream infections and demon-
strates that using long-read data and unselected sampling
frames is essential in order to fully appreciate its complexity.
Previous studies of plasmid epidemiology in Gram-negatives
have primarily focused on MDR/carbapenemase-carrying
isolates; our finding that non-ARG carrying plasmids are
often highly similar to plasmids isolated in these earlier
studies demonstrates the potential for rapid dissemination
of ARGs to settings where they are currently rare. We rec-
ommend that surveillance is based on unselected sampling
frames, long-read sequencing and considers plasmids and
smaller mobile genetic elements to develop a representative
understanding of the horizontal gene transfer landscape to
facilitate appropriate intervention.

Methods
Isolate selection

We have previously reported analyses of short read sequenc-
ing data from E. coli and Klebsiella spp. bloodstream in-
fection isolates in Oxfordshire between 2009 and 2018 as
described previously(12, 13). In this study, we additionally
sequenced all E. coli and Klebsiella spp. isolates from 2009
and 2018 using Oxford Nanopore Technologies. We also se-
quenced a subset of isolates from intervening years, using
stratified random sampling based on analysis of short-read
data to capture maximum plasmid diversity. Additionally
we selected isolates from clinically important local AMR-
associated outbreaks and representatives of other species with
apparently similar plasmidomes. Details of successfully se-
quenced isolates, those excluded and the stratification and se-
lection methods are available in the appendix.

Sequencing

DNA for long-read sequencing was extracted either using Qi-
agen Genomic Tip/100G according to the manufacturer’s in-
structions, or with the BioMerieux Easymag using the man-
ufacturer’s generic short protocol with a final elution vol-
ume of 50 µL. The Qubit 2.0 Flourometer was used to quan-
tify DNA. Sequencing libraries were prepared using the Ox-
ford Nanopore Technologies Native (n=23) and Rapid (all
other) barcoding kits, according to the manufacturer’s in-
structions. Sequencing was performed on GridIons with
R9.4 flowells, which were reused multiple times utilising
the ONT Flow Cell Wash kit and our previously validated
protocol(14). Illumina (short-read) data was created as pre-
viously described(13).
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Bioinformatics

Reads were first base-called and demultiplexed using
Guppy (v3.1.5, Oxford Nanopore Technologies) with
Deepbinner(15) (v0.2.0) subsequently used to recover addi-
tional unclassified reads as previously described(14). Our
strategy for hybrid assembly is depicted in Figure S8. We first
assembled all isolates using Unicycler(15) (–mode bold) with
the raw Illumina and ONT reads as input. In parallel we per-
formed another assembly where Unicycler was given an as-
sembly graph from Flye(16) (run with –plasmids –meta and
reads which had been polished using Ratatosk(17)) and short
reads pre-processed by Shovill(18). The most contiguous as-
sembly of these was used (or the latter if both were com-
plete). If neither hybrid assembly completed then we used the
Flye assembly (with four subsequent rounds of Pilon(19) pol-
ishing) if this was complete. Incomplete assemblies (where
≥1 replicon [i.e. either plasmids or the chromosome] had >1
contig) were excluded from further analysis (n=215).

Rarefaction analysis with performed using the R library
Micropan(20). Annotation of genes was performed using
AMRFinder Plus(21), ABRicate(22), TADB 2.0(23) and
Prokka(24); custom/manually augmented databases (avail-
able at www.github.com/samlipworth/GN_BSI_Hybrid)
were used for the latter two to attempt to improve the
proportion of annotatable toxin-antitoxin systems/plasmid
associated genes respectively. GC content and predicted
mobility were extracted from Mobsuite output. GC-gap
was defined as GC content of plasmid – GC content of
chromosome.

Pangenomes were analysed using Panaroo(25) (v1.2.8 –
clean-mode sensitive) and visualised with a Umap projec-
tion created using the R package Umap(26). Variance in
the pangenome explained by e.g. AMR content/year/species
was examined using a permanova perfomed in the R pack-
age vegan(27). Gene flanking regions were analysed using
Flanker (v1.0, –w 0 –wstop 5000 –wstep 100)(28). The
Reder package(29) was used to cluster a weighted graph cre-
ated from a matrix in which distances were determined to
be the greatest distance from the gene (in both upstream and
downstream directions) in pairs of isolates which were in the
same Flanker cluster; this analysis was repeated in an all vs
all fashion for all isolates. Flanking regions were annotated
using the Galileo AMR software (Arc Bio, Cambridge MA
USA).

Plasmid clustering

Robust taxonomic classification of plasmids remains a
challenge(30). We therefore used two established methods
that have been applied to large-scale short read sequencing
datasets, Replicon typing using PlasmidFinder(31) and Re-
laxase typing with MOB-suite(32). We also typed all plas-
mids using the recently described Plasmid Taxonomic Unit
nomeclature(8) (using COPLA(9)). As a substantial number
of plasmids remained unclassified by all these methods, we
additionally utilized a recently described graph-based clas-
sification system(10). Mash(v2.3)(33) (-s 1000, -k 21) was

used to create an all vs. all distance matrix of plasmid as-
semblies where the distance was taken to be 1 – the pro-
portion of shared kmers between the plasmid of interest and
plasmids in the sketch sequences, where plasmids with a dis-
tance of 0 share all kmers in the sketch space whereas those
with a score of 1 share no common kmers. This was used
to create a weighted graph using the R package Igraph(34)
where vertices represent plasmids and edges between these
are weighted by the distance described above. Commu-
nity detection on this graph was performed using the Lou-
vain algorithm which seeks to maximise the density of edges
within vs between communities. We optimised performance
of this algorithm as described previously(10) by sparsify-
ing the graph, removing edges with a weight ≤ a threshold
which was selected by iteration. This approach performed
optimally (i.e. assigned the maximum number of isolates to
larger [n≥10 isolate] clusters) when the graph was sparsified
at an edge weight of ≤0.551 prior to community detection
(Figure S9); this parameter was used for all subsequent anal-
ysis. The final sparsification threshold was selected to opti-
mise the number of plasmids assigned to large (n ≥ 10) clus-
ters. We compared the classifications given by this approach
to other methods using the Normalized Mutual Information
index in the R package NMI(35), which demonstrated good
agreement with previously described classification methods
using normalised mutual information (NMI; see Methods):
replicon-typing NMI=0.81, relaxase-typing NMI=0.93, plas-
mid taxonomic unit (PTU) NMI=0.81.

Comparison with existing plasmid sequencing data

To place our plasmid sequencing data in a global context,
we downloaded all available plasmids (n=10,159) from a re-
cently curated plasmid collection(7) for comparison. We re-
fer to the Oxfordshire isolates as the “Oxfordshire dataset”
and the combined collection as the “Global dataset”. We
computed a pairwise distance matrix and performed Louvain-
based clustering as described above, sparsifying the graph us-
ing the same threshold (0.551) as in the main analysis.

Statistical analysis

To investigate factors associated with geographical dissemi-
nation of plasmid groups we subsetted the global dataset to
include only Oxfordshire isolates and those from NCBI not
from the UK and where the location of isolation was known.
We further filtered this to include only plasmid clusters ob-
served at least once in Oxfordshire. Isolation in more than
one country was used as the binary dependent variable in
a logistic regression with other plasmid group features (e.g.
ARG/virulence/GC content) as independent variables. Mul-
tivariable associations between all available plasmid group
metrics (independent variables) and plasmid group frequency
in the dataset (dependent variable) were estimated using
Poisson regression in exploratory analyses. Comparisons of
continuous variables and proportions between groups used
Kruskal-Wallis/Wilcoxon Rank-sum and Fisher/Chi-squared
tests respectively in R version 4.1(36).

To search for non-AMR plasmid-borne genes associated with
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carriage of ARGs, we performed logistic regression with
membership of an ARG-associated group as the dependent
variable and each gene in the plasmid pangenome as the
independent variable, adjusting for population structure us-
ing multi-dimensional scaling (MDS) of mash distances (R
package CMD scale), represented in 10 dimensions(37).
We additionally adjusted for plasmid size using three cate-
gories (’large’ ≥100,000bp, medium ≥10,000-<100,000bp
and small <10,000bp). P-values were adjusted for multi-
ple comparisons using the Bonferroni method after remov-
ing genes with <1% population frequency. This pangenome-
wide association study was performed using only the Oxford-
shire plasmid dataset.

We then tested the predictive value of these genes (n=178)
to identify plasmids not carrying ARGs (ARG-negative plas-
mids) which were found in ARG-associated groups in the
Oxfordshire dataset (N=1447 plasmids of which 609 where
in ARG-associated groups). We evaluated the performance
of nine models (logistic regression, linear discriminant anal-
ysis, K neighbours classifer, decision tree classifier, gaussian
naive Bayes, random forest classifier and gradient boosting
classifier and a voting classifier combining all of these) us-
ing 10-fold cross validation, which was repeated 100 times.
We further evaluated the performance of the best perform-
ing model (random forest) using ARG-negative E. coli and
Klebsiella spp plasmids in the global dataset with the same
features as before (significant gene hits from the pangenome
GWAS above). We split the dataset into plasmids collected
prior to 2018 (global training set on which the model was
re-trained n=656 plasmids of which 221 where in ARG as-
sociated groups) and those collected subsequently (held-out
global testing set on which final metrics were reported N=306
plasmids of which 99 where in ARG-associated groups).
This analysis was performed using the SciKitLearn(38) pack-
age in Python version 3.7.7.

Data visualisation

Data were visualised using the ggplot2(39) and gggenes(40)
packages in R, Clinker(41), Cytoscape(42) and Biorender
(www.biorender.com).
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